This dataset contains shapefile boundaries for CA State, counties and places from the US Census Bureau's 2023 MAF/TIGER database. Current geography in the 2023 TIGER/Line Shapefiles generally reflects the boundaries of governmental units in effect as of January 1, 2023.
The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation.
States and equivalent entities are the primary governmental divisions of the United States. In addition to the fifty States, the Census Bureau treats the District of Columbia, Puerto Rico, and each of the Island Areas (American Samoa, the Commonwealth of the Northern Mariana Islands, Guam, and the U.S. Virgin Islands) as the statistical equivalents of States for the purpose of data presentation.
Version InformationThe data is updated annually with fire perimeters from the previous calendar year.Firep23_1 was released in May 2024. Two hundred eighty four fires from the 2023 fire season were added to the database (21 from BLM, 102 from CAL FIRE, 72 from Contract Counties, 19 from LRA, 9 from NPS, 57 from USFS and 4 from USFW). The 2020 Cottonwood fire, 2021 Lone Rock and Union fires, as well as the 2022 Lost Lake fire were added. USFW submitted a higher accuracy perimeter to replace the 2022 River perimeter. A duplicate 2020 Erbes fire was removed. Additionally, 48 perimeters were digitized from an historical map included in a publication from Weeks, d. et al. The Utilization of El Dorado County Land. May 1934, Bulletin 572. University of California, Berkeley. There were 2,132 perimeters that received updated attribution, the bulk of which had IRWIN IDs added. The following fires were identified as meeting our collection criteria, but are not included in this version and will hopefully be added in the next update: Big Hill #2 (2023-CAHIA-001020). YEAR_ field changed to a short integer type. San Diego CAL FIRE UNIT_ID changed to SDU (the former code MVU is maintained in the UNIT_ID domains). COMPLEX_INCNUM renamed to COMPLEX_ID and is in process of transitioning from local incident number to the complex IRWIN ID. Perimeters managed in a complex in 2023 are added with the complex IRWIN ID. Those previously added will transition to complex IRWIN IDs in a future update.If you would like a full briefing on these adjustments, please contact the data steward, Kim Wallin (kimberly.wallin@fire.ca.gov), CAL FIRE FRAP._CAL FIRE (including contract counties), USDA Forest Service Region 5, USDI Bureau of Land Management & National Park Service, and other agencies jointly maintain a fire perimeter GIS layer for public and private lands throughout the state. The data covers fires back to 1878. Current criteria for data collection are as follows:CAL FIRE (including contract counties) submit perimeters ≥10 acres in timber, ≥50 acres in brush, or ≥300 acres in grass, and/or ≥3 damaged/ destroyed residential or commercial structures, and/or caused ≥1 fatality.All cooperating agencies submit perimeters ≥10 acres._Discrepancies between wildfire perimeter data and CAL FIRE Redbook Large Damaging FiresLarge Damaging fires in California were first defined by the CAL FIRE Redbook, and has changed over time, and differs from the definition initially used to define wildfires required to be submitted for the initial compilation of this digital fire perimeter data. In contrast, the definition of fires whose perimeter should be collected has changed once in the approximately 30 years the data has been in existence. Below are descriptions of changes in data collection criteria used when compiling these two datasets. To facilitate comparison, this metadata includes a summary, by year, of fires in the Redbook, that do not appear in this fire perimeter dataset. It is followed by an enumeration of each “Redbook” fire missing from the spatial data. Wildfire Perimeter criteria:~1991: 10 acres timber, 30 acres brush, 300 acres grass, damages or destroys three residence or one commercial structure or does $300,000 worth of damage 2002: 10 acres timber, 50 acres brush, 300 acres grass, damages or destroys three or more structures, or does $300,000 worth of damage~2010: 10 acres timber, 30 acres brush, 300 acres grass, damages or destroys three or more structures (doesn’t include out building, sheds, chicken coops, etc.)Large and Damaging Redbook Fire data criteria:1979: Fires of a minimum of 300 acres that burn at least: 30 acres timber or 300 acres brush, or 1500 acres woodland or grass1981: 1979 criteria plus fires that took ,3000 hours of California Department of Forestry and Fire Protection personnel time to suppress1992: 1981 criteria plus 1500 acres agricultural products, or destroys three residence or one commercial structure or does $300,000 damage1993: 1992 criteria but “three or more structures destroyed” replaces “destroys three residence or one commercial structure” and the 3,000 hours of California Department of Forestry personnel time to suppress is removed2006: 300 acres or larger and burned at least: 30 acres of timber, or 300 acres of brush, or 1,500 acres of woodland, or 1,500 acres of grass, or 1,500 acres of agricultural products, or 3 or more structures destroyed, or $300,000 or more dollar damage loss.2008: 300 acres and largerYear# of Missing Large and Damaging Redbook Fires197922198013198115198261983319842019855219861219875619882319898199091991219921619931719942219959199615199791998101999720004200152002162003520042200512006112007320084320093201022011020124201322014720151020162201711201862019220203202102022020230Total488Enumeration of fires in the Redbook that are missing from Fire Perimeter data. Three letter unit code follows fire name.1979-Sylvandale (HUU), Kiefer (AEU), Taylor(TUU), Parker#2(TCU), PGE#10, Crocker(SLU), Silver Spur (SLU), Parkhill (SLU), Tar Springs #2 (SLU), Langdon (SCU), Truelson (RRU), Bautista (RRU), Crocker (SLU), Spanish Ranch (SLU), Parkhill (SLU), Oak Springs(BDU), Ruddell (BDF), Santa Ana (BDU), Asst. #61 (MVU), Bernardo (MVU), Otay #20 1980– Lightning series (SKU), Lavida (RRU), Mission Creek (RRU), Horse (RRU), Providence (RRU), Almond (BDU), Dam (BDU), Jones (BDU), Sycamore (BDU), Lightning (MVU), Assist 73, 85, 138 (MVU)1981– Basalt (LNU), Lightning #25(LMU), Likely (MNF), USFS#5 (SNF), Round Valley (TUU), St. Elmo (KRN), Buchanan (TCU), Murietta (RRU), Goetz (RRU), Morongo #29 (RRU), Rancho (RRU), Euclid (BDU), Oat Mt. (LAC & VNC), Outside Origin #1 (MVU), Moreno (MVU)1982- Duzen (SRF), Rave (LMU), Sheep’s trail (KRN), Jury (KRN), Village (RRU), Yuma (BDF)1983- Lightning #4 (FKU), Kern Co. #13, #18 (KRN)1984-Bidwell (BTU), BLM D 284,337, PNF #115, Mill Creek (TGU), China hat (MMU), fey ranch, Kern Co #10, 25,26,27, Woodrow (KRN), Salt springs, Quartz (TCU), Bonanza (BEU), Pasquel (SBC), Orco asst. (ORC), Canel (local), Rattlesnake (BDF)1985- Hidden Valley, Magic (LNU), Bald Mt. (LNU), Iron Peak (MEU), Murrer (LMU), Rock Creek (BTU), USFS #29, 33, Bluenose, Amador, 8 mile (AEU), Backbone, Panoche, Los Gatos series, Panoche (FKU), Stan #7, Falls #2 (MMU), USFS #5 (TUU), Grizzley, Gann (TCU), Bumb, Piney Creek, HUNTER LIGGETT ASST#2, Pine, Lowes, Seco, Gorda-rat, Cherry (BEU), Las pilitas, Hwy 58 #2 (SLO), Lexington, Finley (SCU), Onions, Owens (BDU), Cabazon, Gavalin, Orco, Skinner, Shell, Pala (RRU), South Mt., Wheeler, Black Mt., Ferndale, (VNC), Archibald, Parsons, Pioneer (BDU), Decker, Gleason(LAC), Gopher, Roblar, Assist #38 (MVU)1986– Knopki (SRF), USFS #10 (NEU), Galvin (RRU), Powerline (RRU), Scout, Inscription (BDU), Intake (BDF), Assist #42 (MVU), Lightning series (FKU), Yosemite #1 (YNP), USFS Asst. (BEU), Dutch Kern #30 (KRN)1987- Peach (RRU), Ave 32 (TUU), Conover (RRU), Eagle #1 (LNU), State 767 aka Bull (RRU), Denny (TUU), Dog Bar (NEU), Crank (LMU), White Deer (FKU), Briceburg (LMU), Post (RRU), Antelope (RRU), Cougar-I (SKU), Pilitas (SLU) Freaner (SHU), Fouts Complex (LNU), Slides (TGU), French (BTU), Clark (PNF), Fay/Top (SQF), Under, Flume, Bear Wallow, Gulch, Bear-1, Trinity, Jessie, friendly, Cold, Tule, Strause, China/Chance, Bear, Backbone, Doe, (SHF) Travis Complex, Blake, Longwood (SRF), River-II, Jarrell, Stanislaus Complex 14k (STF), Big, Palmer, Indian (TNF) Branham (BLM), Paul, Snag (NPS), Sycamore, Trail, Stallion Spring, Middle (KRN), SLU-864 1988- Hwy 175 (LNU), Rumsey (LNU), Shell Creek (MEU), PG&E #19 (LNU), Fields (BTU), BLM 4516, 417 (LMU), Campbell (LNF), Burney (SHF), USFS #41 (SHF), Trinity (USFS #32), State #837 (RRU), State (RRU), State (350 acres), RRU), State #1807, Orange Co. Asst (RRU), State #1825 (RRU), State #2025, Spoor (BDU), State (MVU), Tonzi (AEU), Kern co #7,9 (KRN), Stent (TCU), 1989– Rock (Plumas), Feather (LMU), Olivas (BDU), State 1116 (RRU), Concorida (RRU), Prado (RRU), Black Mt. (MVU), Vail (CNF)1990– Shipman (HUU), Lightning 379 (LMU), Mud, Dye (TGU), State 914 (RRU), Shultz (Yorba) (BDU), Bingo Rincon #3 (MVU), Dehesa #2 (MVU), SLU 1626 (SLU)1991- Church (HUU), Kutras (SHF)1992– Lincoln, Fawn (NEU), Clover, fountain (SHU), state, state 891, state, state (RRU), Aberdeen (BDU), Wildcat, Rincon (MVU), Cleveland (AEU), Dry Creek (MMU), Arroyo Seco, Slick Rock (BEU), STF #135 (TCU)1993– Hoisington (HUU), PG&E #27 (with an undetermined cause, lol), Hall (TGU), state, assist, local (RRU), Stoddard, Opal Mt., Mill Creek (BDU), Otay #18, Assist/ Old coach (MVU), Eagle (CNF), Chevron USA, Sycamore (FKU), Guerrero, Duck1994– Schindel Escape (SHU), blank (PNF), lightning #58 (LMU), Bridge (NEU), Barkley (BTU), Lightning #66 (LMU), Local (RRU), Assist #22 & #79 (SLU), Branch (SLO), Piute (BDU), Assist/ Opal#2 (BDU), Local, State, State (RRU), Gilman fire 7/24 (RRU), Highway #74 (RRU), San Felipe, Assist #42, Scissors #2 (MVU), Assist/ Opal#2 (BDU), Complex (BDF), Spanish (SBC)1995-State 1983 acres, Lost Lake, State # 1030, State (1335 acres), State (5000 acres), Jenny, City (BDU), Marron #4, Asist #51 (SLO/VNC)1996- Modoc NF 707 (Ambrose), Borrego (MVU), Assist #16 (SLU), Deep Creek (BDU), Weber (BDU), State (Wesley) 500 acres (RRU), Weaver (MMU), Wasioja (SBC/LPF), Gale (FKU), FKU 15832 (FKU), State (Wesley) 500 acres, Cabazon (RRU), State Assist (aka Bee) (RRU), Borrego, Otay #269 (MVU), Slaughter house (MVU), Oak Flat (TUU)1997- Lightning #70 (LMU), Jackrabbit (RRU), Fernandez (TUU), Assist 84 (Military AFV) (SLU), Metz #4 (BEU), Copperhead (BEU), Millstream, Correia (MMU), Fernandez (TUU)1998- Worden, Swift, PG&E 39 (MMU), Chariot, Featherstone, Wildcat, Emery, Deluz (MVU), Cajalco Santiago (RRU)1999- Musty #2,3 (BTU), Border # 95 (MVU), Andrews,
Complete accounting of all incorporated cities, including the boundary and name of each individual city. From 2009 to 2022 CAL FIRE maintained this dataset by processing and digitally capturing annexations sent by the state Board of Equalization (BOE). In 2022 CAL FIRE began sourcing data directly from BOE, in order to allow the authoritative department provide data directly. This data is then adjusted so it resembles the previous formats.Processing includes:• Clipping the dataset to traditional state boundaries• Erasing areas that span the Bay Area (derived from calw221.gdb)• Querying for incorporated areas only• Dissolving each incorporated polygon into a single feature• Calculating the COUNTY field to remove the word 'County'Version 24_1 is based on BOE_CityCounty_20240315, and includes all annexations present in BOE_CityAnx2023_20240315. Note: The Board of Equalization represents incorporated city boundaries as extending significantly into waterways, including beyond coastal boundaries. To see the representation in its original form please reference the datasets listed above.Note: The Board of Equalization represents incorporated city boundaries is extending significantly into waterways, including beyond coastal boundaries. To see the representation in its original form please reference the datasets listed above.
NOTICE TO PROVISIONAL 2023 LAND USE DATA USERS: Please note that on December 6, 2024 the Department of Water Resources (DWR) published the Provisional 2023 Statewide Crop Mapping dataset. The link for the shapefile format of the data mistakenly linked to the wrong dataset. The link was updated with the appropriate data on January 27, 2025. If you downloaded the Provisional 2023 Statewide Crop Mapping dataset in shapefile format between December 6, 2024 and January 27, we encourage you to redownload the data. The Map Service and Geodatabase formats were correct as posted on December 06, 2024.
Thank you for your interest in DWR land use datasets.
The California Department of Water Resources (DWR) has been collecting land use data throughout the state and using it to develop agricultural water use estimates for statewide and regional planning purposes, including water use projections, water use efficiency evaluations, groundwater model developments, climate change mitigation and adaptations, and water transfers. These data are essential for regional analysis and decision making, which has become increasingly important as DWR and other state agencies seek to address resource management issues, regulatory compliances, environmental impacts, ecosystem services, urban and economic development, and other issues. Increased availability of digital satellite imagery, aerial photography, and new analytical tools make remote sensing-based land use surveys possible at a field scale that is comparable to that of DWR’s historical on the ground field surveys. Current technologies allow accurate large-scale crop and land use identifications to be performed at desired time increments and make possible more frequent and comprehensive statewide land use information. Responding to this need, DWR sought expertise and support for identifying crop types and other land uses and quantifying crop acreages statewide using remotely sensed imagery and associated analytical techniques. Currently, Statewide Crop Maps are available for the Water Years 2014, 2016, 2018- 2022 and PROVISIONALLY for 2023.
Historic County Land Use Surveys spanning 1986 - 2015 may also be accessed using the CADWR Land Use Data Viewer: https://gis.water.ca.gov/app/CADWRLandUseViewer.
For Regional Land Use Surveys follow: https://data.cnra.ca.gov/dataset/region-land-use-surveys.
For County Land Use Surveys follow: https://data.cnra.ca.gov/dataset/county-land-use-surveys.
For a collection of ArcGIS Web Applications that provide information on the DWR Land Use Program and our data products in various formats, visit the DWR Land Use Gallery: https://storymaps.arcgis.com/collections/dd14ceff7d754e85ab9c7ec84fb8790a.
Recommended citation for DWR land use data: California Department of Water Resources. (Water Year for the data). Statewide Crop Mapping—California Natural Resources Agency Open Data. Retrieved “Month Day, YEAR,” from https://data.cnra.ca.gov/dataset/statewide-crop-mapping.
This dataset includes one file for each of the 51 counties that were collected, as well as a CA_Merged file with the parcels merged into a single file.Note – this data does not include attributes beyond the parcel ID number (PARNO) – that will be provided when available, most likely by the state of California.DownloadA 1.6 GB zipped file geodatabase is available for download - click here.DescriptionA geodatabase with parcel boundaries for 51 (out of 58) counties in the State of California. The original target was to collect data for the close of the 2013 fiscal year. As the collection progressed, it became clear that holding to that time standard was not practical. Out of expediency, the date requirement was relaxed, and the currently available dataset was collected for a majority of the counties. Most of these were distributed with minimal metadata.The table “ParcelInfo” includes the data that the data came into our possession, and our best estimate of the last time the parcel dataset was updated by the original source. Data sets listed as “Downloaded from” were downloaded from a publicly accessible web or FTP site from the county. Other data sets were provided directly to us by the county, though many of them may also be available for direct download. Â These data have been reprojected to California Albers NAD84, but have not been checked for topology, or aligned to county boundaries in any way. Tulare County’s dataset arrived with an undefined projection and was identified as being California State Plane NAD83 (US Feet) and was assigned by ICE as that projection prior to reprojection. Kings County’s dataset was delivered as individual shapefiles for each of the 50 assessor’s books maintained at the county. These were merged to a single feature class prior to importing to the database.The attribute tables were standardized and truncated to include only a PARNO (APN). The format of these fields has been left identical to the original dataset. The Data Interoperablity Extension ETL tool used in this process is included in the zip file. Where provided by the original data sources, metadata for the original data has been maintained. Please note that the attribute table structure changes were made at ICE, UC Davis, not at the original data sources.Parcel Source InformationCountyDateCollecDateCurrenNotesAlameda4/8/20142/13/2014Download from Alamenda CountyAlpine4/22/20141/26/2012Alpine County PlanningAmador5/21/20145/14/2014Amador County Transportation CommissionButte2/24/20141/6/2014Butte County Association of GovernmentsCalaveras5/13/2014Download from Calaveras County, exact date unknown, labelled 2013Contra Costa4/4/20144/4/2014Contra Costa Assessor’s OfficeDel Norte5/13/20145/8/2014Download from Del Norte CountyEl Dorado4/4/20144/3/2014El Dorado County AssessorFresno4/4/20144/4/2014Fresno County AssessorGlenn4/4/201410/13/2013Glenn County Public WorksHumboldt6/3/20144/25/2014Humbodt County AssessorImperial8/4/20147/18/2014Imperial County AssessorKern3/26/20143/16/2014Kern County AssessorKings4/21/20144/14/2014Kings CountyLake7/15/20147/19/2013Lake CountyLassen7/24/20147/24/2014Lassen CountyLos Angeles10/22/201410/9/2014Los Angeles CountyMadera7/28/2014Madera County, Date Current unclear likely 7/2014Marin5/13/20145/1/2014Marin County AssessorMendocino4/21/20143/27/2014Mendocino CountyMerced7/15/20141/16/2014Merced CountyMono4/7/20144/7/2014Mono CountyMonterey5/13/201410/31/2013Download from Monterey CountyNapa4/22/20144/22/2014Napa CountyNevada10/29/201410/26/2014Download from Nevada CountyOrange3/18/20143/18/2014Download from Orange CountyPlacer7/2/20147/2/2014Placer CountyRiverside3/17/20141/6/2014Download from Riverside CountySacramento4/2/20143/12/2014Sacramento CountySan Benito5/12/20144/30/2014San Benito CountySan Bernardino2/12/20142/12/2014Download from San Bernardino CountySan Diego4/18/20144/18/2014San Diego CountySan Francisco5/23/20145/23/2014Download from San Francisco CountySan Joaquin10/13/20147/1/2013San Joaquin County Fiscal year close dataSan Mateo2/12/20142/12/2014San Mateo CountySanta Barbara4/22/20149/17/2013Santa Barbara CountySanta Clara9/5/20143/24/2014Santa Clara County, Required a PRA requestSanta Cruz2/13/201411/13/2014Download from Santa Cruz CountyShasta4/23/20141/6/2014Download from Shasta CountySierra7/15/20141/20/2014Sierra CountySolano4/24/2014Download from Solano Couty, Boundaries appear to be from 2013Sonoma5/19/20144/3/2014Download from Sonoma CountyStanislaus4/23/20141/22/2014Download from Stanislaus CountySutter11/5/201410/14/2014Download from Sutter CountyTehama1/16/201512/9/2014Tehama CountyTrinity12/8/20141/20/2010Download from Trinity County, Note age of data 2010Tulare7/1/20146/24/2014Tulare CountyTuolumne5/13/201410/9/2013Download from Tuolumne CountyVentura11/4/20146/18/2014Download from Ventura CountyYolo11/4/20149/10/2014Download from Yolo CountyYuba11/12/201412/17/2013Download from Yuba County
In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Offshore of Ventura map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Offshore of Ventura map area data layers. Data layers are symbolized as shown on the associated map sheets.
https://www.energy.ca.gov/conditions-of-usehttps://www.energy.ca.gov/conditions-of-use
California State Senate district boundaries intended for the NEVI map.Data downloaded in October 2024 from https://gis.data.ca.gov/maps/b31d93f08c074753b89f8cbb0b8beed9/about.
An accurate depiction of the spatial distribution of habitat types within California is required for a variety of legislatively-mandated government functions. The California Department of Forestry and Fire Protection's CALFIRE Fire and Resource Assessment Program (FRAP), in cooperation with California Department of Fish and Wildlife VegCamp program and extensive use of USDA Forest Service Region 5 Remote Sensing Laboratory (RSL) data, has compiled the "best available" land cover data available for California into a single comprehensive statewide data set. The data span a period from approximately 1990+. Typically the most current, detailed and consistent data were collected for various regions of the state. Decision rules were developed that controlled which layers were given priority in areas of overlap. Cross-walks were used to compile the various sources into the common classification scheme, the California Wildlife Habitat Relationships (CWHR) system. This service depicts the WHRTYPE description from the fveg dataset (Wildlife Habitat Relationship classes).The full dataset can be downloaded in raster format here: GIS Mapping and Data Analytics | CAL FIREThe service represents the latest release of the data, and is updated when a new version is released. Currently it represents fveg15_1.
https://www.energy.ca.gov/conditions-of-usehttps://www.energy.ca.gov/conditions-of-use
Solar Footprints in CaliforniaThis GIS dataset consists of polygons that represent the footprints of solar powered electric generation facilities and related infrastructure in California called Solar Footprints. The location of solar footprints was identified using other existing solar footprint datasets from various sources along with imagery interpretation. CEC staff reviewed footprints identified with imagery and digitized polygons to match the visual extent of each facility. Previous datasets of existing solar footprints used to locate solar facilities include: GIS Layers: (1) California Solar Footprints, (2) UC Berkeley Solar Points, (3) Kruitwagen et al. 2021, (4) BLM Renewable Project Facilities, (5) Quarterly Fuel and Energy Report (QFER)Imagery Datasets: Esri World Imagery, USGS National Agriculture Imagery Program (NAIP), 2020 SENTINEL 2 Satellite Imagery, 2023Solar facilities with large footprints such as parking lot solar, large rooftop solar, and ground solar were included in the solar footprint dataset. Small scale solar (approximately less than 0.5 acre) and residential footprints were not included. No other data was used in the production of these shapes. Definitions for the solar facilities identified via imagery are subjective and described as follows: Rooftop Solar: Solar arrays located on rooftops of large buildings. Parking lot Solar: Solar panels on parking lots roughly larger than 1 acre, or clusters of solar panels in adjacent parking lots. Ground Solar: Solar panels located on ground roughly larger than 1 acre, or large clusters of smaller scale footprints. Once all footprints identified by the above criteria were digitized for all California counties, the features were visually classified into ground, parking and rooftop categories. The features were also classified into rural and urban types using the 42 U.S. Code § 1490 definition for rural. In addition, the distance to the closest substation and the percentile category of this distance (e.g. 0-25th percentile, 25th-50th percentile) was also calculated. The coverage provided by this data set should not be assumed to be a complete accounting of solar footprints in California. Rather, this dataset represents an attempt to improve upon existing solar feature datasets and to update the inventory of "large" solar footprints via imagery, especially in recent years since previous datasets were published. This procedure produced a total solar project footprint of 150,250 acres. Attempts to classify these footprints and isolate the large utility-scale projects from the smaller rooftop solar projects identified in the data set is difficult. The data was gathered based on imagery, and project information that could link multiple adjacent solar footprints under one larger project is not known. However, partitioning all solar footprints that are at least partly outside of the techno-economic exclusions and greater than 7 acres yields a total footprint size of 133,493 acres. These can be approximated as utility-scale footprints. Metadata: (1) CBI Solar FootprintsAbstract: Conservation Biology Institute (CBI) created this dataset of solar footprints in California after it was found that no such dataset was publicly available at the time (Dec 2015-Jan 2016). This dataset is used to help identify where current ground based, mostly utility scale, solar facilities are being constructed and will be used in a larger landscape intactness model to help guide future development of renewable energy projects. The process of digitizing these footprints first began by utilizing an excel file from the California Energy Commission with lat/long coordinates of some of the older and bigger locations. After projecting those points and locating the facilities utilizing NAIP 2014 imagery, the developed area around each facility was digitized. While interpreting imagery, there were some instances where a fenced perimeter was clearly seen and was slightly larger than the actual footprint. For those cases the footprint followed the fenced perimeter since it limits wildlife movement through the area. In other instances, it was clear that the top soil had been scraped of any vegetation, even outside of the primary facility footprint. These footprints included the areas that were scraped within the fencing since, especially in desert systems, it has been near permanently altered. Other sources that guided the search for solar facilities included the Energy Justice Map, developed by the Energy Justice Network which can be found here:https://www.energyjustice.net/map/searchobject.php?gsMapsize=large&giCurrentpageiFacilityid;=1&gsTable;=facility&gsSearchtype;=advancedThe Solar Energy Industries Association’s “Project Location Map” which can be found here: https://www.seia.org/map/majorprojectsmap.phpalso assisted in locating newer facilities along with the "Power Plants" shapefile, updated in December 16th, 2015, downloaded from the U.S. Energy Information Administration located here:https://www.eia.gov/maps/layer_info-m.cfmThere were some facilities that were stumbled upon while searching for others, most of these are smaller scale sites located near farm infrastructure. Other sites were located by contacting counties that had solar developments within the county. Still, others were located by sleuthing around for proposals and company websites that had images of the completed facility. These helped to locate the most recently developed sites and these sites were digitized based on landmarks such as ditches, trees, roads and other permanent structures.Metadata: (2) UC Berkeley Solar PointsUC Berkeley report containing point location for energy facilities across the United States.2022_utility-scale_solar_data_update.xlsm (live.com)Metadata: (3) Kruitwagen et al. 2021Abstract: Photovoltaic (PV) solar energy generating capacity has grown by 41 per cent per year since 2009. Energy system projections that mitigate climate change and aid universal energy access show a nearly ten-fold increase in PV solar energy generating capacity by 2040. Geospatial data describing the energy system are required to manage generation intermittency, mitigate climate change risks, and identify trade-offs with biodiversity, conservation and land protection priorities caused by the land-use and land-cover change necessary for PV deployment. Currently available inventories of solar generating capacity cannot fully address these needs. Here we provide a global inventory of commercial-, industrial- and utility-scale PV installations (that is, PV generating stations in excess of 10 kilowatts nameplate capacity) by using a longitudinal corpus of remote sensing imagery, machine learning and a large cloud computation infrastructure. We locate and verify 68,661 facilities, an increase of 432 per cent (in number of facilities) on previously available asset-level data. With the help of a hand-labelled test set, we estimate global installed generating capacity to be 423 gigawatts (−75/+77 gigawatts) at the end of 2018. Enrichment of our dataset with estimates of facility installation date, historic land-cover classification and proximity to vulnerable areas allows us to show that most of the PV solar energy facilities are sited on cropland, followed by arid lands and grassland. Our inventory could aid PV delivery aligned with the Sustainable Development GoalsEnergy Resource Land Use Planning - Kruitwagen_etal_Nature.pdf - All Documents (sharepoint.com)Metadata: (4) BLM Renewable ProjectTo identify renewable energy approved and pending lease areas on BLM administered lands. To provide information about solar and wind energy applications and completed projects within the State of California for analysis and display internally and externally. This feature class denotes "verified" renewable energy projects at the California State BLM Office, displayed in GIS. The term "Verified" refers to the GIS data being constructed at the California State Office, using the actual application/maps with legal descriptions obtained from the renewable energy company. https://www.blm.gov/wo/st/en/prog/energy/renewable_energy https://www.blm.gov/style/medialib/blm/wo/MINERALS_REALTY_AND_RESOURCE_PROTECTION_/energy/solar_and_wind.Par.70101.File.dat/Public%20Webinar%20Dec%203%202014%20-%20Solar%20and%20Wind%20Regulations.pdfBLM CA Renewable Energy Projects | BLM GBP Hub (arcgis.com)Metadata: (5) Quarterly Fuel and Energy Report (QFER) California Power Plants - Overview (arcgis.com)
In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Offshore of Point Conception map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Offshore of Point Conception map area data layers. Data layers are symbolized as shown on the associated map sheets.
This feature service is derived from the Esri "United States Zip Code Boundaries" layer, queried to only CA data.For the original data see: https://esri.maps.arcgis.com/home/item.html?id=5f31109b46d541da86119bd4cf213848Published by the California Department of Technology Geographic Information Services Team.The GIS Team can be reached at ODSdataservices@state.ca.gov.U.S. ZIP Code Boundaries represents five-digit ZIP Code areas used by the U.S. Postal Service to deliver mail more effectively. The first digit of a five-digit ZIP Code divides the United States into 10 large groups of states (or equivalent areas) numbered from 0 in the Northeast to 9 in the far West. Within these areas, each state is divided into an average of 10 smaller geographical areas, identified by the second and third digits. These digits, in conjunction with the first digit, represent a Sectional Center Facility (SCF) or a mail processing facility area. The fourth and fifth digits identify a post office, station, branch or local delivery area.As of the time this layer was published, in January 2025, Esri's boundaries are sourced from TomTom (June 2024) and the 2023 population estimates are from Esri Demographics. Esri updates its layer annually and those changes will immediately be reflected in this layer. Note that, because this layer passes through Esri's data, if you want to know the true date of the underlying data, click through to Esri's original source data and look at their metadata for more information on updates.Cautions about using Zip Code boundary dataZip code boundaries have three characteristics you should be aware of before using them:Zip code boundaries change, in ways small and large - these are not a stable analysis unit. Data you received keyed to zip codes may have used an earlier and very different boundary for your zip codes of interest.Historically, the United States Postal Service has not published zip code boundaries, and instead, boundary datasets are compiled by third party vendors from address data. That means that the boundary data are not authoritative, and any data you have keyed to zip codes may use a different, vendor-specific method for generating boundaries from the data here.Zip codes are designed to optimize mail delivery, not social, environmental, or demographic characteristics. Analysis using zip codes is subject to create issues with the Modifiable Areal Unit Problem that will bias any results because your units of analysis aren't designed for the data being studied.As of early 2025, USPS appears to be in the process of releasing boundaries, which will at least provide an authoritative source, but because of the other factors above, we do not recommend these boundaries for many use cases. If you are using these for anything other than mailing purposes, we recommend reconsideration. We provide the boundaries as a convenience, knowing people are looking for them, in order to ensure that up-to-date boundaries are available.
In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Offshore of Salt Point map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Offshore of Salt Point map area data layers. Data layers are symbolized as shown on the associated map sheets.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
California State Lands Commission Offshore Oil Leases in the vicinity of Santa Barbara, Ventura, and Orange County.The polygons in this layer show the position of Offshore Oil Leases as documented by former State Lands Senior Boundary Determination Officer, Cris N. Perez and as reviewed and updated by GIS and Boundary staff.Background: This layer represents active offshore oil and gas agreements in California waters, which are what remain of the more than 60 originally issued. These leases were issued prior to the catastrophic 1969 oil spill from Platform A in federal waters off Santa Barbara County, and some predate the formation of the Commission. Between 2010 and 2014, the bulk of the approximately $300 million generated annually for the state's General Fund from oil and gas agreements was from these offshore leases.In 1921, the Legislature created the first tidelands oil and gas leasing program. Between 1921 and 1929, approximately 100 permits and leases were issued and over 850 wells were drilled in Santa Barbara and Ventura Counties. In 1929, the Legislature prohibited any new leases or permits. In 1933, however, the prohibition was partially lifted in response to an alleged theft of tidelands oil in Huntington Beach. It wasn't until 1938, and again in 1955, that the Legislature would allow new offshore oil and gas leasing. Except for limited circumstances, the Legislature has consistently placed limits on the areas that the Commission may offer for lease and in 1994, placed the entirety of California's coast off-limits to new oil and gas leases. Layer Creation Process:In 1997 Cris N. Perez, Senior Boundary Determination Officer of the Southern California Section of the State Lands Division, prepared a report on the Commission’s Offshore Oil Leases to:A. Show the position of Offshore Oil Leases. B. Produce a hard copy of 1927 NAD Coordinates for each lease. C. Discuss any problems evident after plotting the leases.Below are some of the details Cris included in the report:I have plotted the leases that were supplied to me by the Long Beach Office and computed 1927 NAD California Coordinates for each one. Where the Mean High Tide Line (MHTL) was called for and not described in the deed, I have plotted the California State Lands Commission CB Map Coordinates, from the actual field surveys of the Mean High Water Line and referenced them wherever used. Where the MHTL was called for and not described in the deed and no California State Lands Coordinates were available, I digitized the maps entitled, “Map of the Offshore Ownership Boundary of the State of California Drawn pursuant to the Supplemental Decree of the U.S. Supreme Court in the U.S. V. California, 382 U.S. 448 (1966), Scale 1:10000 Sheets 1-161.” The shore line depicted on these maps is the Mean Lower Low Water (MLLW) Line as shown on the Hydrographic or Topographic Sheets for the coastline. If a better fit is needed, a field survey to position this line will need to be done.The coordinates listed in Cris’ report were retrieved through Optical Character Recognition (OCR) and used to produce GIS polygons using Esri ArcGIS software. Coordinates were checked after the OCR process when producing the polygons in ArcMap to ensure accuracy. Original Coordinate systems (NAD 1927 California State Plane Zones 5 and 6) were used initially, with each zone being reprojected to NAD 83 Teale Albers Meters and merged after the review process.While Cris’ expertise and documentation were relied upon to produce this GIS Layer, certain polygons were reviewed further for any potential updates since Cris’ document and for any unusual geometry. Boundary Determination Officers addressed these issues and plotted leases currently listed as active, but not originally in Cris’ report. On December 24, 2014, the SLA boundary offshore of California was fixed (permanently immobilized) by a decree issued by the U.S. Supreme Court United States v. California, 135 S. Ct. 563 (2014). Offshore leases were clipped so as not to exceed the limits of this fixed boundary. Lease Notes:PRC 1482The “lease area” for this lease is based on the Compensatory Royalty Agreement dated 1-21-1955 as found on the CSLC Insider. The document spells out the distinction between “leased lands” and “state lands”. The leased lands are between two private companies and the agreement only makes a claim to the State’s interest as those lands as identified and surveyed per the map Tract 893, Bk 27 Pg 24. The map shows the State’s interest as being confined to the meanders of three sloughs, one of which is severed from the bay (Anaheim) by a Tideland sale. It should be noted that the actual sovereign tide and or submerged lands for this area is all those historic tide and submerged lands minus and valid tide land sales patents. The three parcels identified were also compared to what the Orange County GIS land records system has for their parcels. Shapefiles were downloaded from that site as well as two centerline monuments for 2 roads covered by the Tract 893. It corresponded well, so their GIS linework was held and clipped or extended to make a parcel.MJF Boundary Determination Officer 12/19/16PRC 3455The “lease area” for this lease is based on the Tract No. 2 Agreement, Long Beach Unit, Wilmington Oil Field, CA dated 4/01/1965 and found on the CSLC insider (also recorded March 12, 1965 in Book M 1799, Page 801).Unit Operating Agreement, Long Beach Unit recorded March 12, 1965 in Book M 1799 page 599.“City’s Portion of the Offshore Area” shall mean the undeveloped portion of the Long Beach tidelands as defined in Section 1(f) of Chapter 138, and includes Tract No. 1”“State’s Portion of the Offshore Area” shall mean that portion of the Alamitos Beach Park Lands, as defined in Chapter 138, included within the Unit Area and includes Tract No. 2.”“Alamitos Beach Park Lands” means those tidelands and submerged lands, whether filled or unfilled, described in that certain Judgment After Remittitur in The People of the State of California v. City of Long Beach, Case No. 683824 in the Superior Court of the State of California for the County of Los Angeles, dated May 8, 1962, and entered on May 15, 1962 in Judgment Book 4481, at Page 76, of the Official Records of the above entitled court”*The description for Tract 2 has an EXCEPTING (statement) “therefrom that portion lying Southerly of the Southerly line of the Boundary of Subsidence Area, as shown on Long Beach Harbor Department {LBHD} Drawing No. D-98. This map could not be found in records nor via a PRA request to the LBHD directly. Some maps were located that show the extents of subsidence in this area being approximately 700 feet waterward of the MHTL as determined by SCC 683824. Although the “EXCEPTING” statement appears to exclude most of what would seem like the offshore area (out to 3 nautical miles from the MHTL which is different than the actual CA offshore boundary measured from MLLW) the 1964, ch 138 grant (pg25) seems to reference the lands lying seaward of that MHTL and ”westerly of the easterly boundary of the undeveloped portion of the Long Beach tidelands, the latter of which is the same boundary (NW) of tract 2. This appears to then indicate that the “EXCEPTING” area is not part of the Lands Granted to City of Long Beach and appears to indicate that this portion might be then the “State’s Portion of the Offshore Area” as referenced in the Grant and the Unit Operating Agreement. Section “f” in the CSLC insider document (pg 9) defines the Contract Lands: means Tract No. 2 as described in Exhibit “A” to the Unit Agreement, and as shown on Exhibit “B” to the Unit Agreement, together with all other lands within the State’s Portion of the Offshore Area.Linework has been plotted in accordance with the methods used to produce this layer, with record lines rotated to those as listed in the descriptions. The main boundaries being the MHTL(north/northeast) that appears to be fixed for most of the area (projected to the city boundary on the east/southeast); 3 nautical miles from said MHTL on the south/southwest; and the prolongation of the NWly line of Block 50 of Alamitos Bay Tract.MJF Boundary Determination Officer 12-27-16PRC 4736The “lease area” for this lease is based on the Oil and Gas Lease and Agreement as found on the CSLC insider and recorded August 17, 1973 in BK 10855 PG 432 Official Records, Orange County. The State’s Mineral Interests are confined to Parcels “B-1” and “B-2” and are referred to as “State Mineral Lands” comprising 70.00 Acres. The lessee each has a right to certain uses including but not limited to usage of utility corridors, 110 foot radius parcels surrounding well-sites and roads. The State also has access to those same roads per this agreement/lease. Those uses are allowed in what are termed “State Lands”-Parcel E and “Leased Lands” which are defined as the “South Bolsa Lease Area”-Parcel C (2 parcels) and “North Bolsa Lease Area”-Parcel D. The “State Lands”-Parcel E are actually 3 parcels, 2 of which are within road right-of-ways. MJF Boundary Determination Officer 12-28-16
In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Point Sur to Point Arguello map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Point Sur to Point Arguello map area data layers. Data layers are symbolized as shown on the associated map sheets.
The California Department of Conservation, Division of Oil, Gas and Geothermal Resources publishes a GIS feature class of well locations and its associated records across the state for use by the public. Data provided are projected in Teal Albers California North American Datum of 1983 for shapefiles and WGS84 Web Mercator projection for web feature service. Well Attributes include API Number, Operator Well Number, Well Status, Well Type, Operator Code, Operator Name, Lease Name, Field Name, Area Name, District, County, Section, Township, Range, Base Meridian, Latitude, Longitude, Elevation, Total Depth, Redrill Footage, Redrill Cancel Flag, Location Description, Comments, GIS Source, Dry Hole, Confidential Well, Directionally Drilled, Hydraulically Fractured, BLM Well, EPA Well, Spud Date, Completion Date, Abandoned Date.Well location values were collected using a submeter-accurate gps receiver (i.e., Trimble GeoXT). Some of the data provided herein are also displayed in the Division's WellFinder application (http://maps.conservation.ca.gov/doggr/index.html).
© California Department of Conservation, Division of Oil, Gas and Geothermal Resources This layer is sourced from spatialservices.conservation.ca.gov.
Statewide Property Inventory started in 1989 per legislation 11011.15, to begin a pro-active approach to managing the State’s Real Property assets in a computerized format. Having the information in an electronic format makes it available to top level decision-makers considering options for the best use of these assets. The Statewide Property Inventory is mandated to capture detailed information on the following: land owned and leased by the state, structures owned and leased by the state, property the state leases to the private sector. Statewide Property Inventory was established in 1988 by legislative mandate. Leases were added in 2004 by executive order. Data is updated annually by the agencies. Point of Contact: Any questions should be referred to the SPIWeb@dgs.ca.gov
The Statewide Property Inventory (SPI) is a detailed inventory of the State's real property assets including land, structures/improvements, leased space and State-owned space leased to others. This website provides summary-level information from the SPI.Included in the information provided are properties which have been declared surplus by the California State Legislature. Some of these properties are currently for sale by the Department of General Services.The Department of General Services - Real Estate Services Division makes every effort to ensure the accuracy and completeness of the information presented, but disclaims liability for omissions or errors in the contents of this data set.Original AGOL Item owned by DGS is located here.
This service hosts a raster image generated from raw DEM (Digital Elevation Model) data gathered for the Shuttle Radar Topography Mission (SRTM). The mission was co-sponsored by the National Aeronautics and Space Administration (NASA) and National Geospatial-Intelligence Agency (NGA). NASA's Jet Propulsion Laboratory (JPL) performed preliminary processing of SRTM data and forwarded it to the NGA for further processing and distribution. The raster image hosted by this service was generated using ArcGIS tools to convert DEM data for the state of California into a raster image. The results were reprojected into World Mercator (WKID: 54004) for display purposes. Pixel size is approximately 90 meters and vertical units are defined in meters. ESRI reserves the right to change or remove this service at any time and without notice. Copyright: Copyright:© 2010 ESRI
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Notes: As of June 2020 this dataset has been static for several years. Recent versions of NHD High Res may be more detailed than this dataset for some areas, while this dataset may still be more detailed than NHD High Res in other areas. This dataset is considered authoritative as used by CDFW for particular tracking purposes but may not be current or comprehensive for all streams in the state.National Hydrography Dataset (NHD) high resolution NHDFlowline features for California were originally dissolved on common GNIS_ID or StreamLevel* attributes and routed from mouth to headwater in meters. The results are measured polyline features representing entire streams. Routes on these streams are measured upstream, i.e., the measure at the mouth of a stream is zero and at the upstream end the measure matches the total length of the stream feature. Using GIS tools, a user of this dataset can retrieve the distance in meters upstream from the mouth at any point along a stream feature.** CA_Streams_v3 Update Notes: This version includes over 200 stream modifications and additions resulting from requests for updating from CDFW staff and others***. New locator fields from the USGS Watershed Boundary Dataset (WBD) have been added for v3 to enhance user's ability to search for or extract subsets of California Streams by hydrologic area. *See the Source Citation section of this metadata for further information on NHD, WBD, NHDFlowline, GNIS_ID and StreamLevel. **See the Data Quality section of this metadata for further explanation of stream feature development. ***Some current NHD data has not yet been included in CA_Streams. The effort to synchronize CA_Streams with NHD is ongoing.
This dataset contains shapefile boundaries for CA State, counties and places from the US Census Bureau's 2023 MAF/TIGER database. Current geography in the 2023 TIGER/Line Shapefiles generally reflects the boundaries of governmental units in effect as of January 1, 2023.