The General Household Survey-Panel (GHS-Panel) is implemented in collaboration with the World Bank Living Standards Measurement Study (LSMS) team as part of the Integrated Surveys on Agriculture (ISA) program. The objectives of the GHS-Panel include the development of an innovative model for collecting agricultural data, interinstitutional collaboration, and comprehensive analysis of welfare indicators and socio-economic characteristics. The GHS-Panel is a nationally representative survey of approximately 5,000 households, which are also representative of the six geopolitical zones. The 2023/24 GHS-Panel is the fifth round of the survey with prior rounds conducted in 2010/11, 2012/13, 2015/16 and 2018/19. The GHS-Panel households were visited twice: during post-planting period (July - September 2023) and during post-harvest period (January - March 2024).
National
• Households • Individuals • Agricultural plots • Communities
The survey covered all de jure households excluding prisons, hospitals, military barracks, and school dormitories.
Sample survey data [ssd]
The original GHS‑Panel sample was fully integrated with the 2010 GHS sample. The GHS sample consisted of 60 Primary Sampling Units (PSUs) or Enumeration Areas (EAs), chosen from each of the 37 states in Nigeria. This resulted in a total of 2,220 EAs nationally. Each EA contributed 10 households to the GHS sample, resulting in a sample size of 22,200 households. Out of these 22,200 households, 5,000 households from 500 EAs were selected for the panel component, and 4,916 households completed their interviews in the first wave.
After nearly a decade of visiting the same households, a partial refresh of the GHS‑Panel sample was implemented in Wave 4 and maintained for Wave 5. The refresh was conducted to maintain the integrity and representativeness of the sample. The refresh EAs were selected from the same sampling frame as the original GHS‑Panel sample in 2010. A listing of households was conducted in the 360 EAs, and 10 households were randomly selected in each EA, resulting in a total refresh sample of approximately 3,600 households.
In addition to these 3,600 refresh households, a subsample of the original 5,000 GHS‑Panel households from 2010 were selected to be included in the new sample. This “long panel” sample of 1,590 households was designed to be nationally representative to enable continued longitudinal analysis for the sample going back to 2010. The long panel sample consisted of 159 EAs systematically selected across Nigeria’s six geopolitical zones.
The combined sample of refresh and long panel EAs in Wave 5 that were eligible for inclusion consisted of 518 EAs based on the EAs selected in Wave 4. The combined sample generally maintains both the national and zonal representativeness of the original GHS‑Panel sample.
Although 518 EAs were identified for the post-planting visit, conflict events prevented interviewers from visiting eight EAs in the North West zone of the country. The EAs were located in the states of Zamfara, Katsina, Kebbi and Sokoto. Therefore, the final number of EAs visited both post-planting and post-harvest comprised 157 long panel EAs and 354 refresh EAs. The combined sample is also roughly equally distributed across the six geopolitical zones.
Computer Assisted Personal Interview [capi]
The GHS-Panel Wave 5 consisted of three questionnaires for each of the two visits. The Household Questionnaire was administered to all households in the sample. The Agriculture Questionnaire was administered to all households engaged in agricultural activities such as crop farming, livestock rearing, and other agricultural and related activities. The Community Questionnaire was administered to the community to collect information on the socio-economic indicators of the enumeration areas where the sample households reside.
GHS-Panel Household Questionnaire: The Household Questionnaire provided information on demographics; education; health; labour; childcare; early child development; food and non-food expenditure; household nonfarm enterprises; food security and shocks; safety nets; housing conditions; assets; information and communication technology; economic shocks; and other sources of household income. Household location was geo-referenced in order to be able to later link the GHS-Panel data to other available geographic data sets (forthcoming).
GHS-Panel Agriculture Questionnaire: The Agriculture Questionnaire solicited information on land ownership and use; farm labour; inputs use; GPS land area measurement and coordinates of household plots; agricultural capital; irrigation; crop harvest and utilization; animal holdings and costs; household fishing activities; and digital farming information. Some information is collected at the crop level to allow for detailed analysis for individual crops.
GHS-Panel Community Questionnaire: The Community Questionnaire solicited information on access to infrastructure and transportation; community organizations; resource management; changes in the community; key events; community needs, actions, and achievements; social norms; and local retail price information.
The Household Questionnaire was slightly different for the two visits. Some information was collected only in the post-planting visit, some only in the post-harvest visit, and some in both visits.
The Agriculture Questionnaire collected different information during each visit, but for the same plots and crops.
The Community Questionnaire collected prices during both visits, and different community level information during the two visits.
CAPI: Wave five exercise was conducted using Computer Assisted Person Interview (CAPI) techniques. All the questionnaires (household, agriculture, and community questionnaires) were implemented in both the post-planting and post-harvest visits of Wave 5 using the CAPI software, Survey Solutions. The Survey Solutions software was developed and maintained by the Living Standards Measurement Unit within the Development Economics Data Group (DECDG) at the World Bank. Each enumerator was given a tablet which they used to conduct the interviews. Overall, implementation of survey using Survey Solutions CAPI was highly successful, as it allowed for timely availability of the data from completed interviews.
DATA COMMUNICATION SYSTEM: The data communication system used in Wave 5 was highly automated. Each field team was given a mobile modem which allowed for internet connectivity and daily synchronization of their tablets. This ensured that head office in Abuja had access to the data in real-time. Once the interview was completed and uploaded to the server, the data was first reviewed by the Data Editors. The data was also downloaded from the server, and Stata dofile was run on the downloaded data to check for additional errors that were not captured by the Survey Solutions application. An excel error file was generated following the running of the Stata dofile on the raw dataset. Information contained in the excel error files were then communicated back to respective field interviewers for their action. This monitoring activity was done on a daily basis throughout the duration of the survey, both in the post-planting and post-harvest.
DATA CLEANING: The data cleaning process was done in three main stages. The first stage was to ensure proper quality control during the fieldwork. This was achieved in part by incorporating validation and consistency checks into the Survey Solutions application used for the data collection and designed to highlight many of the errors that occurred during the fieldwork.
The second stage cleaning involved the use of Data Editors and Data Assistants (Headquarters in Survey Solutions). As indicated above, once the interview is completed and uploaded to the server, the Data Editors review completed interview for inconsistencies and extreme values. Depending on the outcome, they can either approve or reject the case. If rejected, the case goes back to the respective interviewer’s tablet upon synchronization. Special care was taken to see that the households included in the data matched with the selected sample and where there were differences, these were properly assessed and documented. The agriculture data were also checked to ensure that the plots identified in the main sections merged with the plot information identified in the other sections. Additional errors observed were compiled into error reports that were regularly sent to the teams. These errors were then corrected based on re-visits to the household on the instruction of the supervisor. The data that had gone through this first stage of cleaning was then approved by the Data Editor. After the Data Editor’s approval of the interview on Survey Solutions server, the Headquarters also reviews and depending on the outcome, can either reject or approve.
The third stage of cleaning involved a comprehensive review of the final raw data following the first and second stage cleaning. Every variable was examined individually for (1) consistency with other sections and variables, (2) out of range responses, and (3) outliers. However, special care was taken to avoid making strong assumptions when resolving potential errors. Some minor errors remain in the data where the diagnosis and/or solution were unclear to the data cleaning team.
Response
The 2016 Integrated Household Panel Survey (IHPS) was launched in April 2016 as part of the Malawi Fourth Integrated Household Survey fieldwork operation. The IHPS 2016 targeted 1,989 households that were interviewed in the IHPS 2013 and that could be traced back to half of the 204 enumeration areas that were originally sampled as part of the Third Integrated Household Survey (IHS3) 2010/11. The 2019 IHPS was launched in April 2019 as part of the Malawi Fifth Integrated Household Survey fieldwork operations targeting the 2,508 households that were interviewed in 2016. The panel sample expanded each wave through the tracking of split-off individuals and the new households that they formed. Available as part of this project is the IHPS 2019 data, the IHPS 2016 data as well as the rereleased IHPS 2010 & 2013 data including only the subsample of 102 EAs with updated panel weights. Additionally, the IHPS 2016 was the first survey that received complementary financial and technical support from the Living Standards Measurement Study – Plus (LSMS+) initiative, which has been established with grants from the Umbrella Facility for Gender Equality Trust Fund, the World Bank Trust Fund for Statistical Capacity Building, and the International Fund for Agricultural Development, and is implemented by the World Bank Living Standards Measurement Study (LSMS) team, in collaboration with the World Bank Gender Group and partner national statistical offices. The LSMS+ aims to improve the availability and quality of individual-disaggregated household survey data, and is, at start, a direct response to the World Bank IDA18 commitment to support 6 IDA countries in collecting intra-household, sex-disaggregated household survey data on 1) ownership of and rights to selected physical and financial assets, 2) work and employment, and 3) entrepreneurship – following international best practices in questionnaire design and minimizing the use of proxy respondents while collecting personal information. This dataset is included here.
National coverage
The IHPS 2016 and 2019 attempted to track all IHPS 2013 households stemming from 102 of the original 204 baseline panel enumeration areas as well as individuals that moved away from the 2013 dwellings between 2013 and 2016 as long as they were neither servants nor guests at the time of the IHPS 2013; were projected to be at least 12 years of age and were known to be residing in mainland Malawi but excluding those in Likoma Island and in institutions, including prisons, police compounds, and army barracks.
Sample survey data [ssd]
A sub-sample of IHS3 2010 sample enumeration areas (EAs) (i.e. 204 EAs out of 768 EAs) was selected prior to the start of the IHS3 field work with the intention to (i) to track and resurvey these households in 2013 in accordance with the IHS3 fieldwork timeline and as part of the Integrated Household Panel Survey (IHPS 2013) and (ii) visit a total of 3,246 households in these EAs twice to reduce recall associated with different aspects of agricultural data collection. At baseline, the IHPS sample was selected to be representative at the national, regional, urban/rural levels and for each of the following 6 strata: (i) Northern Region - Rural, (ii) Northern Region - Urban, (iii) Central Region - Rural, (iv) Central Region - Urban, (v) Southern Region - Rural, and (vi) Southern Region - Urban. The IHPS 2013 main fieldwork took place during the period of April-October 2013, with residual tracking operations in November-December 2013.
Given budget and resource constraints, for the IHPS 2016 the number of sample EAs in the panel was reduced to 102 out of the 204 EAs. As a result, the domains of analysis are limited to the national, urban and rural areas. Although the results of the IHPS 2016 cannot be tabulated by region, the stratification of the IHPS by region, urban and rural strata was maintained. The IHPS 2019 tracked all individuals 12 years or older from the 2016 households.
Computer Assisted Personal Interview [capi]
Data Entry Platform To ensure data quality and timely availability of data, the IHPS 2019 was implemented using the World Bank’s Survey Solutions CAPI software. To carry out IHPS 2019, 1 laptop computer and a wireless internet router were assigned to each team supervisor, and each enumerator had an 8–inch GPS-enabled Lenovo tablet computer that the NSO provided. The use of Survey Solutions allowed for the real-time availability of data as the completed data was completed, approved by the Supervisor and synced to the Headquarters server as frequently as possible. While administering the first module of the questionnaire the enumerator(s) also used their tablets to record the GPS coordinates of the dwelling units. Geo-referenced household locations from that tablet complemented the GPS measurements taken by the Garmin eTrex 30 handheld devices and these were linked with publically available geospatial databases to enable the inclusion of a number of geospatial variables - extensive measures of distance (i.e. distance to the nearest market), climatology, soil and terrain, and other environmental factors - in the analysis.
Data Management The IHPS 2019 Survey Solutions CAPI based data entry application was designed to stream-line the data collection process from the field. IHPS 2019 Interviews were mainly collected in “sample” mode (assignments generated from headquarters) and a few in “census” mode (new interviews created by interviewers from a template) for the NSO to have more control over the sample. This hybrid approach was necessary to aid the tracking operations whereby an enumerator could quickly create a tracking assignment considering that they were mostly working in areas with poor network connection and hence could not quickly receive tracking cases from Headquarters.
The range and consistency checks built into the application was informed by the LSMS-ISA experience with the IHS3 2010/11, IHPS 2013 and IHPS 2016. Prior programming of the data entry application allowed for a wide variety of range and consistency checks to be conducted and reported and potential issues investigated and corrected before closing the assigned enumeration area. Headquarters (the NSO management) assigned work to the supervisors based on their regions of coverage. The supervisors then made assignments to the enumerators linked to their supervisor account. The work assignments and syncing of completed interviews took place through a Wi-Fi connection to the IHPS 2019 server. Because the data was available in real time it was monitored closely throughout the entire data collection period and upon receipt of the data at headquarters, data was exported to Stata for other consistency checks, data cleaning, and analysis.
Data Cleaning The data cleaning process was done in several stages over the course of fieldwork and through preliminary analysis. The first stage of data cleaning was conducted in the field by the field-based field teams utilizing error messages generated by the Survey Solutions application when a response did not fit the rules for a particular question. For questions that flagged an error, the enumerators were expected to record a comment within the questionnaire to explain to their supervisor the reason for the error and confirming that they double checked the response with the respondent. The supervisors were expected to sync the enumerator tablets as frequently as possible to avoid having many questionnaires on the tablet, and to enable daily checks of questionnaires. Some supervisors preferred to review completed interviews on the tablets so they would review prior to syncing but still record the notes in the supervisor account and reject questionnaires accordingly. The second stage of data cleaning was also done in the field, and this resulted from the additional error reports generated in Stata, which were in turn sent to the field teams via email or DropBox. The field supervisors collected reports for their assignments and in coordination with the enumerators reviewed, investigated, and collected errors. Due to the quick turn-around in error reporting, it was possible to conduct call-backs while the team was still operating in the EA when required. Corrections to the data were entered in the rejected questionnaires and sent back to headquarters.
The data cleaning process was done in several stages over the course of the fieldwork and through preliminary analyses. The first stage was during the interview itself. Because CAPI software was used, as enumerators asked the questions and recorded information, error messages were provided immediately when the information recorded did not match previously defined rules for that variable. For example, if the education level for a 12 year old respondent was given as post graduate. The second stage occurred during the review of the questionnaire by the Field Supervisor. The Survey Solutions software allows errors to remain in the data if the enumerator does not make a correction. The enumerator can write a comment to explain why the data appears to be incorrect. For example, if the previously mentioned 12 year old was, in fact, a genius who had completed graduate studies. The next stage occurred when the data were transferred to headquarters where the NSO staff would again review the data for errors and verify the comments from the
Not seeing a result you expected?
Learn how you can add new datasets to our index.
The General Household Survey-Panel (GHS-Panel) is implemented in collaboration with the World Bank Living Standards Measurement Study (LSMS) team as part of the Integrated Surveys on Agriculture (ISA) program. The objectives of the GHS-Panel include the development of an innovative model for collecting agricultural data, interinstitutional collaboration, and comprehensive analysis of welfare indicators and socio-economic characteristics. The GHS-Panel is a nationally representative survey of approximately 5,000 households, which are also representative of the six geopolitical zones. The 2023/24 GHS-Panel is the fifth round of the survey with prior rounds conducted in 2010/11, 2012/13, 2015/16 and 2018/19. The GHS-Panel households were visited twice: during post-planting period (July - September 2023) and during post-harvest period (January - March 2024).
National
• Households • Individuals • Agricultural plots • Communities
The survey covered all de jure households excluding prisons, hospitals, military barracks, and school dormitories.
Sample survey data [ssd]
The original GHS‑Panel sample was fully integrated with the 2010 GHS sample. The GHS sample consisted of 60 Primary Sampling Units (PSUs) or Enumeration Areas (EAs), chosen from each of the 37 states in Nigeria. This resulted in a total of 2,220 EAs nationally. Each EA contributed 10 households to the GHS sample, resulting in a sample size of 22,200 households. Out of these 22,200 households, 5,000 households from 500 EAs were selected for the panel component, and 4,916 households completed their interviews in the first wave.
After nearly a decade of visiting the same households, a partial refresh of the GHS‑Panel sample was implemented in Wave 4 and maintained for Wave 5. The refresh was conducted to maintain the integrity and representativeness of the sample. The refresh EAs were selected from the same sampling frame as the original GHS‑Panel sample in 2010. A listing of households was conducted in the 360 EAs, and 10 households were randomly selected in each EA, resulting in a total refresh sample of approximately 3,600 households.
In addition to these 3,600 refresh households, a subsample of the original 5,000 GHS‑Panel households from 2010 were selected to be included in the new sample. This “long panel” sample of 1,590 households was designed to be nationally representative to enable continued longitudinal analysis for the sample going back to 2010. The long panel sample consisted of 159 EAs systematically selected across Nigeria’s six geopolitical zones.
The combined sample of refresh and long panel EAs in Wave 5 that were eligible for inclusion consisted of 518 EAs based on the EAs selected in Wave 4. The combined sample generally maintains both the national and zonal representativeness of the original GHS‑Panel sample.
Although 518 EAs were identified for the post-planting visit, conflict events prevented interviewers from visiting eight EAs in the North West zone of the country. The EAs were located in the states of Zamfara, Katsina, Kebbi and Sokoto. Therefore, the final number of EAs visited both post-planting and post-harvest comprised 157 long panel EAs and 354 refresh EAs. The combined sample is also roughly equally distributed across the six geopolitical zones.
Computer Assisted Personal Interview [capi]
The GHS-Panel Wave 5 consisted of three questionnaires for each of the two visits. The Household Questionnaire was administered to all households in the sample. The Agriculture Questionnaire was administered to all households engaged in agricultural activities such as crop farming, livestock rearing, and other agricultural and related activities. The Community Questionnaire was administered to the community to collect information on the socio-economic indicators of the enumeration areas where the sample households reside.
GHS-Panel Household Questionnaire: The Household Questionnaire provided information on demographics; education; health; labour; childcare; early child development; food and non-food expenditure; household nonfarm enterprises; food security and shocks; safety nets; housing conditions; assets; information and communication technology; economic shocks; and other sources of household income. Household location was geo-referenced in order to be able to later link the GHS-Panel data to other available geographic data sets (forthcoming).
GHS-Panel Agriculture Questionnaire: The Agriculture Questionnaire solicited information on land ownership and use; farm labour; inputs use; GPS land area measurement and coordinates of household plots; agricultural capital; irrigation; crop harvest and utilization; animal holdings and costs; household fishing activities; and digital farming information. Some information is collected at the crop level to allow for detailed analysis for individual crops.
GHS-Panel Community Questionnaire: The Community Questionnaire solicited information on access to infrastructure and transportation; community organizations; resource management; changes in the community; key events; community needs, actions, and achievements; social norms; and local retail price information.
The Household Questionnaire was slightly different for the two visits. Some information was collected only in the post-planting visit, some only in the post-harvest visit, and some in both visits.
The Agriculture Questionnaire collected different information during each visit, but for the same plots and crops.
The Community Questionnaire collected prices during both visits, and different community level information during the two visits.
CAPI: Wave five exercise was conducted using Computer Assisted Person Interview (CAPI) techniques. All the questionnaires (household, agriculture, and community questionnaires) were implemented in both the post-planting and post-harvest visits of Wave 5 using the CAPI software, Survey Solutions. The Survey Solutions software was developed and maintained by the Living Standards Measurement Unit within the Development Economics Data Group (DECDG) at the World Bank. Each enumerator was given a tablet which they used to conduct the interviews. Overall, implementation of survey using Survey Solutions CAPI was highly successful, as it allowed for timely availability of the data from completed interviews.
DATA COMMUNICATION SYSTEM: The data communication system used in Wave 5 was highly automated. Each field team was given a mobile modem which allowed for internet connectivity and daily synchronization of their tablets. This ensured that head office in Abuja had access to the data in real-time. Once the interview was completed and uploaded to the server, the data was first reviewed by the Data Editors. The data was also downloaded from the server, and Stata dofile was run on the downloaded data to check for additional errors that were not captured by the Survey Solutions application. An excel error file was generated following the running of the Stata dofile on the raw dataset. Information contained in the excel error files were then communicated back to respective field interviewers for their action. This monitoring activity was done on a daily basis throughout the duration of the survey, both in the post-planting and post-harvest.
DATA CLEANING: The data cleaning process was done in three main stages. The first stage was to ensure proper quality control during the fieldwork. This was achieved in part by incorporating validation and consistency checks into the Survey Solutions application used for the data collection and designed to highlight many of the errors that occurred during the fieldwork.
The second stage cleaning involved the use of Data Editors and Data Assistants (Headquarters in Survey Solutions). As indicated above, once the interview is completed and uploaded to the server, the Data Editors review completed interview for inconsistencies and extreme values. Depending on the outcome, they can either approve or reject the case. If rejected, the case goes back to the respective interviewer’s tablet upon synchronization. Special care was taken to see that the households included in the data matched with the selected sample and where there were differences, these were properly assessed and documented. The agriculture data were also checked to ensure that the plots identified in the main sections merged with the plot information identified in the other sections. Additional errors observed were compiled into error reports that were regularly sent to the teams. These errors were then corrected based on re-visits to the household on the instruction of the supervisor. The data that had gone through this first stage of cleaning was then approved by the Data Editor. After the Data Editor’s approval of the interview on Survey Solutions server, the Headquarters also reviews and depending on the outcome, can either reject or approve.
The third stage of cleaning involved a comprehensive review of the final raw data following the first and second stage cleaning. Every variable was examined individually for (1) consistency with other sections and variables, (2) out of range responses, and (3) outliers. However, special care was taken to avoid making strong assumptions when resolving potential errors. Some minor errors remain in the data where the diagnosis and/or solution were unclear to the data cleaning team.
Response