In 2022, around****** percent of the total population of the United States was uninsured. Texas was the state with the highest percentage of uninsured among its population, while Massachusetts reported the lowest share of uninsured This statistic presents the percentage of the total population in the United States without health insurance in 2022, by state.
In 2024, 27 million people in the United States had no health insurance. The share of Americans without health insurance saw a steady increase from 2015 to 2019 before starting to decline from 2020 to 2024. Factors like the implementation of Medicaid expansion in additional states and growth in private health insurance coverage led to the decline in the uninsured population, despite the economic challenges due to the pandemic in 2020. Positive impact of Affordable Care Act In the U.S. there are public and private forms of health insurance, as well as social welfare programs such as Medicaid and programs just for veterans such as CHAMPVA. The Affordable Care Act (ACA) was enacted in 2010, which dramatically reduced the share of uninsured Americans, though there’s still room for improvement. In spite of its success in providing more Americans with health insurance, ACA has had an almost equal number of proponents and opponents since its introduction, though the share of Americans in favor of it has risen since mid-2017 to the majority. Persistent disparity among ethnic groups The share of uninsured people is higher in certain demographic groups. For instance, Hispanics continue to be the ethnic group with the highest rate of uninsured people, even after ACA. Meanwhile the share of uninsured White and Asian people is lower than the national average.
This is a Center for Behavioral Health Statistics and Quality (CBHSQ) short report examining lack of insurance rates among individuals with a behavioral health disorder in states that expanded Medicaid eligibility, did not expand Medicaid eligibility, and are undecided. It uses 2009-2013 data from the National Survey on Drug Use and Health (NSDUH).
In 2024, approximately ******** percent of the Hispanic population in the United States did not have health insurance, a historical low since 2010. In 2024, the national average was *** percent. White Americans had a below-average rate of just ***** percent, whereas *** percent of Black Americans had no health insurance.Impact of the Affordable Care ActThe Affordable Care Act (ACA), also known as Obamacare, was enacted in March 2010, which expanded the Medicaid program, made affordable health insurance available to more people and aimed to lower health care costs by supporting innovative medical care delivery methods. Though it was enacted in 2010, the full effects of it weren’t seen until 2013, when government-run insurance marketplaces such as HealthCare.gov were opened. The number of Americans without health insurance fell significantly between 2010 and 2015, but began to rise again after 2016. What caused the change?The Tax Cuts and Jobs Act of 2017 has played a role in decreasing the number of Americans with health insurance, because the individual mandate was repealed. The aim of the individual mandate (part of the ACA) was to ensure that all Americans had health coverage and thus spread the costs over the young, old, sick and healthy by imposing a large tax fine on those without coverage.
This dataset contains estimates of health insured and uninsured population for 2020 at county and state level based on US Census Bureau program, The Small Area Health Insurance Estimates (SAHIE) program. For every state and county for each demographic group, defined by age, gender, race/ethnicity and income relative to poverty, the estimated number of persons insured and uninsured is given along with the margin of error.
In 2022, the rate of uninsured children in Texas was 10.9 percent, the highest across all states in the United States. The rate of uninsured children differed regionally, with states in the Northeast tending to perform better than the national average. This statistic shows the rate of children without health insurance in the U.S. in 2022, by state.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This data is pulled from the U.S. Census website. This data is for years Calendar Years 2009-2014.
Product: SAHIE File Layout Overview
Small Area Health Insurance Estimates Program - SAHIE
Filenames: SAHIE Text and SAHIE CSV files 2009 – 2014
Source: Small Area Health Insurance Estimates Program, U.S. Census Bureau.
Internet Release Date: May 2016
Description: Model‐based Small Area Health Insurance Estimates (SAHIE) for Counties and States File Layout and Definitions
The Small Area Health Insurance Estimates (SAHIE) program was created to develop model-based estimates of health insurance coverage for counties and states. This program builds on the work of the Small Area Income and Poverty Estimates (SAIPE) program. SAHIE is only source of single-year health insurance coverage estimates for all U.S. counties.
For 2008-2014, SAHIE publishes STATE and COUNTY estimates of population with and without health insurance coverage, along with measures of uncertainty, for the full cross-classification of:
•5 age categories: 0-64, 18-64, 21-64, 40-64, and 50-64
•3 sex categories: both sexes, male, and female
•6 income categories: all incomes, as well as income-to-poverty ratio (IPR) categories 0-138%, 0-200%, 0-250%, 0-400%, and 138-400% of the poverty threshold
•4 races/ethnicities (for states only): all races/ethnicities, White not Hispanic, Black not Hispanic, and Hispanic (any race).
In addition, estimates for age category 0-18 by the income categories listed above are published.
Each year’s estimates are adjusted so that, before rounding, the county estimates sum to their respective state totals and for key demographics the state estimates sum to the national ACS numbers insured and uninsured.
This program is partially funded by the Centers for Disease Control and Prevention's (CDC), National Breast and Cervical Cancer Early Detection ProgramLink to a non-federal Web site (NBCCEDP). The CDC have a congressional mandate to provide screening services for breast and cervical cancer to low-income, uninsured, and underserved women through the NBCCEDP. Most state NBCCEDP programs define low-income as 200 or 250 percent of the poverty threshold. Also included are IPR categories relevant to the Affordable Care Act (ACA). In 2014, the ACA will help families gain access to health care by allowing Medicaid to cover families with incomes less than or equal to 138 percent of the poverty line. Families with incomes above the level needed to qualify for Medicaid, but less than or equal to 400 percent of the poverty line can receive tax credits that will help them pay for health coverage in the new health insurance exchanges.
We welcome your feedback as we continue to research and improve our estimation methods. The SAHIE program's age model methodology and estimates have undergone internal U.S. Census Bureau review as well as external review. See the SAHIE Methodological Review page for more details and a summary of the comments and our response.
The SAHIE program models health insurance coverage by combining survey data from several sources, including:
•The American Community Survey (ACS)
•Demographic population estimates
•Aggregated federal tax returns
•Participation records for the Supplemental Nutrition Assistance Program (SNAP), formerly known as the Food Stamp program
•County Business Patterns
•Medicaid
•Children's Health Insurance Program (CHIP) participation records
•Census 2010
Margin of error (MOE). Some ACS products provide
an MOE instead of confidence intervals. An MOE is the
difference between an estimate and its upper or lower
confidence bounds. Confidence bounds can be created
by adding the margin of error to the estimate (for the
upper bound) and subtracting the margin of error from
the estimate (for the lower bound). All published ACS
margins of error are based on a 90-percent confidence
level.
Splitgraph serves as an HTTP API that lets you run SQL queries directly on this data to power Web applications. For example:
See the Splitgraph documentation for more information.
This product has been archived in accordance with Federal Grant Compliance and is no longer actively updated. The site remains accessible for historical reference purposes. [Disclaimer: This application is a DRAFT and is still under development. Your feedback is welcome.]Data Use: This map highlights the distribution of health insurance coverage across different neighborhoods in Dallas. It identifies areas with high rates of uninsured residents, providing critical insights into healthcare accessibility and potential public health risks. This information is essential for public health planning, enabling stakeholders to allocate resources effectively, design targeted health interventions, and improve overall health outcomes by increasing insurance coverage and access to healthcare services.Data Source: U.S. Census Bureau, "Selected Characteristics of Health Insurance Coverage in the United States," American Community Survey, ACS 5-Year Estimates Subject Tables, Table S2701, 2022.Variables:S2701_C05_001E: Estimate Percent Uninsured Civilian noninstitutionalized populationS2701_C03_017E: Estimate Percent Insured Black or African American aloneS2701_C03_018E: Estimate Percent Insured American Indian and Alaska Native aloneS2701_C03_019E: Estimate Percent Insured Asian aloneS2701_C03_020E: Estimate Percent Insured Native Hawaiian and Other Pacific Islander aloneS2701_C03_021E: Estimate Percent Insured Some other race aloneS2701_C03_022E: Estimate Percent Insured Two or more racesS2701_C03_023E: Estimate Percent Insured Hispanic or Latino (of any race)S2701_C03_024E: Estimate Percent Insured White alone, not Hispanic or LatinoInsurance_Rank: Insurance RankRank Scoring Process: Census tracts were grouped into quintiles based on the percentage of insured individuals (S2701_C03_001E).The scoring process categorizes each tract as follows:Score of 1: 0% - 7% (lowest uninsured rates)Score of 2: 7% - 15.2%Score of 3: 15.3% - 25%Score of 4: 25.1% - 32.2%Score of 5: 32.3% - 66.2% (highest uninsured rates)Year: 2022Provider: U.S. Census Bureau
Uninsured rate, by census tract, for the state of Florida according to the US Census Bureau estimates for 2013For technical assistance, contact the Florida's Roadmap to Healthy Living Administrator
In 2024, **** percent of U.S. adults in non-Medicaid expansion states did not have health insurance. In comparison, *** percent of U.S. adults in Medicaid expansion states were uninsured. There was a difference in the uninsured rate between these states even before Medicaid expansion, but the expansion due to ACA has made the gap much larger. This statistic shows the percentage of adults aged ***** years without health insurance in the United States from 2010 to 2024, by state Medicaid expansion status.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The American Community Survey (ACS) helps local officials, community leaders, and businesses understand the changes taking place in their communities. It is the premier source for detailed population and housing information about our nation. This dataset provides estimates by county for Health Insurance Coverage and is summarized from summary table S2701: SELECTED CHARACTERISTICS OF HEALTH INSURANCE COVERAGE IN THE UNITED STATES. The 5-year estimates are used to provide detail on every county in Pennsylvania and includes breakouts by Age, Gender, Race, Ethnicity, Household Income, and the Ratio of Income to Poverty.
An blank cell within the dataset indicates that either no sample observations or too few sample observations were available to compute the statistic for that area.
Margin of error (MOE). Some ACS products provide an MOE instead of confidence intervals. An MOE is the difference between an estimate and its upper or lower confidence bounds. Confidence bounds can be created by adding the margin of error to the estimate (for the upper bound) and subtracting the margin of error from the estimate (for the lower bound). All published ACS margins of error are based on a 90-percent confidence level.
While an ACS 1-year estimate includes information collected over a 12-month period, an ACS 5-year estimate includes data collected over a 60-month period. In the case of ACS 1-year estimates, the period is the calendar year (e.g., the 2015 ACS covers the period from January 2015 through December 2015).
In the case of ACS multiyear estimates, the period is 5 calendar years (e.g., the 2011–2015 ACS estimates cover the period from January 2011 through December 2015). Therefore, ACS estimates based on data collected from 2011–2015 should not be labeled “2013,” even though that is the midpoint of the 5-year period.
Multiyear estimates should be labeled to indicate clearly the full period of time (e.g., “The child poverty rate in 2011–2015 was X percent.”). They do not describe any specific day, month, or year within that time period.
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
The American Community Survey (ACS) helps local officials, community leaders, and businesses understand the changes taking place in their communities. It is the premier source for detailed population and housing information about our nation. This dataset provides estimates for Health Insurance Coverage in Pennsylvania and is summarized from summary table S2701: SELECTED CHARACTERISTICS OF HEALTH INSURANCE COVERAGE IN THE UNITED STATES.
A blank cell within the dataset indicates that either no sample observations or too few sample observations were available to compute the statistic for that area.
Margin of error (MOE). Some ACS products provide an MOE instead of confidence intervals. An MOE is the difference between an estimate and its upper or lower confidence bounds. Confidence bounds can be created by adding the margin of error to the estimate (for the upper bound) and subtracting the margin of error from the estimate (for the lower bound). All published ACS margins of error are based on a 90-percent confidence level.
While an ACS 1-year estimate includes information collected over a 12-month period, an ACS 5-year estimate includes data collected over a 60-month period. In the case of ACS 1-year estimates, the period is the calendar year (e.g., the 2015 ACS covers the period from January 2015 through December 2015).
This layer shows the percentage of the civilian noninstitutionalized population who do not have insurance. This is shown by census tract centroids. The data values are from the 2012-2016 American Community Survey 5-year estimate in the B27001 Table for health insurance coverage status broken down by by age and sex characteristics.This map helps to answer a few questions:How many people in the United States don't have health insurance?Where are the concentrations of uninsured population?This map helps to tell a local pattern about insurance in the United States. The data can be stratified by different age and sex characteristics in order to create additional maps. By default, the pop-up provides a breakdown of total male and female uninsured population. This data was downloaded from the United States Census Bureau American Fact Finder on March 1, 2018. It was then joined with 2016 vintage centroid points and hosted to ArcGIS Online and into the Living Atlas. The data contains additional attributes that can be used for mapping and analysis. Nationally, the breakdown of insurance for the civilian noninstitutionalized population in the US is:
Total: 313,576,137 +/-10,365
Male: 153,162,940 +/-12,077
Under 6 years: 12,227,441 +/-11,224
With health insurance coverage 11,643,526 +/-12,783
No health insurance coverage 583,915 +/-6,438
6 to 17 years: 25,282,489 +/-12,396
With health insurance coverage 23,659,835 +/-16,339
No health insurance coverage 1,622,654 +/-14,500
18 to 24 years: 15,350,990 +/-8,369
With health insurance coverage 12,112,729 +/-19,586
No health insurance coverage 3,238,261 +/-24,081
25 to 34 years: 20,901,264 +/-8,155
With health insurance coverage 15,669,472 +/-36,401
No health insurance coverage 5,231,792 +/-38,887
35 to 44 years: 19,499,072 +/-6,321
With health insurance coverage 15,722,620 +/-41,969
No health insurance coverage 3,776,452 +/-41,916
45 to 54 years: 20,965,500 +/-5,283
With health insurance coverage 17,819,431 +/-33,014
No health insurance coverage 3,146,069 +/-31,181
55 to 64 years: 19,068,251 +/-3,959
With health insurance coverage 17,076,497 +/-20,830
No health insurance coverage 1,991,754 +/-19,813
65 to 74 years: 12,168,198 +/-3,453
With health insurance coverage 12,041,594 +/-4,736
No health insurance coverage 126,604 +/-3,207
75 years and over: 7,699,735 +/-3,458
With health insurance coverage 7,657,815 +/-3,794
No health insurance coverage 41,920 +/-1,719
Female: 160,413,197 +/-8,724
Under 6 years: 11,684,980 +/-10,395
With health insurance coverage 11,115,775 +/-13,062
No health insurance coverage 569,205 +/-7,132
6 to 17 years: 24,280,468 +/-11,445
With health insurance coverage 22,723,174 +/-14,642
No health insurance coverage 1,557,294 +/-13,468
18 to 24 years: 15,151,707 +/-5,432
With health insurance coverage 12,591,379 +/-16,744
No health insurance coverage 2,560,328 +/-18,826
25 to 34 years: 21,367,510 +/-4,829
With health insurance coverage 17,505,087 +/-32,122
No health insurance coverage 3,862,423 +/-31,651
35 to 44 years: 20,279,901 +/-4,751
With health insurance coverage 17,146,763 +/-32,076
No health insurance coverage 3,133,138 +/-31,659
45 to 54 years: 21,975,842 +/-5,087
With health insurance coverage 19,083,932 +/-27,415
No health insurance coverage 2,891,910 +/-25,022
55 to 64 years: 20,665,987 +/-3,867
With health insurance coverage 18,537,874 +/-18,484
No health insurance coverage 2,128,113 +/-16,614
65 to 74 years: 13,896,484 +/-3,882
With health insurance coverage 13,730,727 +/-6,177
No health insurance coverage 165,757 +/-3,857
75 years and over: 11,110,318 +/-3,977
With health insurance coverage 11,037,661 +/-4,391
No health insurance coverage 72,657 +/-2,120 Data note from the US Census Bureau:[ACS] data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Data and Documentation section...Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau''s Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities and towns and estimates of housing units for states and counties..Explanation of Symbols:An ''**'' entry in the margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate..An ''-'' entry in the estimate column indicates that either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution..An ''-'' following a median estimate means the median falls in the lowest interval of an open-ended distribution..An ''+'' following a median estimate means the median falls in the upper interval of an open-ended distribution..An ''***'' entry in the margin of error column indicates that the median falls in the lowest interval or upper interval of an open-ended distribution. A statistical test is not appropriate..An ''*****'' entry in the margin of error column indicates that the estimate is controlled. A statistical test for sampling variability is not appropriate. .An ''N'' entry in the estimate and margin of error columns indicates that data for this geographic area cannot be displayed because the number of sample cases is too small..An ''(X)'' means that the estimate is not applicable or not available..Estimates of urban and rural population, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..While the 2010-2014 American Community Survey (ACS) data generally reflect the February 2013 Office of Management and Budget (OMB) definitions of metropolitan and micropolitan statistical areas; in certain instances the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB definitions due to differences in the effective dates of the geographic entities..The health insurance coverage category names were modified in 2010. See ACS Health Insurance Definitions for a list of the insurance type definitions..Logical coverage edits applying a rules-based assignment of Medicaid, Medicare and military health coverage were added as of 2009 -- please see http://www.census.gov/hhes/www/hlthins/publications/coverage_edits_final.pdf for more details. The corresponding 2008 data table in American FactFinder does not incorporate these edits and is therefore not comparable to this table in 2009, 2010, 2011, or 2012. Select geographies of 2008 data comparable to the 2009, 2010, 2011, and 2012 tables are accessible at http://www.census.gov/hhes/www/hlthins/data/acs/2008/re-run.html..Occupation codes are 4-digit codes and are based on Standard Occupational Classification 2010..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables..Source: U.S. Census Bureau, 2010-2014 American Community Survey 5-Year Estimates
Local, state, tribal, and federal agencies use health insurance coverage data to plan government programs, determine eligibility criteria, and encourage eligible people to participate in health insurance programs. This map shows where those with no health insurance live. Map opens in Houston, TX. Use the bookmarks or search to see other cities. Zoom out to see map render data for counties and states.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section...Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau''s Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties..Explanation of Symbols:An ''**'' entry in the margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate..An ''-'' entry in the estimate column indicates that either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution..An ''-'' following a median estimate means the median falls in the lowest interval of an open-ended distribution..An ''+'' following a median estimate means the median falls in the upper interval of an open-ended distribution..An ''***'' entry in the margin of error column indicates that the median falls in the lowest interval or upper interval of an open-ended distribution. A statistical test is not appropriate..An ''*****'' entry in the margin of error column indicates that the estimate is controlled. A statistical test for sampling variability is not appropriate. .An ''N'' entry in the estimate and margin of error columns indicates that data for this geographic area cannot be displayed because the number of sample cases is too small..An ''(X)'' means that the estimate is not applicable or not available..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..While the 2017 American Community Survey (ACS) data generally reflect the July 2015 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas, in certain instances the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineations due to differences in the effective dates of the geographic entities..Beginning in 2017, selected variable categories were updated, including age-categories, income-to-poverty ratio (IPR) categories, and the age universe for certain employment and education variables. See user note entitled "Health Insurance Table Updates" for further details..Logical coverage edits applying a rules-based assignment of Medicaid, Medicare and military health coverage were added as of 2009 -- please see https://www.census.gov/library/working-papers/2010/demo/coverage_edits_final.html for more details. The 2008 data table in American FactFinder does not incorporate these edits. Therefore, the estimates that appear in these tables are not comparable to the estimates in the 2009 and later tables. Select geographies of 2008 data comparable to the 2009 and later tables are available at https://www.census.gov/data/tables/time-series/acs/1-year-re-run-health-insurance.html. The health insurance coverage category names were modified in 2010. See https://www.census.gov/topics/health/health-insurance/about/glossary.html#par_textimage_18 for a list of the insurance type definitions..Occupation codes are 4-digit codes and are based on Standard Occupational Classification 2010..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables..Source: U.S. Census Bureau, 2017 American Community Survey 1-Year Estimates
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties..Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2015-2019 American Community Survey 5-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Logical coverage edits applying a rules-based assignment of Medicaid, Medicare and military health coverage were added as of 2009 -- please see https://www.census.gov/library/working-papers/2010/demo/coverage_edits_final.html for more details. Select geographies of 2008 data comparable to the 2009 and later tables are available at https://www.census.gov/data/tables/time-series/acs/1-year-re-run-health-insurance.html. The health insurance coverage category names were modified in 2010. See https://www.census.gov/topics/health/health-insurance/about/glossary.html#par_textimage_18 for a list of the insurance type definitions..Beginning in 2017, selected variable categories were updated, including age-categories, income-to-poverty ratio (IPR) categories, and the age universe for certain employment and education variables. See user note entitled "Health Insurance Table Updates" for further details..Occupation titles and their 4-digit codes are based on the Standard Occupational Classification (SOC). The Census occupation codes for 2018 and later years are based on the 2018 revision of the SOC. To allow for the creation of the multiyear tables, occupation data in the multiyear files (prior to data year 2018) were recoded to the 2018 Census occupation codes. We recommend using caution when comparing data coded using 2018 Census occupation codes with data coded using Census occupation codes prior to data year 2018. For more information on the Census occupation code changes, please visit our website at https://www.census.gov/topics/employment /industry-occupation/guidance/code-lists.html..The 2015-2019 American Community Survey (ACS) data generally reflect the September 2018 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas. In certain instances, the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineation lists due to differences in the effective dates of the geographic entities..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:An "**" entry in the margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.An "-" entry in the estimate column indicates that either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution, or the margin of error associated with a median was larger than the median itself.An "-" following a median estimate means the median falls in the lowest interval of an open-ended distribution.An "+" following a median estimate means the median falls in the upper interval of an open-ended distribution.An "***" entry in the margin of error column indicates that the median falls in the lowest interval or upper interval of an open-ended distribution. A statistical test is not appropriate.An "*****" entry in the margin of error column indicates that the estimate is controlled. A statistical test for ...
In 2023, **** percent of people aged 18 to 64 in the United States didn't have health insurance, the lowest in the provided time interval. This statistic contains data on the percentage of U.S. Americans without health insurance coverage from 1997 to 2023, by age.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Key Table Information.Table Title.Selected Characteristics of the Uninsured in the United States.Table ID.ACSST1Y2024.S2702.Survey/Program.American Community Survey.Year.2024.Dataset.ACS 1-Year Estimates Subject Tables.Source.U.S. Census Bureau, 2024 American Community Survey, 1-Year Estimates.Dataset Universe.The dataset universe of the American Community Survey (ACS) is the U.S. resident population and housing. For more information about ACS residence rules, see the ACS Design and Methodology Report. Note that each table describes the specific universe of interest for that set of estimates..Methodology.Unit(s) of Observation.American Community Survey (ACS) data are collected from individuals living in housing units and group quarters, and about housing units whether occupied or vacant. For more information about ACS sampling and data collection, see the ACS Design and Methodology Report..Geography Coverage.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year.Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Sampling.The ACS consists of two separate samples: housing unit addresses and group quarters facilities. Independent housing unit address samples are selected for each county or county-equivalent in the U.S. and Puerto Rico, with sampling rates depending on a measure of size for the area. For more information on sampling in the ACS, see the Accuracy of the Data document..Confidentiality.The Census Bureau has modified or suppressed some estimates in ACS data products to protect respondents' confidentiality. Title 13 United States Code, Section 9, prohibits the Census Bureau from publishing results in which an individual's data can be identified. For more information on confidentiality protection in the ACS, see the Accuracy of the Data document..Technical Documentation/Methodology.Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables.Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Weights.ACS estimates are obtained from a raking ratio estimation procedure that results in the assignment of two sets of weights: a weight to each sample person record and a weight to each sample housing unit record. Estimates of person characteristics are based on the person weight. Estimates of family, household, and housing unit characteristics are based on the housing unit weight. For any given geographic area, a characteristic total is estimated by summing the weights assigned to the persons, households, families or housing units possessing the characteristic in the geographic area. For more information on weighting and estimation in the ACS, see the Accuracy of the Data document.Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cit...
This layer shows health insurance coverage by type and by age group. This is shown by tract, county, and state centroids. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the count and percent uninsured. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B27010 (Not all lines of this ACS table are available in this feature layer.)Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
In 2022, around****** percent of the total population of the United States was uninsured. Texas was the state with the highest percentage of uninsured among its population, while Massachusetts reported the lowest share of uninsured This statistic presents the percentage of the total population in the United States without health insurance in 2022, by state.