NOTE: A more current version of the Protected Areas Database of the United States (PAD-US) is available: PAD-US 2.1 https://doi.org/10.5066/P92QM3NT. The USGS Protected Areas Database of the United States (PAD-US) is the nation's inventory of protected areas, including public land and voluntarily provided private protected areas, identified as an A-16 National Geospatial Data Asset in the Cadastre Theme (https://communities.geoplatform.gov/ngda-cadastre/). The PAD-US is an ongoing project with several published versions of a spatial database including areas dedicated to the preservation of biological diversity, and other natural (including extraction), recreational, or cultural uses, managed for these purposes through legal or other effective means. The database was originally designed to support biodiversity assessments; however, its scope expanded in recent years to include all public and nonprofit lands and waters. Most are public lands owned in fee; however, long-term easements, leases, agreements, Congressional (e.g. 'Wilderness Area'), Executive (e.g. 'National Monument'), and administrative designations (e.g. 'Area of Critical Environmental Concern') documented in agency management plans are also included. The PAD-US strives to be a complete inventory of public land and other protected areas, compiling “best available” data provided by managing agencies and organizations. The PAD-US geodatabase maps and describes areas with over twenty-five attributes in nine feature classes to support data management, queries, web mapping services, and analyses.
NOTE: A more current version of the Protected Areas Database of the United States (PAD-US) is available: PAD-US 2.1 https://doi.org/10.5066/P92QM3NT
This PAD-US Version 2.0 dataset includes a variety of updates and changes from the previous Version 1.4 dataset. The following list summarizes major updates and changes:
1) Expanded database structure with new layers: the geodatabase feature class structure now includes nine feature classes separating fee owned lands, conservation (and other) easements, management designations overlapping fee lands, marine areas, proclamation boundaries and various 'Combined' feature classes (e.g. 'Fee' + 'Easement' + 'Designation' feature classes);
2) Major update of the Federal estate including data from 8 agencies, developed in collaboration with the Federal Geographic Data Committee (FGDC) Federal Lands Working Group (FLWG, https://communities.geoplatform.gov/ngda-govunits/federal-lands-workgroup/);
3) Major updates to 30 States and limited additions to 16 other States;
4) Integration of The Nature Conservancy's (TNC) Secured Lands geodatabase;
5) Integration of Ducks Unlimited's (DU) Conservation and Recreation Lands (CARL) database;
6) Integration of The Trust for Public Land's (TPL) Conservation Almanac database;
7) The Nature Conservancy (TNC) Lands database update: the national source of lands owned in fee or managed by TNC;
8) National Conservation Easement Database (NCED) update: complete update of non-sensitive (suitable for publication in the public domain) easements;
9) Complete National Marine Protected Areas (MPA) update: from the NOAA MPA Inventory, including conservation measure ('GAP Status Code', 'IUCN Category') review by NOAA;
10) First integration of Bureau of Energy Ocean Management (BOEM) managed marine lands: BOEM submitted Outer Continental Shelf Area lands managed for natural resources (minerals, oil and gas), a significant and new addition to PAD-US;
11) Fee boundary overlap assessment: topology overlaps in the PAD-US 2.0 'Fee' feature class have been identified and are available for user and data-steward reference (See Logical_Consistency_Report Section).
For more information regarding the PAD-US dataset please visit, https://usgs.gov/gapanalysis/PAD-US/. For more information about data aggregation please review the “Data Manual for PAD-US” available at https://www.usgs.gov/core-science-systems/science-analytics-and-synthesis/gap/pad-us-data-manual .
Abstract: The Database on Ideology, Money in Politics, and Elections (DIME) is intended as a general resource for the study of campaign finance and ideology in American politics. The database was developed as part of the project on Ideology in the Political Marketplace, which is an on-going effort to perform a comprehensive ideological mapping of political elites, interest groups, and donors using the common-space CFscore scaling methodology (Bonica 2014). Constructing the database required a large-scale effort to compile, clean, and process data on contribution records, candidate characteristics, and election outcomes from various sources. The resulting database contains over 130 million political contributions made by individuals and organizations to local, state, and federal elections spanning a period from 1979 to 2014. A corresponding database of candidates and committees provides additional information on state and federal elections. The DIME+ data repository on congressional activity extends DIME to cover detailed data on legislative voting, lawmaking, and political rhetoric. (See http://dx.doi.org/10.7910/DVN/BO7WOW for details.) The DIME data is available for download as a standalone SQLite database. The SQLite database is stored on disk and can be accessed using a SQLite client or queried directly from R using the RSQLite package. SQLite is particularly well-suited for tasks that require searching through the database for specific individuals or contribution records. (Click here to download.) Overview: The database is intended to make data on campaign finance and elections (1) more centralized and accessible, (2) easier to work with, and (3) more versatile in terms of the types of questions that can be addressed. A list of the main value-added features of the database is below: Data processing: Names, addresses, and occupation and employer titles have been cleaned and standardized. Unique identifiers: Entity resolution techniques were used to assign unique identifiers for all individual and institutional donors included in the database. The contributor IDs make it possible to track giving by individuals across election cycles and levels of government. Geocoding: Each record has been geocoded and placed into congressional districts. The geocoding scheme relies on the contributor IDs to assign a complete set of consistent geo-coordinates to donors that report their full address in some records but not in others. This is accomplished by combining information on self-reported address across records. The geocoding scheme further takes into account donors with multiple addresses. Geocoding was performed using the Data Science Toolkit maintained by Pete Warden and hosted at http://www.datasciencetoolkit.org/. Shape files for congressional districts are from Census.gov (http://www.census.gov/rdo/data). Ideological measures: The common-space CFscores allow for direct distance comparisons of the ideal points of a wide range of political actors from state and federal politics spanning a 35 year period. In total, the database includes ideal point estimates for 70,871 candidates and 12,271 political committees as recipients and 14.7 million individuals and 1.7 million organizations as donors. Corresponding data on candidates, committees, and elections: The recipient database includes information on voting records, fundraising statistics, election outcomes, gender, and other candidate characteristics. All candidates are assigned unique identifiers that make it possible to track candidates if they campaign for different offices. The recipient IDs can also be used to match against the database of contribution records. The database also includes entries for PACs, super PACs, party committees, leadership PACs, 527s, state ballot campaigns, and other committees that engage in fundraising activities. Identifying sets of important political actors: Contribution records have been matched onto other publicly available databases of important political actors. Examples include: Fortune 500 directors and CEOs: (Data) (Paper) Federal court judges: (Data) (Paper} State supreme court justices: (Data) (Paper} Executives appointees to federal agencies: (Data) (Paper) Medical professionals: (Data) (Paper)
Please see more information @ https://www.transportation.gov NAD website.If you represent a state or local government and would like to include your address points in the NAD, please contact us at nad@dot.gov.
The Healthcare Cost and Utilization Project (HCUP) State Inpatient Databases (SID) are a set of hospital databases that contain the universe of hospital inpatient discharge abstracts from data organizations in participating States. The data are translated into a uniform format to facilitate multi-State comparisons and analyses. The SID are based on data from short term, acute care, nonfederal hospitals. Some States include discharges from specialty facilities, such as acute psychiatric hospitals. The SID include all patients, regardless of payer and contain clinical and resource use information included in a typical discharge abstract, with safeguards to protect the privacy of individual patients, physicians, and hospitals (as required by data sources). Developed through a Federal-State-Industry partnership sponsored by the Agency for Healthcare Research and Quality (AHRQ), HCUP data inform decision making at the national, State, and community levels. The SID contain clinical and resource-use information that is included in a typical discharge abstract, with safeguards to protect the privacy of individual patients, physicians, and hospitals (as required by data sources). Data elements include but are not limited to: diagnoses, procedures, admission and discharge status, patient demographics (e.g., sex, age), total charges, length of stay, and expected payment source, including but not limited to Medicare, Medicaid, private insurance, self-pay, or those billed as ‘no charge’. In addition to the core set of uniform data elements common to all SID, some include State-specific data elements. The SID exclude data elements that could directly or indirectly identify individuals. For some States, hospital and county identifiers are included that permit linkage to the American Hospital Association Annual Survey File and county-level data from the Bureau of Health Professions' Area Resource File except in States that do not allow the release of hospital identifiers. Restricted access data files are available with a data use agreement and brief online security training.
https://www.icpsr.umich.edu/web/ICPSR/studies/38538/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38538/terms
The Child Care and Development Fund (CCDF) provides federal money to states and territories to provide assistance to low-income families, to obtain quality child care so they can work, attend training, or receive education. Within the broad federal parameters, states and territories set the detailed policies. Those details determine whether a particular family will or will not be eligible for subsidies, how much the family will have to pay for the care, how families apply for and retain subsidies, the maximum amounts that child care providers will be reimbursed, and the administrative procedures that providers must follow. Thus, while CCDF is a single program from the perspective of federal law, it is in practice a different program in every state and territory. The CCDF Policies Database project is a comprehensive, up-to-date database of CCDF policy information that supports the needs of a variety of audiences through (1) analytic data files, (2) a project website and search tool, and (3) an annual report (Book of Tables). These resources are made available to researchers, administrators, and policymakers with the goal of addressing important questions concerning the effects of child care subsidy policies and practices on the children and families served. A description of the data files, project website and search tool, and Book of Tables is provided below: 1. Detailed, longitudinal analytic data files provide CCDF policy information for all 50 States, the District of Columbia, and the United States Territories and outlying areas that capture the policies actually in effect at a point in time, rather than proposals or legislation. They capture changes throughout each year, allowing users to access the policies in place at any point in time between October 2009 and the most recent data release. The data are organized into 32 categories with each category of variables separated into its own dataset. The categories span five general areas of policy including: Eligibility Requirements for Families and Children (Datasets 1-5) Family Application, Terms of Authorization, and Redetermination (Datasets 6-13) Family Payments (Datasets 14-18) Policies for Providers, Including Maximum Reimbursement Rates (Datasets 19-27) Overall Administrative and Quality Information Plans (Datasets 28-32) The information in the data files is based primarily on the documents that caseworkers use as they work with families and providers (often termed "caseworker manuals"). The caseworker manuals generally provide much more detailed information on eligibility, family payments, and provider-related policies than the CCDF Plans submitted by states and territories to the federal government. The caseworker manuals also provide ongoing detail for periods in between CCDF Plan dates. Each dataset contains a series of variables designed to capture the intricacies of the rules covered in the category. The variables include a mix of categorical, numeric, and text variables. Most variables have a corresponding notes field to capture additional details related to that particular variable. In addition, each category has an additional notes field to capture any information regarding the rules that is not already outlined in the category's variables. 2. The project website and search tool provide access to a point-and-click user interface. Users can select from the full set of public data to create custom tables. The website also provides access to the full range of reports and products released under the CCDF Policies Database project. The project website and search tool and the data files provide a more detailed set of information than what the Book of Tables provides, including a wider selection of variables and policies over time. 3. The annual Book of Tables provides key policy information for October 1 of each year. The report presents policy variations across the states and territories and is available on the project website. The Book of Tables summarizes a subset of the information available in the full database and data files, and includes information about eligibility requirements for families; application, redetermination, priority, and waiting list policies; family co-payments; and provider policies and reimbursement rates. In many cases, a variable in the Book of Tables will correspond to a single variable in the data files. Usuall
Progress Needed on Identifying Expenditures, Building and Utilizing a Data Infrastructure, and Reducing Duplicative Efforts The federal government collects, maintains, and uses geospatial information—data linked to specific geographic locations—to help support varied missions, including national security and natural resources conservation. To coordinate geospatial activities, in 1994 the President issued an executive order to develop a National Spatial Data Infrastructure—a framework for coordination that includes standards, data themes, and a clearinghouse. GAO was asked to review federal and state coordination of geospatial data. GAO’s objectives were to (1) describe the geospatial data that selected federal agencies and states use and how much is spent on geospatial data; (2) assess progress in establishing the National Spatial Data Infrastructure; and (3) determine whether selected federal agencies and states invest in duplicative geospatial data. To do so, GAO identified federal and state uses of geospatial data; evaluated available cost data from 2013 to 2015; assessed FGDC’s and selected agencies’ efforts to establish the infrastructure; and analyzed federal and state datasets to identify duplication. What GAO Found Federal agencies and state governments use a variety of geospatial datasets to support their missions. For example, after Hurricane Sandy in 2012, the Federal Emergency Management Agency used geospatial data to identify 44,000 households that were damaged and inaccessible and reported that, as a result, it was able to provide expedited assistance to area residents. Federal agencies report spending billions of dollars on geospatial investments; however, the estimates are understated because agencies do not always track geospatial investments. For example, these estimates do not include billions of dollars spent on earth-observing satellites that produce volumes of geospatial data. The Federal Geographic Data Committee (FGDC) and the Office of Management and Budget (OMB) have started an initiative to have agencies identify and report annually on geospatial-related investments as part of the fiscal year 2017 budget process. FGDC and selected federal agencies have made progress in implementing their responsibilities for the National Spatial Data Infrastructure as outlined in OMB guidance; however, critical items remain incomplete. For example, the committee established a clearinghouse for records on geospatial data, but the clearinghouse lacks an effective search capability and performance monitoring. FGDC also initiated plans and activities for coordinating with state governments on the collection of geospatial data; however, state officials GAO contacted are generally not satisfied with the committee’s efforts to coordinate with them. Among other reasons, they feel that the committee is focused on a federal perspective rather than a national one, and that state recommendations are often ignored. In addition, selected agencies have made limited progress in their own strategic planning efforts and in using the clearinghouse to register their data to ensure they do not invest in duplicative data. For example, 8 of the committee’s 32 member agencies have begun to register their data on the clearinghouse, and they have registered 59 percent of the geospatial data they deemed critical. Part of the reason that agencies are not fulfilling their responsibilities is that OMB has not made it a priority to oversee these efforts. Until OMB ensures that FGDC and federal agencies fully implement their responsibilities, the vision of improving the coordination of geospatial information and reducing duplicative investments will not be fully realized. OMB guidance calls for agencies to eliminate duplication, avoid redundant expenditures, and improve the efficiency and effectiveness of the sharing and dissemination of geospatial data. However, some data are collected multiple times by federal, state, and local entities, resulting in duplication in effort and resources. A new initiative to create a national address database could potentially result in significant savings for federal, state, and local governments. However, agencies face challenges in effectively coordinating address data collection efforts, including statutory restrictions on sharing certain federal address data. Until there is effective coordination across the National Spatial Data Infrastructure, there will continue to be duplicative efforts to obtain and maintain these data at every level of government.https://www.gao.gov/assets/d15193.pdfWhat GAO Recommends GAO suggests that Congress consider assessing statutory limitations on address data to foster progress toward a national address database. GAO also recommends that OMB improve its oversight of FGDC and federal agency initiatives, and that FGDC and selected agencies fully implement initiatives. The agencies generally agreed with the recommendations and identified plans to implement them.
United States agricultural researchers have many options for making their data available online. This dataset aggregates the primary sources of ag-related data and determines where researchers are likely to deposit their agricultural data. These data serve as both a current landscape analysis and also as a baseline for future studies of ag research data. Purpose As sources of agricultural data become more numerous and disparate, and collaboration and open data become more expected if not required, this research provides a landscape inventory of online sources of open agricultural data. An inventory of current agricultural data sharing options will help assess how the Ag Data Commons, a platform for USDA-funded data cataloging and publication, can best support data-intensive and multi-disciplinary research. It will also help agricultural librarians assist their researchers in data management and publication. The goals of this study were to establish where agricultural researchers in the United States-- land grant and USDA researchers, primarily ARS, NRCS, USFS and other agencies -- currently publish their data, including general research data repositories, domain-specific databases, and the top journals compare how much data is in institutional vs. domain-specific vs. federal platforms determine which repositories are recommended by top journals that require or recommend the publication of supporting data ascertain where researchers not affiliated with funding or initiatives possessing a designated open data repository can publish data Approach The National Agricultural Library team focused on Agricultural Research Service (ARS), Natural Resources Conservation Service (NRCS), and United States Forest Service (USFS) style research data, rather than ag economics, statistics, and social sciences data. To find domain-specific, general, institutional, and federal agency repositories and databases that are open to US research submissions and have some amount of ag data, resources including re3data, libguides, and ARS lists were analysed. Primarily environmental or public health databases were not included, but places where ag grantees would publish data were considered. Search methods We first compiled a list of known domain specific USDA / ARS datasets / databases that are represented in the Ag Data Commons, including ARS Image Gallery, ARS Nutrition Databases (sub-components), SoyBase, PeanutBase, National Fungus Collection, i5K Workspace @ NAL, and GRIN. We then searched using search engines such as Bing and Google for non-USDA / federal ag databases, using Boolean variations of “agricultural data” /“ag data” / “scientific data” + NOT + USDA (to filter out the federal / USDA results). Most of these results were domain specific, though some contained a mix of data subjects. We then used search engines such as Bing and Google to find top agricultural university repositories using variations of “agriculture”, “ag data” and “university” to find schools with agriculture programs. Using that list of universities, we searched each university web site to see if their institution had a repository for their unique, independent research data if not apparent in the initial web browser search. We found both ag specific university repositories and general university repositories that housed a portion of agricultural data. Ag specific university repositories are included in the list of domain-specific repositories. Results included Columbia University – International Research Institute for Climate and Society, UC Davis – Cover Crops Database, etc. If a general university repository existed, we determined whether that repository could filter to include only data results after our chosen ag search terms were applied. General university databases that contain ag data included Colorado State University Digital Collections, University of Michigan ICPSR (Inter-university Consortium for Political and Social Research), and University of Minnesota DRUM (Digital Repository of the University of Minnesota). We then split out NCBI (National Center for Biotechnology Information) repositories. Next we searched the internet for open general data repositories using a variety of search engines, and repositories containing a mix of data, journals, books, and other types of records were tested to determine whether that repository could filter for data results after search terms were applied. General subject data repositories include Figshare, Open Science Framework, PANGEA, Protein Data Bank, and Zenodo. Finally, we compared scholarly journal suggestions for data repositories against our list to fill in any missing repositories that might contain agricultural data. Extensive lists of journals were compiled, in which USDA published in 2012 and 2016, combining search results in ARIS, Scopus, and the Forest Service's TreeSearch, plus the USDA web sites Economic Research Service (ERS), National Agricultural Statistics Service (NASS), Natural Resources and Conservation Service (NRCS), Food and Nutrition Service (FNS), Rural Development (RD), and Agricultural Marketing Service (AMS). The top 50 journals' author instructions were consulted to see if they (a) ask or require submitters to provide supplemental data, or (b) require submitters to submit data to open repositories. Data are provided for Journals based on a 2012 and 2016 study of where USDA employees publish their research studies, ranked by number of articles, including 2015/2016 Impact Factor, Author guidelines, Supplemental Data?, Supplemental Data reviewed?, Open Data (Supplemental or in Repository) Required? and Recommended data repositories, as provided in the online author guidelines for each the top 50 journals. Evaluation We ran a series of searches on all resulting general subject databases with the designated search terms. From the results, we noted the total number of datasets in the repository, type of resource searched (datasets, data, images, components, etc.), percentage of the total database that each term comprised, any dataset with a search term that comprised at least 1% and 5% of the total collection, and any search term that returned greater than 100 and greater than 500 results. We compared domain-specific databases and repositories based on parent organization, type of institution, and whether data submissions were dependent on conditions such as funding or affiliation of some kind. Results A summary of the major findings from our data review: Over half of the top 50 ag-related journals from our profile require or encourage open data for their published authors. There are few general repositories that are both large AND contain a significant portion of ag data in their collection. GBIF (Global Biodiversity Information Facility), ICPSR, and ORNL DAAC were among those that had over 500 datasets returned with at least one ag search term and had that result comprise at least 5% of the total collection. Not even one quarter of the domain-specific repositories and datasets reviewed allow open submission by any researcher regardless of funding or affiliation. See included README file for descriptions of each individual data file in this dataset. Resources in this dataset:Resource Title: Journals. File Name: Journals.csvResource Title: Journals - Recommended repositories. File Name: Repos_from_journals.csvResource Title: TDWG presentation. File Name: TDWG_Presentation.pptxResource Title: Domain Specific ag data sources. File Name: domain_specific_ag_databases.csvResource Title: Data Dictionary for Ag Data Repository Inventory. File Name: Ag_Data_Repo_DD.csvResource Title: General repositories containing ag data. File Name: general_repos_1.csvResource Title: README and file inventory. File Name: README_InventoryPublicDBandREepAgData.txt
The mission of the USGS Gap Analysis Program (GAP) is providing state, regional and national assessments of the conservation status of native vertebrate species and natural land cover types and facilitating the application of this information to land management activities. The PAD-US geodatabase is required to organize and assess the management status (i.e. apply GAP Status Codes) of elements of biodiversity protection. The goal of GAP is to 'keep common species common' by identifying species and plant communities not adequately represented in existing conservation lands. Common species are those not currently threatened with extinction. By identifying their habitats, gap analysis gives land managers and policy makers the information they need to make better-informed decisions when identifying priority areas for conservation. In cooperation with UNEP-World Conservation Monitoring Centre, GAP ensures PAD-US also supports global analyses to inform policy decisions by maintaining World Database for Protected Areas (WDPA) Site Codes and data for International Union for the Conservation of Nature (IUCN) categorized protected areas in the United States. GAP seeks to increase the efficiency and accuracy of PAD-US updates by leveraging resources in protected areas data aggregation and maintenance as described in "A Map of the Future", published following the PAD-US Design Project (July, 2009). While PAD-US was originally developed to support the GAP Mission stated above, the dataset is robust and has been expanded to support the conservation, recreation and public health communities as well. Additional applications become apparent over time.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States Fed Govt Outlays: Discretionary: National Defense: as % of GDP data was reported at 3.000 % in 2023. This stayed constant from the previous number of 3.000 % for 2022. United States Fed Govt Outlays: Discretionary: National Defense: as % of GDP data is updated yearly, averaging 4.600 % from Sep 1962 (Median) to 2023, with 62 observations. The data reached an all-time high of 9.200 % in 1968 and a record low of 2.900 % in 2001. United States Fed Govt Outlays: Discretionary: National Defense: as % of GDP data remains active status in CEIC and is reported by Office of Management and Budget. The data is categorized under Global Database’s United States – Table US.F006: Federal Government Receipts and Outlays: Annual.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The United States Geological Survey (USGS) - Science Analytics and Synthesis (SAS) - Gap Analysis Project (GAP) manages the Protected Areas Database of the United States (PAD-US), an Arc10x geodatabase, that includes a full inventory of areas dedicated to the preservation of biological diversity and to other natural, recreation, historic, and cultural uses, managed for these purposes through legal or other effective means (www.usgs.gov/core-science-systems/science-analytics-and-synthesis/gap/science/protected-areas). The PAD-US is developed in partnership with many organizations, including coordination groups at the [U.S.] Federal level, lead organizations for each State, and a number of national and other non-governmental organizations whose work is closely related to the PAD-US. Learn more about the USGS PAD-US partners program here: www.usgs.gov/core-science-systems/science-analytics-and-synthesis/gap/science/pad-us-data-stewards. The United Nations Environmental Program - Worl ...
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The Department of City Planning aggregates information about 30,000+ facilities and program sites that are owned, operated, funded, licensed, or certified by a City, State, or Federal agency in the City of New York into a central database called the City Planning Facilities Database (FacDB). These facilities generally help to shape quality of life in the city's neighborhoods, and this dataset is the basis for a series of planning activities. This public data resource allows all New Yorkers to understand the breadth of government resources in their neighborhoods. The data is also complemented with a new interactive web map that enables users to easily filter the data for their needs. Users are strongly encouraged to read the database documentation, particularly with regard to analytical limitations. Questions about this database can be directed to dcpopendata@planning.nyc.gov All previously released versions of this data are available at BYTES of the BIG APPLE Archive
The Healthcare Cost and Utilization Project (HCUP) Nationwide Emergency Department Sample (NEDS) is the largest all-payer emergency department (ED) database in the United States. yielding national estimates of hospital-owned ED visits. Unweighted, it contains data from over 30 million ED visits each year. Weighted, it estimates roughly 145 million ED visits nationally. Developed through a Federal-State-Industry partnership sponsored by the Agency for Healthcare Research and Quality, HCUP data inform decision making at the national, State, and community levels.
Sampled from the HCUP State Inpatient Databases (SID) and State Emergency Department Databases (SEDD), the HCUP NEDS can be used to create national and regional estimates of ED care. The SID contain information on patients initially seen in the ED and subsequently admitted to the same hospital. The SEDD capture information on ED visits that do not result in an admission (i.e., treat-and-release visits and transfers to another hospital). Developed through a Federal-State-Industry partnership sponsored by the Agency for Healthcare Research and Quality, HCUP data inform decision making at the national, State, and community levels.
The NEDS contain information about geographic characteristics, hospital characteristics, patient characteristics, and the nature of visits (e.g., common reasons for ED visits, including injuries). The NEDS contains clinical and resource use information included in a typical discharge abstract, with safeguards to protect the privacy of individual patients, physicians, and hospitals (as required by data sources). It includes ED charge information for over 85% of patients, regardless of expected payer, including but not limited to Medicare, Medicaid, private insurance, self-pay, or those billed as ‘no charge’. The NEDS excludes data elements that could directly or indirectly identify individuals, hospitals, or states.Restricted access data files are available with a data use agreement and brief online security training.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The National Levee Database is a Congressionally authorized database that documents levees in the United States. The NLD is maintained and published by the U.S. Army Corps of Engineers (USACE).The NLD contains information about the condition and risk information for approximately 2,000 levee systems (approximately 15,000 miles/mostly levees affiliated with USACE programs. An additional 6,000 levee systems--approximately 15,000 miles--have location information, but little to no information about condition and risk. One of the goals for the NLD is to include data about levees owned and operated by all other federal agencies, tribes, states, municipalities, levee boards, and private entities. This information will be added as it becomes available. United State Army Corps of Engineers NLD mission statement.The full NLD as an AGOL Feature Layer.
The State Review Framework is a primary means by which EPA conducts oversight of three core federal statutes: Clean Air Act, Clean Water Act, and Resource Conservation and Recovery Act. The routine, nationwide review provides a consistent process for evaluating the performance of state, local and EPA compliance and enforcement programs. The overarching goal of the reviews is to ensure fair and consistent enforcement necessary to protect human health and the environment.
The National Conservation Easement Database (NCED) is the first national database of conservation easement information, compiling records from land trusts and public agencies throughout the United States. This public-private partnership brings together national conservation groups, local and regional land trusts, and local, state and federal agencies around a common objective. This effort helps agencies, land trusts, and other organizations plan more strategically, identify opportunities for collaboration, advance public accountability, and raise the profile of what’s happening on-the-ground in the name of conservation.For an introductory tour of the NCED and its benefits check out the story map.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
National Levee DatabaseThis feature layer, utilizing National Geospatial Data Asset (NGDA) data from the U.S. Army Corps of Engineers (USACE), displays levees within the United States. Per USACE, "The National Levee Database captures all known levees in the United States. It provides users with the ability to search for specific data about levees and serves as a national resource to support awareness and preparedness around flooding. The USACE is responsible for maintaining the National Levee Database and works in partnership with the Federal Emergency Management Agency (FEMA), and in close collaboration with other federal, state, and local governments and entities responsible for levees to obtain and share accurate and complete information."Leveed area in Morrisville, PennsylvaniaData downloaded: 4/24/2024Data source: NLD 2 PublicNGDAID: 161 (National Levee Database)OGC API Features Link: (National Levee Database - OGC Features) copy this link to embed it in OGC Compliant viewersFor more information, please visit: National Levee DatabaseSupport documentation: NLD Data DictionaryFor feedback please contact: Esri_US_Federal_Data@esri.comNGDA Data SetThis data set is part of the NGDA Water - Inland Theme Community. Per the Federal Geospatial Data Committee (FGDC), Water - Inland is defined as the "interior hydrologic features and characteristics, including classification, measurements, location, and extent. Includes aquifers, watersheds, wetlands, navigation, water quality, water quantity, and groundwater information."For other NGDA Content: Esri Federal Datasets
https://www.icpsr.umich.edu/web/ICPSR/studies/8214/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/8214/terms
The Uniform Crime Reports National Time-Series Data, 1967-1980, include detailed criminal offense and clearance information submitted monthly by over 3,000 consistently reporting law enforcement agencies in the United States. These data, provided in annually pooled cross-sections, were processed at the Center for Applied Social Research, Northeastern University, Boston, Massachusetts to produce easily accessible and highly reliable time-series data on officially reported crime. Originally provided by the Federal Bureau of Investigation (FBI), these data exclude Uniform Crime Report (UCR) data from infrequently reporting law enforcement agencies. In general, only those agencies that submitted ten or more monthly reports in every year during 1967 through 1980 are included in this collection. The data include detailed breakdowns of offenses and clearances taken from disaggregated UCR Return A tapes. Of particular interest are weapon-specific robbery and assault variables, types of rape, burglary, larceny, and motor vehicle theft, and clearances by arrest (or other exceptional means) of adults and juveniles for each offense sub-type. Both monthly and annual counts of these are available. Finally, as an aid to the user, each agency is identified by its FBI "ORI Code" as well as a sequential case number produced and documented by ICPSR in the codebook's appendix. Cases also may be identified by geographic region, state, SMSA, county, population size and group, and frequency of reporting.
The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk classifications used are the 1-percent-annual-chance flood event, the 0.2-percent-annual-chance flood event, and areas of minimal flood risk. The DFIRM Database is derived from Flood Insurance Studies (FISs), previously published Flood Insurance Rate Maps (FIRMs), flood hazard analyses performed in support of the FISs and FIRMs, and new mapping data, where available. The FISs and FIRMs are published by the Federal Emergency Management Agency (FEMA). The file is georeferenced to earth's surface using the UTM projection and coordinate system. The specifications for the horizontal control of DFIRM data files are consistent with those required for mapping at a scale of 1:24,000.
https://creativecommons.org/share-your-work/public-domain/pdmhttps://creativecommons.org/share-your-work/public-domain/pdm
This report describes the purpose for developing the National Law Enforcement Accountability Database (NLEAD), a centralized repository of official records documenting instances of law enforcement officer misconduct as well as commendations and awards to help inform hiring, job assignment, and promotion decisions. It also provides statistics on the NLEAD’s records, the federal law enforcement officers included, and its usage. This is the first annual report, and it covers NLEAD records for events occurring in calendar years 2018 to 2023 and usage of the NLEAD from January 1, 2024 to August 31, 2024.Downloaded from BJS website on 2025-02-25.
The dataset catalogs and describes existing online, federally supported databases and tools dealing with various aspects of a potential national Early Detection and Rapid Response (EDRR) invasive species framework. This dataset is supplementary material 2 and 3 to the manuscript, "Envisioning a national invasive species information framework" (Reaser et al., 2020) published as part of a special open source issue dealing with invasive species early detection and rapid response by the journal Biological Invasions, Volume 22, Issue 1, January 2020 (https://link.springer.com/journal/10530/22/1). A user-friendly version of this dataset is also available online as a USGS Library Guide, here: https://libraryguides.usgs.gov/edrrinvasive
NOTE: A more current version of the Protected Areas Database of the United States (PAD-US) is available: PAD-US 2.1 https://doi.org/10.5066/P92QM3NT. The USGS Protected Areas Database of the United States (PAD-US) is the nation's inventory of protected areas, including public land and voluntarily provided private protected areas, identified as an A-16 National Geospatial Data Asset in the Cadastre Theme (https://communities.geoplatform.gov/ngda-cadastre/). The PAD-US is an ongoing project with several published versions of a spatial database including areas dedicated to the preservation of biological diversity, and other natural (including extraction), recreational, or cultural uses, managed for these purposes through legal or other effective means. The database was originally designed to support biodiversity assessments; however, its scope expanded in recent years to include all public and nonprofit lands and waters. Most are public lands owned in fee; however, long-term easements, leases, agreements, Congressional (e.g. 'Wilderness Area'), Executive (e.g. 'National Monument'), and administrative designations (e.g. 'Area of Critical Environmental Concern') documented in agency management plans are also included. The PAD-US strives to be a complete inventory of public land and other protected areas, compiling “best available” data provided by managing agencies and organizations. The PAD-US geodatabase maps and describes areas with over twenty-five attributes in nine feature classes to support data management, queries, web mapping services, and analyses.
NOTE: A more current version of the Protected Areas Database of the United States (PAD-US) is available: PAD-US 2.1 https://doi.org/10.5066/P92QM3NT
This PAD-US Version 2.0 dataset includes a variety of updates and changes from the previous Version 1.4 dataset. The following list summarizes major updates and changes:
1) Expanded database structure with new layers: the geodatabase feature class structure now includes nine feature classes separating fee owned lands, conservation (and other) easements, management designations overlapping fee lands, marine areas, proclamation boundaries and various 'Combined' feature classes (e.g. 'Fee' + 'Easement' + 'Designation' feature classes);
2) Major update of the Federal estate including data from 8 agencies, developed in collaboration with the Federal Geographic Data Committee (FGDC) Federal Lands Working Group (FLWG, https://communities.geoplatform.gov/ngda-govunits/federal-lands-workgroup/);
3) Major updates to 30 States and limited additions to 16 other States;
4) Integration of The Nature Conservancy's (TNC) Secured Lands geodatabase;
5) Integration of Ducks Unlimited's (DU) Conservation and Recreation Lands (CARL) database;
6) Integration of The Trust for Public Land's (TPL) Conservation Almanac database;
7) The Nature Conservancy (TNC) Lands database update: the national source of lands owned in fee or managed by TNC;
8) National Conservation Easement Database (NCED) update: complete update of non-sensitive (suitable for publication in the public domain) easements;
9) Complete National Marine Protected Areas (MPA) update: from the NOAA MPA Inventory, including conservation measure ('GAP Status Code', 'IUCN Category') review by NOAA;
10) First integration of Bureau of Energy Ocean Management (BOEM) managed marine lands: BOEM submitted Outer Continental Shelf Area lands managed for natural resources (minerals, oil and gas), a significant and new addition to PAD-US;
11) Fee boundary overlap assessment: topology overlaps in the PAD-US 2.0 'Fee' feature class have been identified and are available for user and data-steward reference (See Logical_Consistency_Report Section).
For more information regarding the PAD-US dataset please visit, https://usgs.gov/gapanalysis/PAD-US/. For more information about data aggregation please review the “Data Manual for PAD-US” available at https://www.usgs.gov/core-science-systems/science-analytics-and-synthesis/gap/pad-us-data-manual .