The United States has an average elevation of roughly 2,500 feet (763m) above sea level, however there is a stark contrast in elevations across the country. Highest states Colorado is the highest state in the United States, with an average elevation of 6,800 feet (2,074m) above sea level. The 10 states with the highest average elevation are all in the western region of the country, as this is, by far, the most mountainous region in the country. The largest mountain ranges in the contiguous western states are the Rocky Mountains, Sierra Nevada, and Cascade Range, while the Appalachian Mountains is the longest range in the east - however, the highest point in the U.S. is Denali (Mount McKinley), found in Alaska. Lowest states At just 60 feet above sea level, Delaware is the state with the lowest elevation. Delaware is the second smallest state, behind Rhode Island, and is located on the east coast. Larger states with relatively low elevations are found in the southern region of the country - both Florida and Louisiana have an average elevation of just 100 feet (31m) above sea level, and large sections of these states are extremely vulnerable to flooding and rising sea levels, as well as intermittent tropical storms.
NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the National Tsunami Hazard Mitigation Program's (NTHMP) efforts to improve community preparedness and hazard mitigation. These integrated bathymetric-topographic DEMs are used to support tsunami and coastal inundation mapping. Bathymetric, topographic, and shoreline data used in DEM compilation are obtained from various sources, including NGDC, the U.S. National Ocean Service (NOS), the U.S. Geological Survey (USGS), the U.S. Army Corps of Engineers (USACE), the Federal Emergency Management Agency (FEMA), and other federal, state, and local government agencies, academic institutions, and private companies. DEMs are referenced to various vertical and horizontal datums depending on the specific modeling requirements of each State. For specific datum information on each DEM, refer to the appropriate DEM documentation. Cell sizes also vary depending on the specification required by modelers in each State, but typically range from 8/15 arc-second (~16 meters) to 8 arc-seconds (~240 meters).The DEM Global Mosaic is an image service providing access to bathymetric/topographic digital elevation models stewarded at NOAA's National Centers for Environmental Information (NCEI), along with the global GEBCO_2014 grid: http://www.gebco.net/data_and_products/gridded_bathymetry_data. NCEI builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. This service is a general-purpose global, seamless bathymetry/topography mosaic. It combines DEMs from a variety of near sea-level vertical datums, such as mean high water (MHW), mean sea level (MSL), and North American Vertical Datum of 1988 (NAVD88). Elevation values have been rounded to the nearest meter, with DEM cell sizes going down to 1 arc-second. Higher-resolution DEMs, with greater elevation precision, are available in the companion NAVD88: http://noaa.maps.arcgis.com/home/item.html?id=e9ba2e7afb7d46cd878b34aa3bfce042 and MHW: http://noaa.maps.arcgis.com/home/item.html?id=3bc7611c1d904a5eaf90ecbec88fa799 mosaics. By default, the DEMs are drawn in order of cell size, with higher-resolution grids displayed on top of lower-resolution grids. If overlapping DEMs have the same resolution, the newer one is shown. Please see NCEI's corresponding DEM Footprints map service: http://noaa.maps.arcgis.com/home/item.html?id=d41f39c8a6684c54b62c8f1ab731d5ad for polygon footprints and more information about the individual DEMs used to create this composite view. In this visualization, the elevations/depths are displayed using this color ramp: http://gis.ngdc.noaa.gov/viewers/images/dem_color_scale.png.A map service showing the location and coverage of land and seafloor digital elevation models (DEMs) available from NOAA's National Centers for Environmental Information (NCEI). NCEI builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. Layers available in the map service: Layers 1-4: DEMs by Category (includes various DEMs, both hosted at NCEI, and elsewhere on the web); Layers 6-11: NCEI DEM Projects (DEMs hosted at NCEI, color-coded by project); Layer 12: All NCEI Bathymetry DEMs (All bathymetry or bathy-topo DEMs hosted at NCEI).
At 282 feet below sea level, Death Valley in the Mojave Desert, California is the lowest point of elevation in the United States (and North America). Coincidentally, Death Valley is less than 85 miles from Mount Whitney, the highest point of elevation in the mainland United States. Death Valley is one of the hottest places on earth, and in 1913 it was the location of the highest naturally occurring temperature ever recorded on Earth (although some meteorologists doubt its legitimacy). New Orleans Louisiana is the only other state where the lowest point of elevation was below sea level. This is in the city of New Orleans, on the Mississippi River Delta. Over half of the city (up to two-thirds) is located below sea level, and recent studies suggest that the city is sinking further - man-made efforts to prevent water damage or flooding are cited as one reason for the city's continued subsidence, as they prevent new sediment from naturally reinforcing the ground upon which the city is built. These factors were one reason why New Orleans was so severely impacted by Hurricane Katrina in 2005 - the hurricane itself was one of the deadliest in history, and it destroyed many of the levee systems in place to prevent flooding, and the elevation exacerbated the damage caused. Highest low points The lowest point in five states is over 1,000 feet above sea level. Colorado's lowest point, at 3,315 feet, is still higher than the highest point in 22 states or territories. For all states whose lowest points are found above sea level, these points are located in rivers, streams, or bodies of water.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Urban Population Living in Areas Where Elevation is Below 5 meters: % of Total Population data was reported at 2.264 % in 2010. This records an increase from the previous number of 2.246 % for 2000. United States US: Urban Population Living in Areas Where Elevation is Below 5 meters: % of Total Population data is updated yearly, averaging 2.264 % from Dec 1990 (Median) to 2010, with 3 observations. The data reached an all-time high of 2.329 % in 1990 and a record low of 2.246 % in 2000. United States US: Urban Population Living in Areas Where Elevation is Below 5 meters: % of Total Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Land Use, Protected Areas and National Wealth. Urban population below 5m is the percentage of the total population, living in areas where the elevation is 5 meters or less.; ; Center for International Earth Science Information Network (CIESIN)/Columbia University. 2013. Urban-Rural Population and Land Area Estimates Version 2. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). http://sedac.ciesin.columbia.edu/data/set/lecz-urban-rural-population-land-area-estimates-v2.; Weighted Average;
IntroductionClimate Central’s Surging Seas: Risk Zone map shows areas vulnerable to near-term flooding from different combinations of sea level rise, storm surge, tides, and tsunamis, or to permanent submersion by long-term sea level rise. Within the U.S., it incorporates the latest, high-resolution, high-accuracy lidar elevation data supplied by NOAA (exceptions: see Sources), displays points of interest, and contains layers displaying social vulnerability, population density, and property value. Outside the U.S., it utilizes satellite-based elevation data from NASA in some locations, and Climate Central’s more accurate CoastalDEM in others (see Methods and Qualifiers). It provides the ability to search by location name or postal code.The accompanying Risk Finder is an interactive data toolkit available for some countries that provides local projections and assessments of exposure to sea level rise and coastal flooding tabulated for many sub-national districts, down to cities and postal codes in the U.S. Exposure assessments always include land and population, and in the U.S. extend to over 100 demographic, economic, infrastructure and environmental variables using data drawn mainly from federal sources, including NOAA, USGS, FEMA, DOT, DOE, DOI, EPA, FCC and the Census.This web tool was highlighted at the launch of The White House's Climate Data Initiative in March 2014. Climate Central's original Surging Seas was featured on NBC, CBS, and PBS U.S. national news, the cover of The New York Times, in hundreds of other stories, and in testimony for the U.S. Senate. The Atlantic Cities named it the most important map of 2012. Both the Risk Zone map and the Risk Finder are grounded in peer-reviewed science.Back to topMethods and QualifiersThis map is based on analysis of digital elevation models mosaicked together for near-total coverage of the global coast. Details and sources for U.S. and international data are below. Elevations are transformed so they are expressed relative to local high tide lines (Mean Higher High Water, or MHHW). A simple elevation threshold-based “bathtub method” is then applied to determine areas below different water levels, relative to MHHW. Within the U.S., areas below the selected water level but apparently not connected to the ocean at that level are shown in a stippled green (as opposed to solid blue) on the map. Outside the U.S., due to data quality issues and data limitations, all areas below the selected level are shown as solid blue, unless separated from the ocean by a ridge at least 20 meters (66 feet) above MHHW, in which case they are shown as not affected (no blue).Areas using lidar-based elevation data: U.S. coastal states except AlaskaElevation data used for parts of this map within the U.S. come almost entirely from ~5-meter horizontal resolution digital elevation models curated and distributed by NOAA in its Coastal Lidar collection, derived from high-accuracy laser-rangefinding measurements. The same data are used in NOAA’s Sea Level Rise Viewer. (High-resolution elevation data for Louisiana, southeast Virginia, and limited other areas comes from the U.S. Geological Survey (USGS)). Areas using CoastalDEM™ elevation data: Antigua and Barbuda, Barbados, Corn Island (Nicaragua), Dominica, Dominican Republic, Grenada, Guyana, Haiti, Jamaica, Saint Kitts and Nevis, Saint Lucia, Saint Vincent and the Grenadines, San Blas (Panama), Suriname, The Bahamas, Trinidad and Tobago. CoastalDEM™ is a proprietary high-accuracy bare earth elevation dataset developed especially for low-lying coastal areas by Climate Central. Use our contact form to request more information.Warning for areas using other elevation data (all other areas)Areas of this map not listed above use elevation data on a roughly 90-meter horizontal resolution grid derived from NASA’s Shuttle Radar Topography Mission (SRTM). SRTM provides surface elevations, not bare earth elevations, causing it to commonly overestimate elevations, especially in areas with dense and tall buildings or vegetation. Therefore, the map under-portrays areas that could be submerged at each water level, and exposure is greater than shown (Kulp and Strauss, 2016). However, SRTM includes error in both directions, so some areas showing exposure may not be at risk.SRTM data do not cover latitudes farther north than 60 degrees or farther south than 56 degrees, meaning that sparsely populated parts of Arctic Circle nations are not mapped here, and may show visual artifacts.Areas of this map in Alaska use elevation data on a roughly 60-meter horizontal resolution grid supplied by the U.S. Geological Survey (USGS). This data is referenced to a vertical reference frame from 1929, based on historic sea levels, and with no established conversion to modern reference frames. The data also do not take into account subsequent land uplift and subsidence, widespread in the state. As a consequence, low confidence should be placed in Alaska map portions.Flood control structures (U.S.)Levees, walls, dams or other features may protect some areas, especially at lower elevations. Levees and other flood control structures are included in this map within but not outside of the U.S., due to poor and missing data. Within the U.S., data limitations, such as an incomplete inventory of levees, and a lack of levee height data, still make assessing protection difficult. For this map, levees are assumed high and strong enough for flood protection. However, it is important to note that only 8% of monitored levees in the U.S. are rated in “Acceptable” condition (ASCE). Also note that the map implicitly includes unmapped levees and their heights, if broad enough to be effectively captured directly by the elevation data.For more information on how Surging Seas incorporates levees and elevation data in Louisiana, view our Louisiana levees and DEMs methods PDF. For more information on how Surging Seas incorporates dams in Massachusetts, view the Surging Seas column of the web tools comparison matrix for Massachusetts.ErrorErrors or omissions in elevation or levee data may lead to areas being misclassified. Furthermore, this analysis does not account for future erosion, marsh migration, or construction. As is general best practice, local detail should be verified with a site visit. Sites located in zones below a given water level may or may not be subject to flooding at that level, and sites shown as isolated may or may not be be so. Areas may be connected to water via porous bedrock geology, and also may also be connected via channels, holes, or passages for drainage that the elevation data fails to or cannot pick up. In addition, sea level rise may cause problems even in isolated low zones during rainstorms by inhibiting drainage.ConnectivityAt any water height, there will be isolated, low-lying areas whose elevation falls below the water level, but are protected from coastal flooding by either man-made flood control structures (such as levees), or the natural topography of the surrounding land. In areas using lidar-based elevation data or CoastalDEM (see above), elevation data is accurate enough that non-connected areas can be clearly identified and treated separately in analysis (these areas are colored green on the map). In the U.S., levee data are complete enough to factor levees into determining connectivity as well.However, in other areas, elevation data is much less accurate, and noisy error often produces “speckled” artifacts in the flood maps, commonly in areas that should show complete inundation. Removing non-connected areas in these places could greatly underestimate the potential for flood exposure. For this reason, in these regions, the only areas removed from the map and excluded from analysis are separated from the ocean by a ridge of at least 20 meters (66 feet) above the local high tide line, according to the data, so coastal flooding would almost certainly be impossible (e.g., the Caspian Sea region).Back to topData LayersWater Level | Projections | Legend | Social Vulnerability | Population | Ethnicity | Income | Property | LandmarksWater LevelWater level means feet or meters above the local high tide line (“Mean Higher High Water”) instead of standard elevation. Methods described above explain how each map is generated based on a selected water level. Water can reach different levels in different time frames through combinations of sea level rise, tide and storm surge. Tide gauges shown on the map show related projections (see just below).The highest water levels on this map (10, 20 and 30 meters) provide reference points for possible flood risk from tsunamis, in regions prone to them.
NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated bathymetric-topographic DEMs are used to support tsunami forecasting and modeling efforts at the NOAA Center for Tsunami Research, Pacific Marine Environmental Laboratory (PMEL). The DEMs are part of the tsunami forecast system SIFT (Short-term Inundation Forecasting for Tsunamis) currently being developed by PMEL for the NOAA Tsunami Warning Centers, and are used in the MOST (Method of Splitting Tsunami) model developed by PMEL to simulate tsunami generation, propagation, and inundation. Bathymetric, topographic, and shoreline data used in DEM compilation are obtained from various sources, including NGDC, the U.S. National Ocean Service (NOS), the U.S. Geological Survey (USGS), the U.S. Army Corps of Engineers (USACE), the Federal Emergency Management Agency (FEMA), and other federal, state, and local government agencies, academic institutions, and private companies. DEMs are referenced to the vertical tidal datum of Mean High Water (MHW) and horizontal datum of World Geodetic System 1984 (WGS84). Grid spacings for the DEM ranges from 1/3 arc-second (~10 meters) to 3 arc-seconds (~90 meters).
The flooding extent polygons are based on wave-driven total water levels for the coral reef-lined coast of Florida. The wave and sea level conditions were propagated using the XBeach open-source model (available at https://oss.deltares.nl/web/xbeach) over 100-m spaced shore-normal transects modified to account for base, mean elevation, and mean erosion scenarios. The impact of future coral reef degradation on coastal protection was examined for two different seafloor elevation-change scenarios based on DEM projections of the study area out 100 years from 2001 using either 1) historical rates of mean elevation-change as a conservative change model, or 2) historical rates of mean erosion. Methods describing the generation of the 'mean elevation' and 'mean erosion' scenarios are described in detail in Yates and others (2018, 2019a, and 2019b). The greater colonization results in higher rugosity and thus hydrodynamic roughness via friction and was parameterized per van Dongeren and others (2013) and Quataert and others (2015). Where the locations along each transect were coincident with one of the damage-assessment locations, a reduction in roughness, and/or an increase in profile depth were applied. The changes to bathymetry and roughness were then carried on to each XBeach model run to ascertain the change in flooding during large storm events due to the projected reef degradation. These flood extents can be combined with economic, ecological, and engineering tools to provide a rigorous financial valuation of the projected future coastal protection benefits of Florida’s coral reefs.
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated into predictive models and the training data used to parameterize those models. This data release contains the extracted metrics of barrier island geomorphology and spatial data layers of habitat characteristics that are input to Bayesian networks for piping plover habitat availability and barrier island geomorphology. These datasets and models are being developed for sites along the northeastern coast of the United States. This work is one component of a larger research and management program that seeks to understand and sustain the ecological value, ecosystem services, and habitat suitability of beaches in the face of storm impacts, climate change, and sea-level rise.
This dataset contains bathymetry data for Gargathy and Kegotank Bays off the eastern coast of the Delmarva Peninsula. The dataset also includes information on the depth of many of the marsh and upland creeks leading into the bays. Elevations are in meters from mean-high water. Pixels are 10x10 meters on a side anD coordinates are UTM WGS84, Zone 18. Gomez 2008 (see network links) stated "The tidal range at Gargathy Neck was determined and used to obtain the relationship between NAVD88 and MHW. The tidal range was estimated by taking an average of 5 different stations close to Gargathy Neck. Tidal ranges at stations located in Gargathy inlet, Chincoteague, Metompkin, Wachapreague and Wallops Islands (www.co-ops.nos.noaa.gov/station-retrieve.shtml?type=bench+mark+data+sheets) were used to compute an average tidal range at Gargathy Neck. The tidal range at Gargathy Neck was determined to be 1.04 m + 0.18 m. Next, the relationship between NAVD88 and MHW was determined for Wallops Island and two stations at Chincoteague (www.co-ops.nos.noaa.gov/stationretrieve. shtml?type=bench+mark+data+sheets). About 40% of the tidal range was above NAVD88 datum and about 60% of the tidal range was below NAVD 88 datum. Based on these distributions around NAVD 88 datum, mean high water at Gargathy Neck, was determined 0.43 m above NAVD 88 and mean low water is 0.64 m below NAVD88 (Figure 9). The relationship between NAVD 88 datum and mean high water was used to adjust the bathymetric data to mean high water level." Here is the datum information from NOAA for one of the stations used. Station ID: 8630249 PUBLICATION DATE: 04/30/2003 Name: CHINCOTEAGUE, USCG STATION VIRGINIA NOAA Chart: 12211 Latitude: 37° 55.9' N USGS Quad: CHINCOTEAGUE WEST Longitude: 75° 23.0' W T I D A L D A T U M S Tidal datums at CHINCOTEAGUE, USCG STATION based on: LENGTH OF SERIES: 12 MONTHS TIME PERIOD: February 1977 - January 1978 TIDAL EPOCH: 1983-2001 CONTROL TIDE STATION: 8638863 CHESAPEAKE BAY BRIDGE TUNNEL Elevations of tidal datums referred to Mean Lower Low Water (MLLW), in METERS: HIGHEST OBSERVED WATER LEVEL (10/14/1977) = 1.136 MEAN HIGHER HIGH WATER (MHHW) = 0.561 MEAN HIGH WATER (MHW) = 0.511 NORTH AMERICAN VERTICAL DATUM-1988 (NAVD) = 0.322 MEAN TIDE LEVEL (MTL) = 0.270 MEAN SEA LEVEL (MSL) = 0.269 MEAN LOW WATER (MLW) = 0.028 MEAN LOWER LOW WATER (MLLW) = 0.000 LOWEST OBSERVED WATER LEVEL (01/11/1978) = -0.702
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated into predictive models and the training data used to parameterize those models. This data release contains the extracted metrics of barrier island geomorphology and spatial data layers of habitat characteristics that are input to Bayesian networks for piping plover habitat availability and barrier island geomorphology. These datasets and models are being developed for sites along the northeastern coast of the United States. This work is one component of a larger research and management program that seeks to understand and sustain the ecological value, ecosystem services, and habitat suitability of beaches in the face of storm impacts, climate change, and sea-level rise.
The highest city in the world with a population of more than one million is La Paz. The Capital of Bolivia sits 3,869 meters above sea level, and is more than 1,000 meters higher than the second ranked city - Quito. La Paz is also higher than Mt. Fuji in Japan, which has a height of 3,776 meters. Many of the world's highest cities are located in South America. The only city in North America that makes the top 20 list is Denver, Colorado, which has an altitude of 1,673 meters.
The U.S. Geological Survey has been forecasting sea-level rise impacts on the landscape to evaluate where coastal land will be available for future use. The purpose of this project is to develop a spatially explicit, probabilistic model of coastal response for the Northeastern U.S. to a variety of sea-level scenarios that take into account the variable nature of the coast and provides outputs at spatial and temporal scales suitable for decision support. Model results provide predictions of adjusted land elevation ranges (AE) with respect to forecast sea-levels, a likelihood estimate of this outcome (PAE), and a probability of coastal response (CR) characterized as either static or dynamic. The predictions span the coastal zone vertically from -12 meters (m) to 10 m above mean high water (MHW). Results are produced at a horizontal resolution of 30 meters for four decades (the 2020s, 2030s, 2050s and 2080s). Adjusted elevations and their respective probabilities are generated using regional geospatial datasets of current sea-level forecasts, vertical land movement rates, and current elevation data. Coastal response type predictions incorporate adjusted elevation predictions with land cover data and expert knowledge to determine the likelihood that an area will be able to accommodate or adapt to water level increases and maintain its initial land class state or transition to a new non-submerged state (dynamic) or become submerged (static). Intended users of these data include scientific researchers, coastal planners, and natural resource management communities.
These GIS layers provide the probability of observing the forecast of adjusted land elevation (PAE) with respect to predicted sea-level rise or the Northeastern U.S. for the 2020s, 2030s, 2050s and 2080s. These data are based on the following inputs: sea-level rise, vertical land movement rates due to glacial isostatic adjustment and elevation data. The output displays the highest probability among the five adjusted elevation ranges (-12 to -1, -1 to 0, 0 to 1, 1 to 5, and 5 to 10 m) to be observed for the forecast year as defined by a probabilistic framework (a Bayesian network), and should be used concurrently with the adjusted land elevation prediction layer (PAE), also available from http://woodshole.er.usgs.gov/project-pages/coastal_response/, which provides users with the likelihood of elevation range occurring when compared with the four other elevation ranges. These data layers primarily show the distribution of adjusted elevation range probabilities over a large spatial scale and should therefore be used qualitatively.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The sea level rise (SLR) coastal inundation layers were created using existing federal products: the (1) NOAA Coastal Digital Elevation Models (DEMs) and (2) 2022 Interagency Sea Level Rise Technical Report Data Files. The DEMs for the Continental United States (CONUS) are provided in North American Vertical Datum 1988 (NAVD 88) and were converted to Mean Higher High Water (MHHW) using the NOAA VDatum conversion surfaces; the elevation values are in meters (m). The NOAA Scenarios of Future Mean Sea Level are provided in centimeters (cm). The MHHW DEMs for CONUS were merged and converted to cm and Scenarios of Future Mean Sea Level were subtracted from the merged DEM. Values below 0 represent areas that are below sea level and are “remapped” to 1, all values above 0 are remapped to “No Data”, creating a map that shows only areas impacted by SLR. Areas protected by levees in Louisiana and Texas were then masked or removed from the results.Scenario: For each of the 5 GMSL scenarios (identified by the rise amounts in meters by 2100--0.3 m , 0.5 m. 1.0 m, 1.5 m and 2.0 m), there is a low, medium (med) and high value, corresponding to the 17th, 50th, and 83rd percentiles. Scenarios (15 total): 0.3 - MED, 0.3 - LOW, 0.3 - HIGH, 0.5 - MED, 0.5 - LOW, 0.5 - HIGH, 1.0 - MED, 1.0 - LOW, 1.0 - HIGH, 1.5 - MED, 1.5 - LOW, 1.5 - HIGH, 2.0 - MED, 2.0 - LOW, and 2.0 - HIGH Years (15 total): 2005, 2020, 2030, 2040, 2050, 2060, 2070, 2080, 2090, 2100, 2110, 2120, 2130, 2140, and 2150Report Website: https://oceanservice.noaa.gov/hazards/sealevelrise/sealevelrise-tech-report.htmlGeneral DisclaimerThe data and maps in this tool illustrate the scale of potential flooding, not the exact location, and do not account for erosion, subsidence, or future construction. Water levels are relative to Mean Higher High Water (MHHW) (excludes wind driven tides). The data, maps, and information provided should be used only as a screening-level tool for management decisions. As with all remotely sensed data, all features should be verified with a site visit. Hydroconnectivity was not considered in the mapping process. The data and maps in this tool are provided “as is,” without warranty to their performance, merchantable state, or fitness for any particular purpose. The entire risk associated with the results and performance of these data is assumed by the user. This tool should be used strictly as a planning reference tool and not for navigation, permitting, or other legal purposes.SLR data are not available for Hawaii, Alaska, or U.S. territories at this time.Levees DisclaimerEnclosed levee areas are displayed as gray areas on the maps.Major federal leveed areas were assumed high enough and strong enough to protect against inundation depicted in this viewer, and therefore no inundation was mapped in these regions. Major federal leveed areas were taken from the National Levee Database.Minor (nonfederal) leveed areas were mapped using the best available elevation data that capture leveed features. In some cases, however, breaks in elevation occur along leveed areas because of flood control features being removed from elevation data, limitations of the horizontal and vertical resolution of the elevation data, the occurrence of levee drainage features, and so forth. Flooding behind levees is only depicted if breaks in elevation data occur or if the levee elevations are overtopped by the water surface. At some flood levels, alternate pathways around—not through—levees, walls, dams, and flood gates may exist that allow water to flow into areas protected at lower levels. In general, imperfect levee and elevation data make assessing protection difficult, and small data errors can have large consequences.Citations2022 Sea Level Rise Technical Report - Sweet, W.V., B.D. Hamlington, R.E. Kopp, C.P. Weaver, P.L. Barnard, D. Bekaert, W. Brooks, M. Craghan, G. Dusek, T. Frederikse, G. Garner, A.S. Genz, J.P. Krasting, E. Larour, D. Marcy, J.J. Marra, J. Obeysekera, M. Osler, M. Pendleton, D. Roman, L. Schmied, W. Veatch, K.D. White, and C. Zuzak, 2022: Global and Regional Sea Level Rise Scenarios for the United States: Updated Mean Projections and Extreme Water Level Probabilities Along U.S. Coastlines. NOAA Technical Report NOS 01. National Oceanic and Atmospheric Administration, National Ocean Service, Silver Spring, MD, 111 pp. https://oceanservice.noaa.gov/hazards/sealevelrise/noaa-nostechrpt01-global-regional-SLR-scenarios-US.pdf
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Land Area Where Elevation is Below 5 Meters: % of Total Land Area data was reported at 1.168 % in 2010. This stayed constant from the previous number of 1.168 % for 2000. United States US: Land Area Where Elevation is Below 5 Meters: % of Total Land Area data is updated yearly, averaging 1.168 % from Dec 1990 (Median) to 2010, with 3 observations. The data reached an all-time high of 1.168 % in 2010 and a record low of 1.168 % in 2010. United States US: Land Area Where Elevation is Below 5 Meters: % of Total Land Area data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Land Use, Protected Areas and National Wealth. Land area below 5m is the percentage of total land where the elevation is 5 meters or less.; ; Center for International Earth Science Information Network (CIESIN)/Columbia University. 2013. Urban-Rural Population and Land Area Estimates Version 2. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). http://sedac.ciesin.columbia.edu/data/set/lecz-urban-rural-population-land-area-estimates-v2.; Weighted Average;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The sea level rise (SLR) coastal inundation layers were created using existing federal products: the (1) NOAA Coastal Digital Elevation Models (DEMs) and (2) 2022 Interagency Sea Level Rise Technical Report Data Files. The DEMs for the Continental United States (CONUS) are provided in North American Vertical Datum 1988 (NAVD 88) and were converted to Mean Higher High Water (MHHW) using the NOAA VDatum conversion surfaces; the elevation values are in meters (m). The NOAA Scenarios of Future Mean Sea Level are provided in centimeters (cm). The MHHW DEMs for CONUS were merged and converted to cm and Scenarios of Future Mean Sea Level were subtracted from the merged DEM. Values below 0 represent areas that are below sea level and are “remapped” to 1, all values above 0 are remapped to “No Data”, creating a map that shows only areas impacted by SLR. Areas protected by levees in Louisiana and Texas were then masked or removed from the results. This was done for each of the emissions scenarios (Lower Emissions = 2022 Intermediate SLR Scenario Higher Emissions = 2022 Intermediate High SLR Scenario) at each of the mapped time intervals (Early Century - Year 2030, Middle Century - Year 2050, and Late Century - Year 2090). The resulting maps are displayed in the CMRA Assessment Tool. County, tract, and tribal geographies summaries of percentage SLR inundation were also calculated using Zonal Statistics tools. The Sea Level Rise Scenario year 2020 is considered “baseline” and the impacts are calculated by subtracting the baseline value from each of the near-term, mid-term and long-term timeframes. General Disclaimer The data and maps in this tool illustrate the scale of potential flooding, not the exact location, and do not account for erosion, subsidence, or future construction. Water levels are relative to Mean Higher High Water (MHHW) (excludes wind driven tides). The data, maps, and information provided should be used only as a screening-level tool for management decisions. As with all remotely sensed data, all features should be verified with a site visit. Hydroconnectivity was not considered in the mapping process. The data and maps in this tool are provided “as is,” without warranty to their performance, merchantable state, or fitness for any particular purpose. The entire risk associated with the results and performance of these data is assumed by the user. This tool should be used strictly as a planning reference tool and not for navigation, permitting, or other legal purposes. SLR visualizations and statistics are not available in CMRA for Hawaii, Alaska, or U.S. territories at this time. Levees Disclaimer Enclosed levee areas are displayed as gray areas on the maps. Major federal leveed areas were assumed high enough and strong enough to protect against inundation depicted in this viewer, and therefore no inundation was mapped in these regions. Major federal leveed areas were taken from the National Levee Database. Minor (nonfederal) leveed areas were mapped using the best available elevation data that capture leveed features. In some cases, however, breaks in elevation occur along leveed areas because of flood control features being removed from elevation data, limitations of the horizontal and vertical resolution of the elevation data, the occurrence of levee drainage features, and so forth. Flooding behind levees is only depicted if breaks in elevation data occur or if the levee elevations are overtopped by the water surface. At some flood levels, alternate pathways around—not through—levees, walls, dams, and flood gates may exist that allow water to flow into areas protected at lower levels. In general, imperfect levee and elevation data make assessing protection difficult, and small data errors can have large consequences. Citations 2022 Sea Level Rise Technical Report - Sweet, W.V., B.D. Hamlington, R.E. Kopp, C.P. Weaver, P.L. Barnard, D. Bekaert, W. Brooks, M. Craghan, G. Dusek, T. Frederikse, G. Garner, A.S. Genz, J.P. Krasting, E. Larour, D. Marcy, J.J. Marra, J. Obeysekera, M. Osler, M. Pendleton, D. Roman, L. Schmied, W. Veatch, K.D. White, and C. Zuzak, 2022: Global and Regional Sea Level Rise Scenarios for the United States: Updated Mean Projections and Extreme Water Level Probabilities Along U.S. Coastlines. NOAA Technical Report NOS 01. National Oceanic and Atmospheric Administration, National Ocean Service, Silver Spring, MD, 111 pp. https://oceanservice.noaa.gov/hazards/sealevelrise/noaa-nostechrpt01-global-regional-SLR-scenarios-US.pdf
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The sea level rise (SLR) coastal inundation layers were created using existing federal products: the (1) NOAA Coastal Digital Elevation Models (DEMs) and (2) 2022 Interagency Sea Level Rise Technical Report Data Files. The DEMs for the Continental United States (CONUS) are provided in North American Vertical Datum 1988 (NAVD 88) and were converted to Mean Higher High Water (MHHW) using the NOAA VDatum conversion surfaces; the elevation values are in meters (m). The NOAA Scenarios of Future Mean Sea Level are provided in centimeters (cm). The MHHW DEMs for CONUS were merged and converted to cm and Scenarios of Future Mean Sea Level were subtracted from the merged DEM. Values below 0 represent areas that are below sea level and are “remapped” to 1, all values above 0 are remapped to “No Data”, creating a map that shows only areas impacted by SLR. Areas protected by levees in Louisiana and Texas were then masked or removed from the results. This was done for each of the emissions scenarios (Lower Emissions = 2022 Intermediate SLR Scenario Higher Emissions = 2022 Intermediate High SLR Scenario) at each of the mapped time intervals (Early Century - Year 2030, Middle Century - Year 2050, and Late Century - Year 2090).
The resulting maps are displayed in the CMRA Assessment Tool. County, tract, and tribal geographies summaries of percentage SLR inundation were also calculated using Zonal Statistics tools. The Sea Level Rise Scenario year 2020 is considered “baseline” and the impacts are calculated by subtracting the baseline value from each of the near-term, mid-term and long-term timeframes. General Disclaimer The data and maps in this tool illustrate the scale of potential flooding, not the exact location, and do not account for erosion, subsidence, or future construction. Water levels are relative to Mean Higher High Water (MHHW) (excludes wind driven tides). The data, maps, and information provided should be used only as a screening-level tool for management decisions. As with all remotely sensed data, all features should be verified with a site visit. Hydroconnectivity was not considered in the mapping process. The data and maps in this tool are provided “as is,” without warranty to their performance, merchantable state, or fitness for any particular purpose. The entire risk associated with the results and performance of these data is assumed by the user. This tool should be used strictly as a planning reference tool and not for navigation, permitting, or other legal purposes. SLR visualizations and statistics are not available in CMRA for Hawaii, Alaska, or U.S. territories at this time. Levees Disclaimer Enclosed levee areas are displayed as gray areas on the maps. Major federal leveed areas were assumed high enough and strong enough to protect against inundation depicted in this viewer, and therefore no inundation was mapped in these regions. Major federal leveed areas were taken from the National Levee Database. Minor (nonfederal) leveed areas were mapped using the best available elevation data that capture leveed features. In some cases, however, breaks in elevation occur along leveed areas because of flood control features being removed from elevation data, limitations of the horizontal and vertical resolution of the elevation data, the occurrence of levee drainage features, and so forth. Flooding behind levees is only depicted if breaks in elevation data occur or if the levee elevations are overtopped by the water surface. At some flood levels, alternate pathways around—not through—levees, walls, dams, and flood gates may exist that allow water to flow into areas protected at lower levels. In general, imperfect levee and elevation data make assessing protection difficult, and small data errors can have large consequences. Citations 2022 Sea Level Rise Technical Report - Sweet, W.V., B.D. Hamlington, R.E. Kopp, C.P. Weaver, P.L. Barnard, D. Bekaert, W. Brooks, M. Craghan, G. Dusek, T. Frederikse, G. Garner, A.S. Genz, J.P. Krasting, E. Larour, D. Marcy, J.J. Marra, J. Obeysekera, M. Osler, M. Pendleton, D. Roman, L. Schmied, W. Veatch, K.D. White, and C. Zuzak, 2022: Global and Regional Sea Level Rise Scenarios for the United States: Updated Mean Projections and Extreme Water Level Probabilities Along U.S. Coastlines. NOAA Technical Report NOS 01. National Oceanic and Atmospheric Administration, National Ocean Service, Silver Spring, MD, 111 pp. https://oceanservice.noaa.gov/hazards/sealevelrise/noaa-nostechrpt01-global-regional-SLR-scenarios-US.pdf
This data set represents the average monthly maximum temperature in Celsius multiplied by 100 for 2002 compiled for every catchment of NHDPlus for the conterminous United States. The source data were the Near-Real-Time High-Resolution Monthly Average Maximum/Minimum Temperature for the Conterminous United States for 2002 raster dataset produced by the Spatial Climate Analysis Service at Oregon State University. The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.
Elevation Derivatives for National Applications (EDNA) is a seamless, nationwide, multi-layered three-dimensional (3D) hydrologic database derived from a version of the National Elevation Dataset. EDNA's 3D hydrologic layers are vertically consistent by their very nature, meaning that hydrologic drainage always flows from a higher elevation to a lower elevation and that reach catchment boundaries always follow the elevation drainage divide. This consistency allows for transfer of valuable information from digital elevation models onto EDNA-derived drainage lines and watersheds, including stream gradient, minimum and maximum elevation within a watershed, average watershed slope, and elevation.
The single value tidal water surface of mean higher high water (MHHW) modeled at the Honolulu tide gauge is used to represent present-day sea level for the urban corridor stretching from Honolulu International Airport to Waikiki and Diamond Head along the south shore of Oahu in the state of Hawaii. Water levels are shown as they would appear during the highest high tides (excluding wind-driven tides). Land elevation was derived using a National Geospatial Agency (NGA)-provided digital elevation model (DEM) based on LiDAR data of the Honolulu area collected in 2009. This "bare earth" DEM (vegetation and structures removed) was used to represent the current topography of the study area above zero elevation. The accuracy of the DEM was validated using a selection of 16 Tidal Benchmarks located within the study area. Data produced in 2014 by Dr. Charles "Chip" Fletcher of the department of Geology & Geophysics (G&G) in the School of Ocean and Earth Science and Technology (SOEST) of the University of Hawaii at Manoa. Supported in part by the NOAA Coastal Storms Program (CSP) and the University of Hawaii Sea Grant College Program. These data should be used strictly as a planning reference and not for navigation, permitting, or other legal purposes.
The inundation areas depicted in the Sea Level Rise dataset are not as precise as they may appear. Levels of confidence are depicted on this map. Blue areas denote a high confidence of inundation, orange areas denote a high degree of uncertainty, and unshaded areas denote a high confidence that these areas will be dry given the chosen water level. In this application 80% is considered a high degree of confidence such that, for example, the blue areas denote locations that may be correctly mapped as 'inundated' more than 8 out of 10 times. Areas with a high degree of uncertainty represent locations that may be mapped correctly (either as inundated or dry) less than 8 out of 10 times. There are many unknowns when mapping future conditions, including natural evolution of the coastal landforms (e.g., barrier island overwash and migration), as well as the data used to predict the changes. The presentation of confidence in these maps only represents the known error in the elevation data and tidal corrections. Inundation Uncertainty Associated with Elevation Data and Tidal Datum Conversion for Current Mean Higher High Water. This dataset was created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer depicting potential sea level rise and its associated impacts on the nation's coastal areas. The purpose of the mapping viewer is to provide coastal managers and scientists with a preliminary look at sea level rise and coastal flooding impacts. The viewer is a screening-level tool that uses nationally consistent data sets and analyses. Data and maps provided can be used at several scales to help gauge trends and prioritize actions for different scenarios. The purpose of this dataset is to depict errors that are directly related to elevation and water height data. These errors can be used to begin defining areas with mapped inundation that do not have the same level of confidence as other areas. For a detailed explanation of mapping methods, see http://www.coast.noaa.gov/slr/assets/pdfs/Elevation_Mapping_Confidence_Methods.pdf. The dataset should be used only as a screening-level tool for management decisions. As with all remotely sensed data, all features should be verified with a site visit. The dataset is provided "as is," without warranty to its performance, merchantable state, or fitness for any particular purpose. The entire risk associated with the results and performance of this dataset is assumed by the user. This dataset should be used strictly as a planning reference and not for navigation, permitting, or other legal purposes. Tiles have been cached down to Level ID 15 (1:18,055). For more information visit the Sea Level Rise Impacts Viewer (http://coast.noaa.gov/slr).View Dataset on the Gateway
The United States has an average elevation of roughly 2,500 feet (763m) above sea level, however there is a stark contrast in elevations across the country. Highest states Colorado is the highest state in the United States, with an average elevation of 6,800 feet (2,074m) above sea level. The 10 states with the highest average elevation are all in the western region of the country, as this is, by far, the most mountainous region in the country. The largest mountain ranges in the contiguous western states are the Rocky Mountains, Sierra Nevada, and Cascade Range, while the Appalachian Mountains is the longest range in the east - however, the highest point in the U.S. is Denali (Mount McKinley), found in Alaska. Lowest states At just 60 feet above sea level, Delaware is the state with the lowest elevation. Delaware is the second smallest state, behind Rhode Island, and is located on the east coast. Larger states with relatively low elevations are found in the southern region of the country - both Florida and Louisiana have an average elevation of just 100 feet (31m) above sea level, and large sections of these states are extremely vulnerable to flooding and rising sea levels, as well as intermittent tropical storms.