West Virginia and Kansas had the lowest cost of living across all U.S. states, with composite costs being half of those found in Hawaii. This was according to a composite index that compares prices for various goods and services on a state-by-state basis. In West Virginia, the cost of living index amounted to 84.8 - well below the national benchmark of 100. Nevada - which had an index value of 100.1 - was only slightly above that benchmark. Expensive places to live included Hawaii, Massachusetts, and California Housing costs in the U.S. Housing is usually the highest expense in a household’s budget. In 2023, the average house sold for approximately 427,000 U.S. dollars, but house prices in the Northeast and West regions were significantly higher. Conversely, the South had some of the least expensive housing. In West Virginia, Mississippi, and Louisiana, the median price of the typical single-family home was less than 200,000 U.S. dollars. That makes living costs in these states significantly lower than in states such as Hawaii and California, where housing is much more expensive. What other expenses affect the cost of living? Utility costs such as electricity, natural gas, water, and internet also influence the cost of living. In Alaska, Hawaii, and Connecticut, the average monthly utility cost exceeded 500 U.S. dollars. That was because of the significantly higher prices for electricity and natural gas in these states.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Ireland: Cost of living index, world average = 100: The latest value from 2021 is 175.68 index points, an increase from 157.19 index points in 2017. In comparison, the world average is 79.81 index points, based on data from 165 countries. Historically, the average for Ireland from 2017 to 2021 is 166.44 index points. The minimum value, 157.19 index points, was reached in 2017 while the maximum of 175.68 index points was recorded in 2021.
In 2023, Thailand had a cost of living index score of 40.7, indicating a slight decrease compared to the previous year. In the Asia Pacific region, Seoul, the capital city of South Korea, had the highest cost of living index in that year.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Guinea: Cost of living index, world average = 100: The latest value from 2021 is 47.59 index points, a decline from 50.48 index points in 2017. In comparison, the world average is 79.81 index points, based on data from 165 countries. Historically, the average for Guinea from 2017 to 2021 is 49.04 index points. The minimum value, 47.59 index points, was reached in 2021 while the maximum of 50.48 index points was recorded in 2017.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Estimated Mean Real Household Wages Adjusted by Cost of Living for New York County, NY (MWACL36061) from 2009 to 2023 about New York County, NY; adjusted; New York; average; NY; wages; real; and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average for 2021 based on 41 countries was 107.05 index points. The highest value was in Switzerland: 211.98 index points and the lowest value was in Belarus: 40.99 index points. The indicator is available from 2017 to 2021. Below is a chart for all countries where data are available.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average for 2021 based on 40 countries was 69.86 index points. The highest value was in Israel: 188.01 index points and the lowest value was in Syria: 33.25 index points. The indicator is available from 2017 to 2021. Below is a chart for all countries where data are available.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Kazakhstan Cost of Living: Average per Capita data was reported at 28,620.000 KZT in Oct 2018. This records a decrease from the previous number of 28,690.000 KZT for Sep 2018. Kazakhstan Cost of Living: Average per Capita data is updated monthly, averaging 13,073.000 KZT from Oct 2000 (Median) to Oct 2018, with 217 observations. The data reached an all-time high of 29,146.000 KZT in Aug 2018 and a record low of 3,983.000 KZT in Oct 2000. Kazakhstan Cost of Living: Average per Capita data remains active status in CEIC and is reported by The Agency of Statistics of the Republic of Kazakhstan. The data is categorized under Global Database’s Kazakhstan – Table KZ.H012: Cost of Living: Average per Capita.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Turkey: Cost of living index, world average = 100: The latest value from 2021 is 44.31 index points, a decline from 64.7 index points in 2017. In comparison, the world average is 79.81 index points, based on data from 165 countries. Historically, the average for Turkey from 2017 to 2021 is 54.51 index points. The minimum value, 44.31 index points, was reached in 2021 while the maximum of 64.7 index points was recorded in 2017.
The cost of living is spiraling. Prices are going up, household expenses are rising, and the U.S. inflation rate reached a 40-year record high in 2023. Many consumers are looking for new ways to deal with this situation and refer to social media for support. So, which social media platforms have the most helpful content to deal with the current cost of living crisis in the U.S.? According to an exclusive survey by We Are Social and Statista Q, around 61 percent of TikTok users in the United States find helpful content there. Coming on number second is YouTube, as 56 percent of YouTube users find life hacks, tricks, money saving tips and other suitable advice to deal with inflation in 2023.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Lebanon: Cost of living index, world average = 100: The latest value from 2021 is 59.36 index points, unavailable from index points in . In comparison, the world average is 79.81 index points, based on data from 165 countries. Historically, the average for Lebanon from 2021 to 2021 is 59.36 index points. The minimum value, 59.36 index points, was reached in 2021 while the maximum of 59.36 index points was recorded in 2021.
China Living Standards Survey (CLSS) consists of one household survey and one community (village) survey, conducted in Hebei and Liaoning Provinces (northern and northeast China) in July 1995 and July 1997 respectively. Five villages from each three sample counties of each province were selected (six were selected in Liaoyang County of Liaoning Province because of administrative area change). About 880 farm households were selected from total thirty-one sample villages for the household survey. The same thirty-one villages formed the samples of community survey. This document provides information on the content of different questionnaires, the survey design and implementation, data processing activities, and the different available data sets.
The China Living Standards Survey (CLSS) was conducted only in Hebei and Liaoning Provinces (northern and northeast China).
Sample survey data [ssd]
The CLSS sample is not a rigorous random sample drawn from a well-defined population. Instead it is only a rough approximation of the rural population in Hebei and Liaoning provinces in Northeastern China. The reason for this is that part of the motivation for the survey was to compare the current conditions with conditions that existed in Hebei and Liaoning in the 1930’s. Because of this, three counties in Hebei and three counties in Liaoning were selected as "primary sampling units" because data had been collected from those six counties by the Japanese occupation government in the 1930’s. Within each of these six counties (xian) five villages (cun) were selected, for an overall total of 30 villages (in fact, an administrative change in one village led to 31 villages being selected). In each county a "main village" was selected that was in fact a village that had been surveyed in the 1930s. Because of the interest in these villages 50 households were selected from each of these six villages (one for each of the six counties). In addition, four other villages were selected in each county. These other villages were not drawn randomly but were selected so as to "represent" variation within the county. Within each of these villages 20 households were selected for interviews. Thus the intended sample size was 780 households, 130 from each county.
Unlike county and village selection, the selection of households within each village was done according to standard sample selection procedures. In each village, a list of all households in the village was obtained from village leaders. An "interval" was calculated as the number of the households in the village divided by the number of households desired for the sample (50 for main villages and 20 for other villages). For the list of households, a random number was drawn between 1 and the interval number. This was used as a starting point. The interval was then added to this number to get a second number, then the interval was added to this second number to get a third number, and so on. The set of numbers produced were the numbers used to select the households, in terms of their order on the list.
In fact, the number of households in the sample is 785, as opposed to 780. Most of this difference is due to a village in which 24 households were interviewed, as opposed to the goal of 20 households
Face-to-face [f2f]
Household Questionnaire
The household questionnaire contains sections that collect data on household demographic structure, education, housing conditions, land, agricultural management, household non-agricultural business, household expenditures, gifts, remittances and other income sources, and saving and loans. For some sections (general household information, schooling, housing, gift-exchange, remittance, other income, and credit and savings) the individual designated by the household members as the household head provided responses. For some other sections (farm land, agricultural management, family-run non-farm business, and household consumption expenditure) a member identified as the most knowledgeable provided responses. Identification codes for respondents of different sections indicate who provided the information. In sections where the information collected pertains to individuals (employment), whenever possible, each member of the household was asked to respond for himself or herself, except that parents were allowed to respond for younger children. Therefore, in the case of the employment section it is possible that the information was not provided by the relevant person; variables in this section indicate when this is true.
The household questionnaire was completed in a one-time interview in the summer of 1995. The survey was designed so that more sensitive issues such as credit and savings were discussed near the end. The content of each section is briefly described below.
Section 0 SURVEY INFORMATION
This section mainly summarizes the results of the survey visits. The following information was entered into the computer: whether the survey and the data entry were completed, codes of supervisor’s brief comments on interviewer, data entry operator, and related revising suggestion (e.g., 1. good, 2. revise at office, and 3. re-interview needed). Information about the date of interview, the names of interviewer, supervisor, data enterer, and detail notes of interviewer and supervisor were not entered into the computer.
Section 1 GENERAL HOUSEHOLD INFORMATION
1A HOUSEHOLD STRUCTURE 1B INFORMATION ABOUT THE HOUSEHOLD MEMBERS’ PARENTS 1C INFORMATION ABOUT THE CHILDREN WHO ARE NOT LIVING IN HOME
Section 1A lists the personal id code, sex, relationship to the household head, ethnic group, type of resident permit (agricultural [nongye], non-agricultural [fei nongye], or no resident permit), date of birth, marital status of all people who spent the previous night in that household and for household members who are temporarily away from home. The household head is listed first and receives the personal id code 1. Household members were defined to include “all the people who normally live and eat their meals together in this dwelling.” Those who were absent more than nine of the last twelve months were excluded, except for the head of household. For individuals who are married and whose spouse resides in the household, the personal id number of the spouse is noted. By doing so, information on the spouse can be collected by appropriately merging information from the section 1A and other parts of the survey.
Section 1B collects information on the parents of all household members. For individuals whose parents reside in the household, parents’ personal id numbers are noted, and information can be obtained by appropriately merging information from other parts of the survey. For individuals whose parents do not reside in the household, information is recorded on whether each parent is alive, as well as their schooling and occupation.
Section 1C collects information for children of household members who are not living in home. Children who have died are not included. The information on the name, sex, types of resident permit, age, education level, education cost, reasons not living in home, current living place, and type of job of each such child is recorded.
Section 2 SCHOOLING
In Section 2, information about literacy and numeracy, school attendance, completion, and current enrollment for all household members of preschool age and older. The interpretation of pre-school age appears to have varied, with the result that while education information is available for some children of pre-school age, not all pre-school children were included in this section. But for ages 6 and above information is available for nearly all individuals, so in essence the data on schooling can be said to apply all persons 6 age and above. For those who were enrolled in school at the time of the survey, information was also collected on school attendance, expenses, and scholarships. If applicable, information on serving as an apprentice, technical or professional training was also collected.
Section 3 EMPLOYMENT
3A GENERAL INFORMATION 3B MAJOR NON-FARM JOB IN 1994 3C THE SECOND NON-FARM JOB IN 1994 3D OTHER EMPLOYMENT ACTIVITIES IN 1994 3E SEARCHING FOR NON-FARM JOB 3F PROCESS FOR GETTING MAJOR NON-FARM JOB 3G CORVEE LABOR
All individuals age thirteen and above were asked to respond to the employment activity questions in Section 3. Section 3A collects general information on farm and non-farm employment, such as whether or not the household member worked on household own farm in 1994, when was the last year the member worked on own farm if he/she did not work in 1994, work days and hours during busy season, occupation and sector codes of the major, second, and third non-farm jobs, work days and total income of these non-farm jobs. There is a variable which indicates whether or not the individual responded for himself or herself.
Sections 3B and 3C collect detailed information on the major and the second non-farm job. Information includes number of months worked and which month in 1994 the member worked on these jobs, average works days (or hours) per month (per day), total number of years worked for these jobs by the end of 1994, different components of income, type of employment contracts. Information on employer’s ownership type and location was also collected.
Section 3D collects information on average hours spent doing chores and housework at home every day during non-busy and busy season. The chores refer to cooking, laundry, cleaning, shopping, cutting woods, as well as small-scale farm yard animals raising, for example, pigs or chickens. Large-scale animal
This statistic shows an assessment of living standards by Germans from 2007 to 2011. In 2011, 23 percent of respondents stated that their standard of living is getting worse.
THE CLEANED AND HARMONIZED VERSION OF THE SURVEY DATA PRODUCED AND PUBLISHED BY THE ECONOMIC RESEARCH FORUM REPRESENTS 100% OF THE ORIGINAL SURVEY DATA COLLECTED BY THE NATIONAL INSTITUTE OF STATISTICS - TUNISIA (INS)
The National Survey on Household Budget, Consumption, and Standard of Living is a quinquennial survey. The 2010 survey is the ninth of its kind that was carried out by the National Institute of Statistics (INS) in Tunisia. The eight previous surveys were conducted in 1968, 1975, 1980, 1985, 1990, 1995, 2000 and 2005, concurrently with the preparatory work for the Tunisian development plans.
The survey aims at providing detailed information on the procurement of goods and services for consumption. Its data was collected from direct observation of household consumption to allow for having the necessary elements to assess the situation & changes in the living standards & conditions of the households.
The National Survey on Household Budget, Consumption, and Standard of Living consists of three fundamental parts; the budget survey, the nutrition survey and the access to community services survey. Thus, it tackles three areas of study: 1- Households expenses and acquisitions during the survey period. 2 - Food consumption and nutritional status of households. 3 - Household access to health and education community services.
The main objectives of the "budget survey" are: a- Estimate the levels of expenditure on the household level: The total expenditure of the household is not only an indicator on household income, but it is also a quantitative assessment of the standard of living index. b- Evaluate the income distribution: Due to the absence of data on income distribution, the mass distribution of expenditure between the different categories of the population constitutes a first sketch for the income distribution in the country. c- Assess the structure of expenditure: Detailed information collected on expenditures per product are used to establish the structures of the household expenditure, as well as the budget coefficients according to different levels of classifications of goods and services. These coefficients are particularly useful in the revision and development of the Consumer Prices Index (CPI) weights. d- Predict the demand of households: The household behavior, assessed in terms of product demand, is synthesized by the coefficients of income elasticity, which, according to the model of consumption retained and under the assumptions of the growth of income and population, allows predicting future household demand. e- Analyze the importance of consumer subsidies: analysis of the consumption of subsidized goods by expenditure deciles allows identifying the impact of direct consumer subsidies. It also allows evaluating the effectiveness of public policies grants.
The main objectives of "the nutrition survey" are: a- Provide estimates of food consumption by product for different groups of households according to their demographic and socio-economic characteristics. b- Estimate food consumption of each product by collecting data on the quantities consumed of each product by source, whether purchased or own produced. c- Identify the nutritional status of the population according to its demographic, geographic and socio-economic level. The comparison between the standards needs of nutrients to those acquired by the household enables assessing of the nutritional status and thus deficits in different nutrients such as calories, protein, vitamins, calcium, ... can also be captured. d- Estimate the calorie intake and energy needs of the Tunisian population: This estimate is indispensible in the calculation of the food component of the poverty line and, in consequence, the threshold of global poverty.
The main objective of "the access to community services survey" is to provide an overview on the state of morbidity of the Tunisian population, from one hand, and on the households' access to various health and education public services on other hand.
The raw survey data provided by the Statistical Agency were cleaned and harmonized by the Economic Research Forum, in the context of a major project that started in 2009. During which extensive efforts have been exerted to acquire, clean, harmonize, preserve and disseminate micro data of existing household surveys in several Arab countries.
Covering a sample of all urban, small and medium towns and rural areas.
1- Household/family. 2- Individual/person.
The survey covered a national sample of households and all individuals permanently residing in surveyed households.
Sample survey data [ssd]
The National Survey on Household Budget, Consumption and Standard of Living, 2010 has focused initially on a sample of 13,392 households drawn using a two stages stratified random sampling in each governorate. The sampling frame follows that of the General Census of Population and Housing in 2004 which was updated during the implementation of the National Population and Employment Survey in 2009.
Stratification criteria: The sampling frame is stratified by two geographical criteria: namely the governorate and the living area. The latter is stratified as follows: large cities, medium and small cities, and non-communal areas.
These stratification criteria (governorate, living area and size of city) represent variables that differentiate between surveyed households' lifestyles. Thus, the 3 strata types used are as follows:
Stratum of large cities (stratum 1): This stratum is formed of large urban centers corresponding to municipalities with more than 100.000 inhabitants and neighboring municipalities.
Stratum of medium and small cities (stratum 2): This stratum includes all medium and small sized cities other than those classified in the stratum of large cities.
Stratum of non-communal areas (stratum 3): It includes agglomerations in rural areas that are classified as major agglomerations in the General Census of Population and Housing 2004 and the National Population and Employment Survey in 2009. In addition to other areas that are located outside the territory of main municipalities and cities.
Households in these areas reside in scattered dwellings or are grouped in small agglomerations.
The sampling frame is divided on the level of each governorate according to strata previously defined. On the stratum level, a two-stage random sampling is planned for the selection of the survey sample of households. This process allows to breakdown the sample into clusters of 12 households relatively little distant from each other, thereby facilitating the conduct of the survey at the time of the information collection in the field.
In the first stage, a sample of 1,116 primary units is drawn in proportion to the number of households identified in the 2009National Population and Employment Survey. Taking into consideration that the primary units correspond to the districts that have been defined in the General Census of Population and Housing in 2004, which are geographic areas comprising on average 70 households.
In the second stage, from each primary unit (or cluster), twelve households are drawn through a simple random sampling technique. A substitutive sample of 12 additional households is further drawn from each primary unit. Those additional households constituting a substitutive list are used to cover for unidentified households at the time of the survey, given the mobility of households and the period between the date on which the sample is drawn and the date on which the survey is conducted.
The size of the sample drawn in the first stage is 1,116 primary sampling units (PSU) corresponding to 13,392 households. The samples in the second stage are 12 households per primary unit. To optimize the use of logistic and material resources available, a sample of at least 36 PSU was selected from the less populated governorates, 3 PSU per month (the survey is conducted over a 12 months period). This represents the monthly work of the survey team (3 interviews and 1 supervisor to whom a car is assigned). Moreover, as the number of households varies from one governorate to another, it was agreed to adopt different rate of sampling from one governorate to another.
The following table shows the regional distribution of the sample and the corresponding sampling rates.
Regional Distribution of the Survey Sample
Region | Total | Sample size | Second stage sampling rate | ||
District | Households | District | Households | Household sample (%) | |
Grand Tunis | 7863 | 268113 | 240 | 2880 | 0.45 |
North East | 4446 | 370812 | 156 | 1872 | 0,50 |
North West | 3821 | 269466 | 144 | 1728 | 0,58 |
Centre East | 7379 | 606287 | 216 | 1728 | 0,29 |
Centre West | 3871 | 300223 | 144 | 2592 | 0,86 |
South East | 2711 | 213471 | 108 | 1296 | 0,61 |
South West | 1644 | 130371 | 108 | 1296 | 0,99 |
Total | 31735 | 2553157 |
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Estimated Mean Real Household Wages Adjusted by Cost of Living for Denver County, CO (MWACL08031) from 2009 to 2023 about Denver County, CO; Denver; adjusted; CO; average; wages; real; and USA.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Share of inhabitants aged 20-64 with low economic standards expressed in %. Disposable income is the sum of all taxable and tax-free income minus taxes and other negative transfers. Income is recognised both including and excluding capital gain/loss, i.e. the profit/loss arising from the sale (realisation) of assets, e.g. shares, mutual funds or real estate. Economic standards have the household as the Income Unit and the individual as the unit of analysis. This means that all household members’ disposable income is summed up. Thereafter, the household’s total disposable income is adjusted using an equivalence scale based on the size and composition of the household and distributed equally among the members of the household. The publication of the income year 2021 introduced an increased equivalence scale, taking into account that children can share their residence between parents if the parents do not live together (so-called alternating housing). The extended scale will apply from income year 2011. Further information can be found in the quality declaration of the statistics. The following scale is used in the statistics: Weight Solitary 1.00 Cohabitating couple 1.51 Additional adult 0.60 First child 0-19 years 0.52 Other and subsequent children 0-19 years 0.42 Interchangeably living children 0-19 years, first child 0.38 Interchangeably living children 0-19 years, second and subsequent children 0.28 Example: A cohabiting couple with two children has a disposable income of SEK 490000. The household has a total consumption weight of 1.51 + 0.52 + 0.42 = 2.45. The household’s disposable income per consumption unit will then be SEK 490000/2.45 consumption units = SEK 200000 per consumption unit. This means that the household has the same financial standard as a single resident with a disposable income of SEK 200000. Low economic standard refers to the proportion of people living in households whose economic standard is less than 60 per cent of the median value of the nation.
VITAL SIGNS INDICATOR Poverty (EQ5)
FULL MEASURE NAME The share of the population living in households that earn less than 200 percent of the federal poverty limit
LAST UPDATED December 2018
DESCRIPTION Poverty refers to the share of the population living in households that earn less than 200 percent of the federal poverty limit, which varies based on the number of individuals in a given household. It reflects the number of individuals who are economically struggling due to low household income levels.
DATA SOURCE U.S Census Bureau: Decennial Census http://www.nhgis.org (1980-1990) http://factfinder2.census.gov (2000)
U.S. Census Bureau: American Community Survey Form C17002 (2006-2017) http://api.census.gov
METHODOLOGY NOTES (across all datasets for this indicator) The U.S. Census Bureau defines a national poverty level (or household income) that varies by household size, number of children in a household, and age of householder. The national poverty level does not vary geographically even though cost of living is different across the United States. For the Bay Area, where cost of living is high and incomes are correspondingly high, an appropriate poverty level is 200% of poverty or twice the national poverty level, consistent with what was used for past equity work at MTC and ABAG. For comparison, however, both the national and 200% poverty levels are presented.
For Vital Signs, the poverty rate is defined as the number of people (including children) living below twice the poverty level divided by the number of people for whom poverty status is determined. Poverty rates do not include unrelated individuals below 15 years old or people who live in the following: institutionalized group quarters, college dormitories, military barracks, and situations without conventional housing. The household income definitions for poverty change each year to reflect inflation. The official poverty definition uses money income before taxes and does not include capital gains or noncash benefits (such as public housing, Medicaid, and food stamps). For the national poverty level definitions by year, see: https://www.census.gov/hhes/www/poverty/data/threshld/index.html For an explanation on how the Census Bureau measures poverty, see: https://www.census.gov/hhes/www/poverty/about/overview/measure.html
For the American Community Survey datasets, 1-year data was used for region, county, and metro areas whereas 5-year rolling average data was used for city and census tract.
To be consistent across metropolitan areas, the poverty definition for non-Bay Area metros is twice the national poverty level. Data were not adjusted for varying income and cost of living levels across the metropolitan areas.
In 2024, Singapore's cost of living index was at 81.9, compared to that of New York City as a base of 100. This meant that Singapore was about 20 percent more affordable than New York City. With a local purchasing power index of 103, residents with an average salary in Singapore are able to afford more goods and services compared to the base city of New York City. In that year, Singapore had the highest cost of living index in Asia.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
People in Great Britain's experiences of and actions following increases in their costs of living, and how these differed by a range of personal characteristics.
The principal objective of this survey is to collect basic data reflecting the actual living conditions of the population in Tajikistan. These data will then be used for evaluating socio-economic development and formulating policies to improve living conditions.
The first assessment of living standards in Tajikistan was conducted in 1999. This assessment is bringing about data in order to update the 1999 assessment.
The survey collects information on education, health, employment and other productive activities, demographic characteristics, migration, housing conditions, expenditures and assets.
The information gathered is intended to improve economic and social policy in Tajikistan. It should enable decision-makers to 1) identify target groups for government assistance, 2) inform programs of socio-economic development, and 3) analyse the impact of decisions already made and the current economic conditions on households.
National coverage. The 2003 data are representative at the regional level (4 regions) and urban/rural.
Sample survey data [ssd]
The Tajikistan Living Standards Survey (TLSS) for 2003 was based on a stratified random probability sample, with the sample stratified according to oblast and urban/rural settlements and with the share of each strata in the overall sample being in proportion to its share in the total number of households as recorded in the 2000 Census. The same approach was used in the TLSS 1999 although there were some differences in the sampling. First the share of each strata in the overall sample in 1999 was determined according to ‘best estimates’, as it was conducted prior to the 2000 Census. Second the TLSS 2003 over-sampled by 40 percent in Dushanbe, 300 percent in rural Gorno-Badakhshan Administrative Oblast (GBAO) and 600 percent in urban GBAO. Third the sample size was increased in 2003 in comparison with 1999 in order to reduce sampling error. In 2003, the overall sample size was 4,156 households compared with 2,000 households in 1999. [Note: Taken from “Republic of Tajikistan: Poverty Assessment Update”, Report No. 30853, Human Development Sector Unit, Central Asia Country Unit, Europe and Central Asia Region, World Bank, January 2005.]
In addition to the capital city of Dushanbe, the country has several oblasts (regions): (i) Khatlon (comprising Kurban-Tube and Khulyab), which is an agricultural area with most of the country’s cotton growing districts; (ii) the Rayons of Republican Subordination (RRS) with the massive aluminum smelter in the west and agricultural valleys in the east growing crops other than cotton; (iii) Sugd which is the most industrialized oblast; and (iv) Gorno-Badakhshan Administrative Oblast which is mountainous and remote with a small population.
The 2003 data are representative at the regional level (4 regions) and urban/rural.
Face-to-face [f2f]
West Virginia and Kansas had the lowest cost of living across all U.S. states, with composite costs being half of those found in Hawaii. This was according to a composite index that compares prices for various goods and services on a state-by-state basis. In West Virginia, the cost of living index amounted to 84.8 - well below the national benchmark of 100. Nevada - which had an index value of 100.1 - was only slightly above that benchmark. Expensive places to live included Hawaii, Massachusetts, and California Housing costs in the U.S. Housing is usually the highest expense in a household’s budget. In 2023, the average house sold for approximately 427,000 U.S. dollars, but house prices in the Northeast and West regions were significantly higher. Conversely, the South had some of the least expensive housing. In West Virginia, Mississippi, and Louisiana, the median price of the typical single-family home was less than 200,000 U.S. dollars. That makes living costs in these states significantly lower than in states such as Hawaii and California, where housing is much more expensive. What other expenses affect the cost of living? Utility costs such as electricity, natural gas, water, and internet also influence the cost of living. In Alaska, Hawaii, and Connecticut, the average monthly utility cost exceeded 500 U.S. dollars. That was because of the significantly higher prices for electricity and natural gas in these states.