100+ datasets found
  1. United States: average elevation in each state or territory as of 2005

    • statista.com
    Updated Aug 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). United States: average elevation in each state or territory as of 2005 [Dataset]. https://www.statista.com/statistics/1325529/lowest-points-united-states-state/
    Explore at:
    Dataset updated
    Aug 9, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2005
    Area covered
    United States
    Description

    The United States has an average elevation of roughly 2,500 feet (763m) above sea level, however there is a stark contrast in elevations across the country. Highest states Colorado is the highest state in the United States, with an average elevation of 6,800 feet (2,074m) above sea level. The 10 states with the highest average elevation are all in the western region of the country, as this is, by far, the most mountainous region in the country. The largest mountain ranges in the contiguous western states are the Rocky Mountains, Sierra Nevada, and Cascade Range, while the Appalachian Mountains is the longest range in the east - however, the highest point in the U.S. is Denali (Mount McKinley), found in Alaska. Lowest states At just 60 feet above sea level, Delaware is the state with the lowest elevation. Delaware is the second smallest state, behind Rhode Island, and is located on the east coast. Larger states with relatively low elevations are found in the southern region of the country - both Florida and Louisiana have an average elevation of just 100 feet (31m) above sea level, and large sections of these states are extremely vulnerable to flooding and rising sea levels, as well as intermittent tropical storms.

  2. United States: highest point in each state or territory

    • statista.com
    Updated Aug 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). United States: highest point in each state or territory [Dataset]. https://www.statista.com/statistics/203932/highest-points-in-the-united-states-by-state/
    Explore at:
    Dataset updated
    Aug 8, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2005
    Area covered
    United States
    Description

    At 20,310 feet (6.2km) above sea level, the highest point in the United States is Denali, Alaska (formerly known as Mount McKinley). The highest point in the contiguous United States is Mount Whitney, in the Sierra Nevada mountain range in California; followed by Mount Elbert, Colorado - the highest point in the Rocky Mountains. When looking at the highest point in each state, the 13 tallest peaks are all found in the western region of the country, while there is much more diversity across the other regions and territories.

    Despite being approximately 6,500 feet lower than Denali, Hawaii's Mauna Kea is sometimes considered the tallest mountain (and volcano) on earth. This is because its base is well below sea level - the mountain has a total height of 33,474 feet, which is almost 4,500 feet higher than Mount Everest.

  3. United States: lowest point in each state or territory as of 2005

    • statista.com
    Updated Aug 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). United States: lowest point in each state or territory as of 2005 [Dataset]. https://www.statista.com/statistics/1325443/lowest-points-united-states-state/
    Explore at:
    Dataset updated
    Aug 9, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2005
    Area covered
    United States
    Description

    At 282 feet below sea level, Death Valley in the Mojave Desert, California is the lowest point of elevation in the United States (and North America). Coincidentally, Death Valley is less than 85 miles from Mount Whitney, the highest point of elevation in the mainland United States. Death Valley is one of the hottest places on earth, and in 1913 it was the location of the highest naturally occurring temperature ever recorded on Earth (although some meteorologists doubt its legitimacy). New Orleans Louisiana is the only other state where the lowest point of elevation was below sea level. This is in the city of New Orleans, on the Mississippi River Delta. Over half of the city (up to two-thirds) is located below sea level, and recent studies suggest that the city is sinking further - man-made efforts to prevent water damage or flooding are cited as one reason for the city's continued subsidence, as they prevent new sediment from naturally reinforcing the ground upon which the city is built. These factors were one reason why New Orleans was so severely impacted by Hurricane Katrina in 2005 - the hurricane itself was one of the deadliest in history, and it destroyed many of the levee systems in place to prevent flooding, and the elevation exacerbated the damage caused. Highest low points The lowest point in five states is over 1,000 feet above sea level. Colorado's lowest point, at 3,315 feet, is still higher than the highest point in 22 states or territories. For all states whose lowest points are found above sea level, these points are located in rivers, streams, or bodies of water.

  4. d

    High Resolution Digital Elevation Models (DEMs)

    • catalog.data.gov
    • datasets.ai
    • +1more
    Updated Nov 12, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of New York (2020). High Resolution Digital Elevation Models (DEMs) [Dataset]. https://catalog.data.gov/dataset/high-resolution-digital-elevation-models-dems
    Explore at:
    Dataset updated
    Nov 12, 2020
    Dataset provided by
    State of New York
    Description

    High resolution (1-2m spacing) digital elevation models (DEMs) covering portions of the state. The DEMs are derived from LIDAR data and depict the bare earth terrain in raster format. Multiple agencies (Federal, State, and County) provided the data. The DEMs can be downloaded through the NYS Orthos Online app (http://orthos.dhses.ny.gov/).

  5. d

    1 meter Digital Elevation Models (DEMs) - USGS National Map 3DEP...

    • catalog.data.gov
    • data.usgs.gov
    • +3more
    Updated Mar 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). 1 meter Digital Elevation Models (DEMs) - USGS National Map 3DEP Downloadable Data Collection [Dataset]. https://catalog.data.gov/dataset/1-meter-digital-elevation-models-dems-usgs-national-map-3dep-downloadable-data-collection
    Explore at:
    Dataset updated
    Mar 11, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    This is a tiled collection of the 3D Elevation Program (3DEP) and is one meter resolution. The 3DEP data holdings serve as the elevation layer of The National Map, and provide foundational elevation information for earth science studies and mapping applications in the United States. Scientists and resource managers use 3DEP data for hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. The elevations in this DEM represent the topographic bare-earth surface. USGS standard one-meter DEMs are produced exclusively from high resolution light detection and ranging (lidar) source data of one-meter or higher resolution. One-meter DEM surfaces are seamless within collection projects, but, not necessarily seamless across projects. The spatial reference used for tiles of the one-meter DEM within the conterminous United States (CONUS) is Universal Transverse Mercator (UTM) in units of meters, and in conformance with the North American Datum of 1983 (NAD83). All bare earth elevation values are in meters and are referenced to the North American Vertical Datum of 1988 (NAVD88). Each tile is distributed in the UTM Zone in which it lies. If a tile crosses two UTM zones, it is delivered in both zones. The one-meter DEM is the highest resolution standard DEM offered in the 3DEP product suite. Other 3DEP products are nationally seamless DEMs in resolutions of 1/3, 1, and 2 arc seconds. These seamless DEMs were referred to as the National Elevation Dataset (NED) from about 2000 through 2015 at which time they became the seamless DEM layers under the 3DEP program and the NED name and system were retired. Other 3DEP products include five-meter DEMs in Alaska as well as various source datasets including the lidar point cloud and interferometric synthetic aperture radar (Ifsar) digital surface models and intensity images. All 3DEP products are public domain.

  6. w

    National Elevation Dataset for the Western United States

    • data.wu.ac.at
    zip
    Updated May 12, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of the Interior (2018). National Elevation Dataset for the Western United States [Dataset]. https://data.wu.ac.at/schema/data_gov/YzM5MGU5ZGYtZTA4ZC00MjM0LWIyYjAtM2Y2YjNmYjAyNzgz
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 12, 2018
    Dataset provided by
    Department of the Interior
    Area covered
    5ae25aa72d08dc4a0d89c63bf7c3a3b05f31656e
    Description

    Digital elevation model used for the conservation assessment of Greater Sage-grouse and sagebrush habitat conducted by the Western Association of Fish and Wildlife Agencies. Digital elevation models were downloaded from the USGS National Elevation Dataset (NED) which was developed by merging the highest-resolution, best quality elevation data available across the United States into a seamless raster format to provide 1:24,000-scale Digital Elevation Model (DEM) data for the conterminous US.

  7. United States Interagency Elevation Inventory (USIEI)

    • catalog.data.gov
    • fisheries.noaa.gov
    Updated May 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA Office for Coastal Management (Point of Contact, Custodian) (2025). United States Interagency Elevation Inventory (USIEI) [Dataset]. https://catalog.data.gov/dataset/united-states-interagency-elevation-inventory-usiei1
    Explore at:
    Dataset updated
    May 22, 2025
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Area covered
    United States
    Description

    A nationwide listing of known publicly available high-accuracy topographic and bathymetric source elevation data for the United States and its territories. The inventory provides a single resource for information about all known completed and in-progress broad-area public domain elevation data. The information provided for each elevation dataset includes many attributes such as vertical accuracy, point spacing, and date of collection. A direct link to access the data or information about the contact organization is also available through the inventory. The United States Interagency Elevation Inventory raises awareness of and increases access to existing elevation data, thereby reducing data duplication efforts. It helps to identify data gaps and informs and encourages collaboration on future data collection efforts. The inventory displays data set boundaries and provides information about the elevation data but does not host the data itself. If available, links to access the data, metadata, and reports are included. The inventory viewer uses map services from multiple sources to provide information both topography and bathymetry. Map services from NOAA NCEI display the footprints and attribute information for the NOAA Hydrographic Surveys, Multibeam Bathymetry, and Trackline Surveys. A map service from USACE provides the USACE Hydrographic Surveys. Map services from NOAA Office for Coastal Management provide the bulk of the topographic and bathymetric lidar information. The NOAA NCEI and USACE service are updated regularly as new data in ingested. The data supporting the NOAA OCM hosted services are maintained by a partnership of federal agencies and supports the federal elevation theme. The agencies include NOAA, the U.S. Geological Survey, the Federal Emergency Management Agency, the U.S. Department of Agriculture, the U.S. Forest Service, the National Park Service and the U.S. Army Corps of Engineers. This service is updated quarterly through an active process of data discovery and validation.

  8. United States US: Urban Population Living in Areas Where Elevation is Below...

    • ceicdata.com
    Updated Mar 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2023). United States US: Urban Population Living in Areas Where Elevation is Below 5 meters: % of Total Population [Dataset]. https://www.ceicdata.com/en/united-states/land-use-protected-areas-and-national-wealth/us-urban-population-living-in-areas-where-elevation-is-below-5-meters--of-total-population
    Explore at:
    Dataset updated
    Mar 15, 2023
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 1990 - Dec 1, 2010
    Area covered
    United States
    Description

    United States US: Urban Population Living in Areas Where Elevation is Below 5 meters: % of Total Population data was reported at 2.264 % in 2010. This records an increase from the previous number of 2.246 % for 2000. United States US: Urban Population Living in Areas Where Elevation is Below 5 meters: % of Total Population data is updated yearly, averaging 2.264 % from Dec 1990 (Median) to 2010, with 3 observations. The data reached an all-time high of 2.329 % in 1990 and a record low of 2.246 % in 2000. United States US: Urban Population Living in Areas Where Elevation is Below 5 meters: % of Total Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Land Use, Protected Areas and National Wealth. Urban population below 5m is the percentage of the total population, living in areas where the elevation is 5 meters or less.; ; Center for International Earth Science Information Network (CIESIN)/Columbia University. 2013. Urban-Rural Population and Land Area Estimates Version 2. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). http://sedac.ciesin.columbia.edu/data/set/lecz-urban-rural-population-land-area-estimates-v2.; Weighted Average;

  9. a

    Surging Seas: Risk Zone Map

    • amerigeo.org
    • data.amerigeoss.org
    • +1more
    Updated Feb 18, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmeriGEOSS (2019). Surging Seas: Risk Zone Map [Dataset]. https://www.amerigeo.org/datasets/surging-seas-risk-zone-map
    Explore at:
    Dataset updated
    Feb 18, 2019
    Dataset authored and provided by
    AmeriGEOSS
    Description

    IntroductionClimate Central’s Surging Seas: Risk Zone map shows areas vulnerable to near-term flooding from different combinations of sea level rise, storm surge, tides, and tsunamis, or to permanent submersion by long-term sea level rise. Within the U.S., it incorporates the latest, high-resolution, high-accuracy lidar elevation data supplied by NOAA (exceptions: see Sources), displays points of interest, and contains layers displaying social vulnerability, population density, and property value. Outside the U.S., it utilizes satellite-based elevation data from NASA in some locations, and Climate Central’s more accurate CoastalDEM in others (see Methods and Qualifiers). It provides the ability to search by location name or postal code.The accompanying Risk Finder is an interactive data toolkit available for some countries that provides local projections and assessments of exposure to sea level rise and coastal flooding tabulated for many sub-national districts, down to cities and postal codes in the U.S. Exposure assessments always include land and population, and in the U.S. extend to over 100 demographic, economic, infrastructure and environmental variables using data drawn mainly from federal sources, including NOAA, USGS, FEMA, DOT, DOE, DOI, EPA, FCC and the Census.This web tool was highlighted at the launch of The White House's Climate Data Initiative in March 2014. Climate Central's original Surging Seas was featured on NBC, CBS, and PBS U.S. national news, the cover of The New York Times, in hundreds of other stories, and in testimony for the U.S. Senate. The Atlantic Cities named it the most important map of 2012. Both the Risk Zone map and the Risk Finder are grounded in peer-reviewed science.Back to topMethods and QualifiersThis map is based on analysis of digital elevation models mosaicked together for near-total coverage of the global coast. Details and sources for U.S. and international data are below. Elevations are transformed so they are expressed relative to local high tide lines (Mean Higher High Water, or MHHW). A simple elevation threshold-based “bathtub method” is then applied to determine areas below different water levels, relative to MHHW. Within the U.S., areas below the selected water level but apparently not connected to the ocean at that level are shown in a stippled green (as opposed to solid blue) on the map. Outside the U.S., due to data quality issues and data limitations, all areas below the selected level are shown as solid blue, unless separated from the ocean by a ridge at least 20 meters (66 feet) above MHHW, in which case they are shown as not affected (no blue).Areas using lidar-based elevation data: U.S. coastal states except AlaskaElevation data used for parts of this map within the U.S. come almost entirely from ~5-meter horizontal resolution digital elevation models curated and distributed by NOAA in its Coastal Lidar collection, derived from high-accuracy laser-rangefinding measurements. The same data are used in NOAA’s Sea Level Rise Viewer. (High-resolution elevation data for Louisiana, southeast Virginia, and limited other areas comes from the U.S. Geological Survey (USGS)). Areas using CoastalDEM™ elevation data: Antigua and Barbuda, Barbados, Corn Island (Nicaragua), Dominica, Dominican Republic, Grenada, Guyana, Haiti, Jamaica, Saint Kitts and Nevis, Saint Lucia, Saint Vincent and the Grenadines, San Blas (Panama), Suriname, The Bahamas, Trinidad and Tobago. CoastalDEM™ is a proprietary high-accuracy bare earth elevation dataset developed especially for low-lying coastal areas by Climate Central. Use our contact form to request more information.Warning for areas using other elevation data (all other areas)Areas of this map not listed above use elevation data on a roughly 90-meter horizontal resolution grid derived from NASA’s Shuttle Radar Topography Mission (SRTM). SRTM provides surface elevations, not bare earth elevations, causing it to commonly overestimate elevations, especially in areas with dense and tall buildings or vegetation. Therefore, the map under-portrays areas that could be submerged at each water level, and exposure is greater than shown (Kulp and Strauss, 2016). However, SRTM includes error in both directions, so some areas showing exposure may not be at risk.SRTM data do not cover latitudes farther north than 60 degrees or farther south than 56 degrees, meaning that sparsely populated parts of Arctic Circle nations are not mapped here, and may show visual artifacts.Areas of this map in Alaska use elevation data on a roughly 60-meter horizontal resolution grid supplied by the U.S. Geological Survey (USGS). This data is referenced to a vertical reference frame from 1929, based on historic sea levels, and with no established conversion to modern reference frames. The data also do not take into account subsequent land uplift and subsidence, widespread in the state. As a consequence, low confidence should be placed in Alaska map portions.Flood control structures (U.S.)Levees, walls, dams or other features may protect some areas, especially at lower elevations. Levees and other flood control structures are included in this map within but not outside of the U.S., due to poor and missing data. Within the U.S., data limitations, such as an incomplete inventory of levees, and a lack of levee height data, still make assessing protection difficult. For this map, levees are assumed high and strong enough for flood protection. However, it is important to note that only 8% of monitored levees in the U.S. are rated in “Acceptable” condition (ASCE). Also note that the map implicitly includes unmapped levees and their heights, if broad enough to be effectively captured directly by the elevation data.For more information on how Surging Seas incorporates levees and elevation data in Louisiana, view our Louisiana levees and DEMs methods PDF. For more information on how Surging Seas incorporates dams in Massachusetts, view the Surging Seas column of the web tools comparison matrix for Massachusetts.ErrorErrors or omissions in elevation or levee data may lead to areas being misclassified. Furthermore, this analysis does not account for future erosion, marsh migration, or construction. As is general best practice, local detail should be verified with a site visit. Sites located in zones below a given water level may or may not be subject to flooding at that level, and sites shown as isolated may or may not be be so. Areas may be connected to water via porous bedrock geology, and also may also be connected via channels, holes, or passages for drainage that the elevation data fails to or cannot pick up. In addition, sea level rise may cause problems even in isolated low zones during rainstorms by inhibiting drainage.ConnectivityAt any water height, there will be isolated, low-lying areas whose elevation falls below the water level, but are protected from coastal flooding by either man-made flood control structures (such as levees), or the natural topography of the surrounding land. In areas using lidar-based elevation data or CoastalDEM (see above), elevation data is accurate enough that non-connected areas can be clearly identified and treated separately in analysis (these areas are colored green on the map). In the U.S., levee data are complete enough to factor levees into determining connectivity as well.However, in other areas, elevation data is much less accurate, and noisy error often produces “speckled” artifacts in the flood maps, commonly in areas that should show complete inundation. Removing non-connected areas in these places could greatly underestimate the potential for flood exposure. For this reason, in these regions, the only areas removed from the map and excluded from analysis are separated from the ocean by a ridge of at least 20 meters (66 feet) above the local high tide line, according to the data, so coastal flooding would almost certainly be impossible (e.g., the Caspian Sea region).Back to topData LayersWater Level | Projections | Legend | Social Vulnerability | Population | Ethnicity | Income | Property | LandmarksWater LevelWater level means feet or meters above the local high tide line (“Mean Higher High Water”) instead of standard elevation. Methods described above explain how each map is generated based on a selected water level. Water can reach different levels in different time frames through combinations of sea level rise, tide and storm surge. Tide gauges shown on the map show related projections (see just below).The highest water levels on this map (10, 20 and 30 meters) provide reference points for possible flood risk from tsunamis, in regions prone to them.

  10. d

    1/9th Arc-second Digital Elevation Models (DEMs) - USGS National Map 3DEP...

    • catalog.data.gov
    • data.usgs.gov
    • +2more
    Updated Mar 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). 1/9th Arc-second Digital Elevation Models (DEMs) - USGS National Map 3DEP Downloadable Data Collection [Dataset]. https://catalog.data.gov/dataset/1-9th-arc-second-digital-elevation-models-dems-usgs-national-map-3dep-downloadable-data-co
    Explore at:
    Dataset updated
    Mar 11, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    This is a tiled collection of the 3D Elevation Program (3DEP) and is 1/9 arc-second (approximately 3 m) resolution.The 3DEP data holdings serve as the elevation layer of The National Map, and provide foundational elevation information for earth science studies and mapping applications in the United States. Scientists and resource managers use 3DEP data for hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. The elevations in this DEM represent the topographic bare-earth surface. The seamless 1/9 arc-second DEM layers are derived from diverse source data that are processed to a common coordinate system and unit of vertical measure. These data are distributed in geographic coordinates in units of decimal degrees, and in conformance with the North American Datum of 1983 (NAD 83). All elevation values are in meters and, over the continental United States, are referenced to the North American Vertical Datum of 1988 (NAVD88). The seamless 1/9 arc-second DEM layer project-based coverage for portions of the conterminous United States, limited areas of Alaska, and Guam. The seamless 1/9 arc-second NED layer is available as pre-staged products tiled in 15 minute blocks in Erdas .img format. Since 2015, the seamless 1/9 arc-second DEM layer is no longer being updated. Other 3DEP products are nationally seamless DEMs in resolutions of 1/3, 1, and 2 arc seconds. These seamless DEMs were referred to as the National Elevation Dataset (NED) from about 2000 through 2015 at which time they became the seamless DEM layers under the 3DEP program and the NED name and system were retired. Other 3DEP products include one-meter DEMs produced exclusively from high resolution light detection and ranging (lidar) source data and five-meter DEMs in Alaska as well as various source datasets including the lidar point cloud and interferometric synthetic aperture radar (Ifsar) digital surface models and intensity images. All 3DEP products are public domain.

  11. d

    USGS 1 arc-second Digital Elevation Model

    • catalog.data.gov
    • portal.opentopography.org
    • +1more
    Updated Sep 3, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    null (Originator) (2021). USGS 1 arc-second Digital Elevation Model [Dataset]. https://catalog.data.gov/dataset/usgs-1-arc-second-digital-elevation-model
    Explore at:
    Dataset updated
    Sep 3, 2021
    Dataset provided by
    null (Originator)
    Description

    This is a 1 arc-second (approximately 30 m) resolution tiled collection of the 3D Elevation Program (3DEP) seamless data products . 3DEP data serve as the elevation layer of The National Map, and provide basic elevation information for Earth science studies and mapping applications in the United States. Scientists and resource managers use 3DEP data for global change research, hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. 3DEP data compose an elevation dataset that consists of seamless layers and a high resolution layer. Each of these layers consists of the best available raster elevation data of the conterminous United States, Alaska, Hawaii, territorial islands, Mexico and Canada. 3DEP data are updated continually as new data become available. Seamless 3DEP data are derived from diverse source data that are processed to a common coordinate system and unit of vertical measure. These data are distributed in geographic coordinates in units of decimal degrees, and in conformance with the North American Datum of 1983 (NAD 83). All elevation values are in meters and, over the conterminous United States, are referenced to the North American Vertical Datum of 1988 (NAVD 88). The vertical reference will vary in other areas. The elevations in these DEMs represent the topographic bare-earth surface. All 3DEP products are public domain. This dataset includes data over Canada and Mexico as part of an international, interagency collaboration with the Mexico's National Institute of Statistics and Geography (INEGI) and the Natural Resources Canada (NRCAN) Centre for Topographic Information-Sherbrook, Ottawa. For more details on the data provenance of this dataset, visit here and here. Click here for a broad overview of this dataset

  12. d

    High-resolution digital elevation dataset for Mount Baker and vicinity,...

    • search.dataone.org
    • data.usgs.gov
    • +1more
    Updated Dec 14, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Joseph A. Bard (2017). High-resolution digital elevation dataset for Mount Baker and vicinity, Washington, based on lidar surveys of 2015 [Dataset]. https://search.dataone.org/view/02bfdab8-5abf-4760-b14d-ac679ef28c2d
    Explore at:
    Dataset updated
    Dec 14, 2017
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Joseph A. Bard
    Time period covered
    Aug 26, 2015 - Sep 27, 2015
    Area covered
    Description

    Snow and ice-covered Mount Baker in northern Washington, is the highest peak in the North Cascades (3,286 meters or 10,781 feet) and the northernmost volcano in the conterminous United States. It is the only U.S. volcano in the Cascade Range that has been affected by both alpine and continental glaciation. The stratovolcano is composed mainly of andesite lava flows and breccias formed prior to the most recent major glaciation (Fraser Glaciation), which occurred between about 25,000 and 10,000 years ago. The most recent major eruption at Mount Baker (6,700 years ago) was accompanied by a major flank-collapse event that caused lahars to rush down the Nooksack River and then eastward into Baker Lake. In 1975-76, Sherman Crater immediately south of the summit, exhibited signs of renewed volcanic activity as a result of magma intruding into the volcano but not erupting. The DEM (digital elevation model) of Mount Baker covers approximately 201 square miles and is the product of high-precision airborne lidar (Light Detection and Ranging) surveys performed between 08/26/15 and 09/27/15 by Quantum Spatial under contract with the USGS. The DEM, represents the ground surface beneath forest cover. This release includes two raster datasets in .tif format, (1) a DEM dataset (mt_baker_dem.zip, 1.40 GB), and (2) a hillshade raster (mt_baker_hillshade.zip, 573 MB).

  13. d

    National Elevation Dataset for the Western United States

    • search.dataone.org
    Updated Oct 29, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (USGS), EROS Data Center (2016). National Elevation Dataset for the Western United States [Dataset]. https://search.dataone.org/view/9ba23620-35ea-42af-819c-4a900cec90f8
    Explore at:
    Dataset updated
    Oct 29, 2016
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    U.S. Geological Survey (USGS), EROS Data Center
    Area covered
    Variables measured
    Count, Rowid, Value
    Description

    Digital elevation model used for the conservation assessment of Greater Sage-grouse and sagebrush habitat conducted by the Western Association of Fish and Wildlife Agencies. Digital elevation models were downloaded from the USGS National Elevation Dataset (NED) which was developed by merging the highest-resolution, best quality elevation data available across the United States into a seamless raster format to provide 1:24,000-scale Digital Elevation Model (DEM) data for the conterminous US.

  14. d

    USGS NED n30w091 1/3 arc-second 20140717 1 x 1 degree GridFloat

    • datadiscoverystudio.org
    gridfloat
    Updated Jul 17, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2014). USGS NED n30w091 1/3 arc-second 20140717 1 x 1 degree GridFloat [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/7b58406b6c9444f8a17b2afeaa2ce563/html
    Explore at:
    gridfloat(405.963687)Available download formats
    Dataset updated
    Jul 17, 2014
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Description

    This tile of the National Elevation Dataset (NED) is 1/3 arc-second resolution. The National Elevation Dataset (NED) serves the elevation layer of The National Map, and provides basic elevation information for earth science studies and mapping applications in the United States. Scientists and resource managers use NED data for global change research, hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. The NED is an elevation dataset that consists of seamless layers and a high resolution layer. Each of these layers are composed of the best available raster elevation data of the conterminous United States, Alaska, Hawaii, territorial islands, Mexico and Canada. The NED is updated continually as new data become available. All NED data are in the public domain. The NED are derived from diverse source data that are processed to a common coordinate system and unit of vertical measure. These data are distributed in geographic coordinates in units of decimal degrees, and in conformance with the North American Datum of 1983 (NAD 83). All elevation values are in meters and, over the continental United States, are referenced to the North American Vertical Datum of 1988 (NAVD 88). The vertical reference will vary in other areas. NED data are available nationally (except for Alaska) at resolutions of 1 arc-second (approx. 30 meters) and 1/3 arc-second (approx. 10 meters), and in limited areas at 1/9 arc-second (approx. 3 meters). In most of Alaska, only lower resolution source data are available. As a result, most NED data for Alaska are at 2-arc-second (approx. 60 meters) grid spacing. Part of Alaska is available at the 1- and 1/3-arc-second resolution from IFSAR collections starting in 2010. Plans are in place for collection of statewide IFSAR in Alaska through 2016.

  15. d

    High-resolution digital elevation dataset for Glacier Peak and vicinity,...

    • dataone.org
    • data.usgs.gov
    • +4more
    Updated Apr 27, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Joseph Bard (2017). High-resolution digital elevation dataset for Glacier Peak and vicinity, Washington, based on lidar surveys of August-November, 2014 and June, 2015 [Dataset]. https://dataone.org/datasets/18300163-756b-4641-9698-9622faacf48a
    Explore at:
    Dataset updated
    Apr 27, 2017
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Joseph Bard
    Time period covered
    Aug 25, 2014 - Jun 24, 2015
    Area covered
    Description

    Glacier Peak is a 3,214 m (10,544 ft.) stratovolcano composed mainly of dacite. The volcano is located in the Glacier Peak Wilderness Area, in the Mt. Baker-Snoqualmie National Forest, about 100 km (65 mi) northeast of Seattle and 110 km (70 mi) south of the International Boundary with Canada. Since the continental ice sheets receded from the region approximately 15,000 years ago, Glacier Peak has erupted repeatedly during at least six episodes. Two of these eruptions were among the largest in the Cascades during this time period. This DEM (digital elevation model) of Glacier Peak is the product of high-precision airborne lidar (Light Detection and Ranging) surveys performed during August-November, 2014 and June, 2015 by Quantum Spatial under contract with the USGS. This digital map, totaling approximately 475 square miles, represents the ground surface beneath forest cover and contributes to natural hazard monitoring efforts, the study of regional geology, volcanic landforms, and landscape modification during and after future volcanic eruptions, both at Glacier Peak or elsewhere globally. This release is comprised of a DEM dataset accompanied by a hillshade raster, each divided into 18 tiles. Each tile’s bounding rectangle is identical to the extent of the USGS 7.5 minute topographic quadrangles covering the same area. The names of the DEM tiles are eleven characters long (e.g., dem_xxxxxx). The prefix, "dem", indicates the file is a DEM and the last seven characters correspond to the map reference code of the quadrangle defining the tile's spatial extent. Hillshade tile names are denoted by the prefix "hs", but are otherwise identical to the DEM they are derived from.

  16. d

    USGS NED ned19_n35x25_w084x00_nc_statewide_2003 1/9 arc-second 2012 15 x 15...

    • datadiscoverystudio.org
    img
    Updated Jan 1, 2012
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2012). USGS NED ned19_n35x25_w084x00_nc_statewide_2003 1/9 arc-second 2012 15 x 15 minute IMG [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/2f224083fe724fca8b6fe452953a2581/html
    Explore at:
    img(191.06088)Available download formats
    Dataset updated
    Jan 1, 2012
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Description

    This tile of the National Elevation Dataset (NED) is 1/9 arc-second resolution. The National Elevation Dataset (NED) serves the elevation layer of The National Map, and provides basic elevation information for earth science studies and mapping applications in the United States. Scientists and resource managers use NED data for global change research, hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. The NED is an elevation dataset that consists of seamless layers and a high resolution layer. Each of these layers are composed of the best available raster elevation data of the conterminous United States, Alaska, Hawaii, territorial islands, Mexico and Canada. The NED is updated continually as new data become available. All NED data are in the public domain. The NED are derived from diverse source data that are processed to a common coordinate system and unit of vertical measure. These data are distributed in geographic coordinates in units of decimal degrees, and in conformance with the North American Datum of 1983 (NAD 83). All elevation values are in meters and, over the continental United States, are referenced to the North American Vertical Datum of 1988 (NAVD 88). The vertical reference will vary in other areas. NED data are available nationally (except for Alaska) at resolutions of 1 arc-second (approx. 30 meters) and 1/3 arc-second (approx. 10 meters), and in limited areas at 1/9 arc-second (approx. 3 meters). In most of Alaska, only lower resolution source data are available. As a result, most NED data for Alaska are at 2-arc-second (approx. 60 meters) grid spacing. Part of Alaska is available at the 1- and 1/3-arc-second resolution from IFSAR collections starting in 2010. Plans are in place for collection of statewide IFSAR in Alaska through 2016.

  17. d

    United States Interagency Elevation Inventory (USIEI)NOAA/NMFS/EDM

    • datadiscoverystudio.org
    Updated 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). United States Interagency Elevation Inventory (USIEI)NOAA/NMFS/EDM [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/f66e522e9f32420988e24e2e87f5d266/html
    Explore at:
    Dataset updated
    2018
    Area covered
    United States,
    Description

    The U.S. Interagency Elevation Inventory displays high-accuracy topographic and bathymetric data for the United States and its territories. The project is a collaborative effort between NOAA, the U.S. Geological Survey, the Federal Emergency Management Agency, the U.S. Department of Agriculture, the U.S. Forest Service, the National Park Service and the U.S. Army Corps of Engineers. This resource is a comprehensive, nationwide listing of known high-accuracy topographic data, including lidar and IfSAR, and bathymetric data,including NOAA hydrographic surveys, multibeam data, and bathymetric lidar. The following data layers are updated quarterly: topographic lidar, topobathy shoreline lidar, IfSAR data, and bathymetric lidar. The NOAA hydrographic surveys, the multibeam and trackline bathymetry shown are provided via a service that is available from the NOAA National Centers for Environmental Information (NCEI). Access the bathymetric data directly from the NCEI at: http://maps.ngdc.noaa.gov/viewers/bathymetry/ The US Army Corps of Engineers (USACE) hydrographic surveys are provided via a service that is available from the USACE. The information provided for each elevation dataset includes many attributes such as vertical accuracy, point spacing, and date of collection. A direct link to access the data or information about the contact organization is also available through the inventory.

  18. d

    USGS NED ned19_n32x50_w092x25_la_statewide_east_2008 1/9 arc-second 2011 15...

    • datadiscoverystudio.org
    img
    Updated Jan 1, 2011
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2011). USGS NED ned19_n32x50_w092x25_la_statewide_east_2008 1/9 arc-second 2011 15 x 15 minute IMG [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/b7d28119ace249d688dd2ee2a15346c6/html
    Explore at:
    img(.387612)Available download formats
    Dataset updated
    Jan 1, 2011
    Dataset provided by
    U.S. Geological Survey
    Area covered
    Description

    This tile of the National Elevation Dataset (NED) is 1/9 arc-second resolution. The National Elevation Dataset (NED) serves the elevation layer of The National Map, and provides basic elevation information for earth science studies and mapping applications in the United States. Scientists and resource managers use NED data for global change research, hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. The NED is an elevation dataset that consists of seamless layers and a high resolution layer. Each of these layers are composed of the best available raster elevation data of the conterminous United States, Alaska, Hawaii, territorial islands, Mexico and Canada. The NED is updated continually as new data become available. All NED data are in the public domain. The NED are derived from diverse source data that are processed to a common coordinate system and unit of vertical measure. These data are distributed in geographic coordinates in units of decimal degrees, and in conformance with the North American Datum of 1983 (NAD 83). All elevation values are in meters and, over the continental United States, are referenced to the North American Vertical Datum of 1988 (NAVD 88). The vertical reference will vary in other areas. NED data are available nationally (except for Alaska) at resolutions of 1 arc-second (approx. 30 meters) and 1/3 arc-second (approx. 10 meters), and in limited areas at 1/9 arc-second (approx. 3 meters). In most of Alaska, only lower resolution source data are available. As a result, most NED data for Alaska are at 2-arc-second (approx. 60 meters) grid spacing. Part of Alaska is available at the 1- and 1/3-arc-second resolution from IFSAR collections starting in 2010. Plans are in place for collection of statewide IFSAR in Alaska through 2016.

  19. s

    USGS NED ned19_n33x50_w090x25_ms_yazoodeltamsrvrbsn_2009 1/9 arc-second 2012...

    • cinergi.sdsc.edu
    img
    Updated Jan 1, 2012
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2012). USGS NED ned19_n33x50_w090x25_ms_yazoodeltamsrvrbsn_2009 1/9 arc-second 2012 15 x 15 minute IMG [Dataset]. http://cinergi.sdsc.edu/geoportal/rest/metadata/item/43204c051a7247eba61f27d975f1023d/html
    Explore at:
    img(134.195366)Available download formats
    Dataset updated
    Jan 1, 2012
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Description

    This tile of the National Elevation Dataset (NED) is 1/9 arc-second resolution. The National Elevation Dataset (NED) serves the elevation layer of The National Map, and provides basic elevation information for earth science studies and mapping applications in the United States. Scientists and resource managers use NED data for global change research, hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. The NED is an elevation dataset that consists of seamless layers and a high resolution layer. Each of these layers are composed of the best available raster elevation data of the conterminous United States, Alaska, Hawaii, territorial islands, Mexico and Canada. The NED is updated continually as new data become available. All NED data are in the public domain. The NED are derived from diverse source data that are processed to a common coordinate system and unit of vertical measure. These data are distributed in geographic coordinates in units of decimal degrees, and in conformance with the North American Datum of 1983 (NAD 83). All elevation values are in meters and, over the continental United States, are referenced to the North American Vertical Datum of 1988 (NAVD 88). The vertical reference will vary in other areas. NED data are available nationally (except for Alaska) at resolutions of 1 arc-second (approx. 30 meters) and 1/3 arc-second (approx. 10 meters), and in limited areas at 1/9 arc-second (approx. 3 meters). In most of Alaska, only lower resolution source data are available. As a result, most NED data for Alaska are at 2-arc-second (approx. 60 meters) grid spacing. Part of Alaska is available at the 1- and 1/3-arc-second resolution from IFSAR collections starting in 2010. Plans are in place for collection of statewide IFSAR in Alaska through 2016.

  20. s

    USGS NED ned19_n35x50_w107x00_nm_albuquerque_2010 1/9 arc-second 2011 15 x...

    • cinergi.sdsc.edu
    img
    Updated Jan 1, 2011
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2011). USGS NED ned19_n35x50_w107x00_nm_albuquerque_2010 1/9 arc-second 2011 15 x 15 minute IMG [Dataset]. http://cinergi.sdsc.edu/geoportal/rest/metadata/item/ba57da0a0c6746819a3d1747099475a8/html
    Explore at:
    img(72.31443)Available download formats
    Dataset updated
    Jan 1, 2011
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Description

    This tile of the National Elevation Dataset (NED) is 1/9 arc-second resolution. The National Elevation Dataset (NED) serves the elevation layer of The National Map, and provides basic elevation information for earth science studies and mapping applications in the United States. Scientists and resource managers use NED data for global change research, hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. The NED is an elevation dataset that consists of seamless layers and a high resolution layer. Each of these layers are composed of the best available raster elevation data of the conterminous United States, Alaska, Hawaii, territorial islands, Mexico and Canada. The NED is updated continually as new data become available. All NED data are in the public domain. The NED are derived from diverse source data that are processed to a common coordinate system and unit of vertical measure. These data are distributed in geographic coordinates in units of decimal degrees, and in conformance with the North American Datum of 1983 (NAD 83). All elevation values are in meters and, over the continental United States, are referenced to the North American Vertical Datum of 1988 (NAVD 88). The vertical reference will vary in other areas. NED data are available nationally (except for Alaska) at resolutions of 1 arc-second (approx. 30 meters) and 1/3 arc-second (approx. 10 meters), and in limited areas at 1/9 arc-second (approx. 3 meters). In most of Alaska, only lower resolution source data are available. As a result, most NED data for Alaska are at 2-arc-second (approx. 60 meters) grid spacing. Part of Alaska is available at the 1- and 1/3-arc-second resolution from IFSAR collections starting in 2010. Plans are in place for collection of statewide IFSAR in Alaska through 2016.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2024). United States: average elevation in each state or territory as of 2005 [Dataset]. https://www.statista.com/statistics/1325529/lowest-points-united-states-state/
Organization logo

United States: average elevation in each state or territory as of 2005

Explore at:
Dataset updated
Aug 9, 2024
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
2005
Area covered
United States
Description

The United States has an average elevation of roughly 2,500 feet (763m) above sea level, however there is a stark contrast in elevations across the country. Highest states Colorado is the highest state in the United States, with an average elevation of 6,800 feet (2,074m) above sea level. The 10 states with the highest average elevation are all in the western region of the country, as this is, by far, the most mountainous region in the country. The largest mountain ranges in the contiguous western states are the Rocky Mountains, Sierra Nevada, and Cascade Range, while the Appalachian Mountains is the longest range in the east - however, the highest point in the U.S. is Denali (Mount McKinley), found in Alaska. Lowest states At just 60 feet above sea level, Delaware is the state with the lowest elevation. Delaware is the second smallest state, behind Rhode Island, and is located on the east coast. Larger states with relatively low elevations are found in the southern region of the country - both Florida and Louisiana have an average elevation of just 100 feet (31m) above sea level, and large sections of these states are extremely vulnerable to flooding and rising sea levels, as well as intermittent tropical storms.

Search
Clear search
Close search
Google apps
Main menu