28 datasets found
  1. h

    stanford_cars

    • huggingface.co
    Updated May 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anke Tang (2024). stanford_cars [Dataset]. https://huggingface.co/datasets/tanganke/stanford_cars
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 19, 2024
    Authors
    Anke Tang
    Description

    Stanford Cars Dataset

      Dataset Overview
    

    Splits: Training: 8144 images used for model training. Test: 8041 images used for evaluation. Contrast: 8041 images with high contrast for robustness testing. Gaussian Noise: 8041 images corrupted by Gaussian noise for robustness testing. Impulse Noise: 8041 images corrupted by impulse noise for robustness testing. JPEG Compression: 8041 compressed images for robustness testing. Motion Blur: 8041 images with motion blur forโ€ฆ See the full description on the dataset page: https://huggingface.co/datasets/tanganke/stanford_cars.

  2. g

    Stanford Cars Dataset

    • gts.ai
    json
    Updated Dec 8, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GLOBOSE TECHNOLOGY SOLUTIONS PRIVATE LIMITED (2013). Stanford Cars Dataset [Dataset]. https://gts.ai/dataset-download/stanford-cars-dataset/
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Dec 8, 2013
    Dataset authored and provided by
    GLOBOSE TECHNOLOGY SOLUTIONS PRIVATE LIMITED
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    The Stanford Cars Dataset contains 16,185 images of 196 types of cars, ideal for fine-grained object recognition and multi-view car classification.

  3. a

    Stanford Cars Dataset

    • datasets.activeloop.ai
    • opendatalab.com
    • +1more
    deeplake
    Updated Feb 3, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jonathan Krause (2022). Stanford Cars Dataset [Dataset]. https://datasets.activeloop.ai/docs/ml/datasets/stanford-cars-dataset/
    Explore at:
    deeplakeAvailable download formats
    Dataset updated
    Feb 3, 2022
    Authors
    Jonathan Krause
    License

    https://image-net.org/download.phphttps://image-net.org/download.php

    Description

    A dataset of 16,185 images of cars, with each image labeled with the make, model, and year of the car. The dataset was created by researchers at Stanford University and is used for research in computer vision and machine learning.

  4. a

    Stanford Cars

    • academictorrents.com
    bittorrent
    Updated Oct 16, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jonathan Krause et al., 2013 (2018). Stanford Cars [Dataset]. https://academictorrents.com/details/9c90b7f6208d430bff288845d45667ab2670da56
    Explore at:
    bittorrent(1957803273)Available download formats
    Dataset updated
    Oct 16, 2018
    Dataset authored and provided by
    Jonathan Krause et al., 2013
    License

    https://academictorrents.com/nolicensespecifiedhttps://academictorrents.com/nolicensespecified

    Description

    16,185 images of 196 classes of cars. The data is split into 8,144 training images and 8,041 testing images, where each class has been split roughly in a 50-50 split. Classes are typically at the level of Make, Model, Year

  5. R

    Stanford_car Dataset

    • universe.roboflow.com
    zip
    Updated Aug 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Openglpro (2024). Stanford_car Dataset [Dataset]. https://universe.roboflow.com/openglpro/stanford_car/model/3
    Explore at:
    zipAvailable download formats
    Dataset updated
    Aug 1, 2024
    Dataset authored and provided by
    Openglpro
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Labeled All The Cars Bounding Boxes
    Description

    This dataset is a copy of a subset of the full Stanford Cars dataset

    The original dataset contained 16,185 images of 196 classes of cars.

    The classes are typically at the level of Make, Model, Year, e.g. 2012 Tesla Model S or 2012 BMW M3 coupe in the original dataset, and in this subset of the full dataset (v3, TestData and v4, original_raw-images).

    v4 (original_raw-images) contains a generated version of the original, raw images, without any modified classes

    v8 (classes-Modified_raw-images) contains a generated version of the raw images, with the Modify Classes preprocessing feature used to remap or omit the following classes: 1. bike, moped --remapped to--> motorbike 2. cng, leguna, easybike, smart fortwo Convertible 2012, and all other specific car makes with named classes (such as Acura TL Type-S 2008) --remapped to--> vehicle 3. rickshaw, boat, bicycle --> omitted

    v9 (FAST-model_mergedAllClasses-augmented_by3x) contains a generated version of the raw images, with the Modify Classes preprocessing feature used to remap or omit the following classes: 1. bike, moped --remapped to--> motorbike 2. cng, leguna, easybike, smart fortwo Convertible 2012, and all other specific car makes with named classes (such as Acura TL Type-S 2008) --remapped to--> vehicle 3. rickshaw, boat, bicycle --> omitted

    v10 (ACCURATE-model_mergedAllClasses-augmented_by3x) contains a generated version of the raw images, with the Modify Classes preprocessing feature used to remap or omit the following classes: 1. bike, moped --remapped to--> motorbike 2. cng, leguna, easybike, smart fortwo Convertible 2012, and all other specific car makes with named classes (such as Acura TL Type-S 2008) --remapped to--> vehicle 3. rickshaw, boat, bicycle --> omitted

    Citation:

    3D Object Representations for Fine-Grained Categorization Jonathan Krause, Michael Stark, Jia Deng, Li Fei-Fei 4th IEEE Workshop on 3D Representation and Recognition, at ICCV 2013 (3dRR-13). Sydney, Australia. Dec. 8, 2013. pdf BibTex slides

  6. h

    stanford-cars-ellipse

    • huggingface.co
    Updated Apr 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jackson Cooper (2025). stanford-cars-ellipse [Dataset]. https://huggingface.co/datasets/jackjcoop/stanford-cars-ellipse
    Explore at:
    Dataset updated
    Apr 5, 2025
    Authors
    Jackson Cooper
    Description

    jackjcoop/stanford-cars-ellipse dataset hosted on Hugging Face and contributed by the HF Datasets community

  7. stanford-cars

    • huggingface.co
    Updated Oct 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ZEDEDA (2025). stanford-cars [Dataset]. https://huggingface.co/datasets/zededa/stanford-cars
    Explore at:
    Dataset updated
    Oct 20, 2025
    Dataset provided by
    Zededa, Inc.
    Authors
    ZEDEDA
    Description

    zededa/stanford-cars dataset hosted on Hugging Face and contributed by the HF Datasets community

  8. Stanford Cars Dataset Full

    • kaggle.com
    Updated Jun 15, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Haswanth Aekula (2021). Stanford Cars Dataset Full [Dataset]. https://www.kaggle.com/hassiahk/stanford-cars-dataset-full/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 15, 2021
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Haswanth Aekula
    Description

    Introduction

    This is a version of the Stanford Cars dataset introduced in [1].

    Usage

    The train, val and test split are given in the respective json files in this GitHub repo, in this folder. Please refer to the README file of the repository for the folder structure.

    These files can be used with any framework of choice.

    References

    [1] Jonathan Krause and Michael Stark and Jia Deng and Li Fei-Fei. 3D Object Representations for Fine-Grained Categorization. 4th International IEEE Workshop on 3D Representation and Recognition (3dRR-13) (2013)

  9. Car Parts Stanford Cars Dataset

    • universe.roboflow.com
    zip
    Updated Jun 14, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    sareynol98@gmail.com (2022). Car Parts Stanford Cars Dataset [Dataset]. https://universe.roboflow.com/sareynol98-gmail-com/car-parts--stanford-cars/model/8
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 14, 2022
    Dataset provided by
    Gmailhttp://gmail.com/
    Authors
    sareynol98@gmail.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Cars And Components Bounding Boxes
    Description

    Car Parts Stanford Cars

    ## Overview
    
    Car Parts Stanford Cars is a dataset for object detection tasks - it contains Cars And Components annotations for 693 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
  10. h

    webdataset-stanford-cars

    • huggingface.co
    Updated Sep 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shin Nishimura (2025). webdataset-stanford-cars [Dataset]. https://huggingface.co/datasets/Qualeafclover/webdataset-stanford-cars
    Explore at:
    Dataset updated
    Sep 29, 2025
    Authors
    Shin Nishimura
    Description

    Qualeafclover/webdataset-stanford-cars dataset hosted on Hugging Face and contributed by the HF Datasets community

  11. cars_devkit

    • kaggle.com
    Updated Jun 17, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Siddhartha (2019). cars_devkit [Dataset]. https://www.kaggle.com/datasets/meaninglesslives/cars-devkit/suggestions
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 17, 2019
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Siddhartha
    Description

    Dataset

    This dataset was created by --

    Contents

  12. R

    Stanford Cars Yolov5 Dataset

    • universe.roboflow.com
    zip
    Updated Sep 12, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mallepudi Sri Harsha (2021). Stanford Cars Yolov5 Dataset [Dataset]. https://universe.roboflow.com/mallepudi-sri-harsha/stanford-cars-yolov5/dataset/1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Sep 12, 2021
    Dataset authored and provided by
    Mallepudi Sri Harsha
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Variables measured
    Cars Bounding Boxes
    Description

    Stanford Cars Yolov5

    ## Overview
    
    Stanford Cars Yolov5 is a dataset for object detection tasks - it contains Cars annotations for 8,132 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [MIT license](https://creativecommons.org/licenses/MIT).
    
  13. h

    stanford-cars

    • huggingface.co
    Updated Jul 2, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Brian Fitzgerald (2023). stanford-cars [Dataset]. https://huggingface.co/datasets/roborovski/stanford-cars
    Explore at:
    Dataset updated
    Jul 2, 2023
    Authors
    Brian Fitzgerald
    Description

    roborovski/stanford-cars dataset hosted on Hugging Face and contributed by the HF Datasets community

  14. h

    stanford-cars

    • huggingface.co
    Updated Apr 14, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andy Lin (2024). stanford-cars [Dataset]. https://huggingface.co/datasets/pkuHaowei/stanford-cars
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 14, 2024
    Authors
    Andy Lin
    Description

    Dataset Card for "stanford-cars"

    More Information needed

  15. Stanford Cars Augmented Balanced

    • kaggle.com
    Updated May 19, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Saurabh Sawhney (2021). Stanford Cars Augmented Balanced [Dataset]. https://www.kaggle.com/saurabhsawhney/stanford-cars-augmented-balanced/metadata
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 19, 2021
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Saurabh Sawhney
    Description

    The Stanford Car Images dataset contains about 8000 images each in train and test sets, spread over 196 classes.

    It is intended for research purposes only. This present dataset is derived from the Stanford Car Images dataset on the following principles.

    1. The train set is further split into training and validation, in a 2:1 ratio.
    2. The training and validation images are augmented using albumentations. The amount of augmentation is calibrated so that in the final output, we have roughly equal number of cars per class.

    The idea of having a fixed augmented set of images, rather than relying on keras on-the-fly augmentation, is to feed the model better balanced data. In addition, we are able to use keras augmentation on top of albementations augmentations, if desired.

    Citation: 3D Object Representations for Fine-Grained Categorization. Jonathan Krause, Michael Stark, Jia Deng, Li Fei-Fei. 4th IEEE Workshop on 3D Representation and Recognition, at ICCV 2013 (3dRR-13). Sydney, Australia. Dec. 8, 2013.

    https://ai.stanford.edu/~jkrause/cars/car_dataset.html

  16. Average test set classification accuracy on miniimageNet.

    • plos.figshare.com
    xls
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yan Zhang; Min Fang; Nian Wang (2023). Average test set classification accuracy on miniimageNet. [Dataset]. http://doi.org/10.1371/journal.pone.0225426.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Yan Zhang; Min Fang; Nian Wang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Average test set classification accuracy on miniimageNet.

  17. Average test set classification accuracy on Caltech-UCSD Birds.

    • plos.figshare.com
    xls
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yan Zhang; Min Fang; Nian Wang (2023). Average test set classification accuracy on Caltech-UCSD Birds. [Dataset]. http://doi.org/10.1371/journal.pone.0225426.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Yan Zhang; Min Fang; Nian Wang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Average test set classification accuracy on Caltech-UCSD Birds.

  18. Stanford cars 0.1 cropped training

    • kaggle.com
    Updated May 11, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Saurabh Sawhney (2021). Stanford cars 0.1 cropped training [Dataset]. https://www.kaggle.com/saurabhsawhney/stanford-cars-01-cropped-training/tasks
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 11, 2021
    Dataset provided by
    Kaggle
    Authors
    Saurabh Sawhney
    Description

    Dataset

    This dataset was created by Saurabh Sawhney

    Contents

  19. R

    Stanford_cars Dataset

    • universe.roboflow.com
    zip
    Updated Sep 21, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hard Parikh (2021). Stanford_cars Dataset [Dataset]. https://universe.roboflow.com/hard-parikh/stanford_cars/dataset/1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Sep 21, 2021
    Dataset authored and provided by
    Hard Parikh
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Class Bounding Boxes
    Description

    Stanford_Cars

    ## Overview
    
    Stanford_Cars is a dataset for object detection tasks - it contains Class annotations for 3,272 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
  20. Average test set classification accuracy on different loss function.

    • plos.figshare.com
    xls
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yan Zhang; Min Fang; Nian Wang (2023). Average test set classification accuracy on different loss function. [Dataset]. http://doi.org/10.1371/journal.pone.0225426.t005
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Yan Zhang; Min Fang; Nian Wang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Average test set classification accuracy on different loss function.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Anke Tang (2024). stanford_cars [Dataset]. https://huggingface.co/datasets/tanganke/stanford_cars

stanford_cars

tanganke/stanford_cars

Explore at:
14 scholarly articles cite this dataset (View in Google Scholar)
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
May 19, 2024
Authors
Anke Tang
Description

Stanford Cars Dataset

  Dataset Overview

Splits: Training: 8144 images used for model training. Test: 8041 images used for evaluation. Contrast: 8041 images with high contrast for robustness testing. Gaussian Noise: 8041 images corrupted by Gaussian noise for robustness testing. Impulse Noise: 8041 images corrupted by impulse noise for robustness testing. JPEG Compression: 8041 compressed images for robustness testing. Motion Blur: 8041 images with motion blur forโ€ฆ See the full description on the dataset page: https://huggingface.co/datasets/tanganke/stanford_cars.

Search
Clear search
Close search
Google apps
Main menu