70 datasets found
  1. COVID-19 death rates in the United States as of March 10, 2023, by state

    • statista.com
    Updated May 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). COVID-19 death rates in the United States as of March 10, 2023, by state [Dataset]. https://www.statista.com/statistics/1109011/coronavirus-covid19-death-rates-us-by-state/
    Explore at:
    Dataset updated
    May 15, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    As of March 10, 2023, the death rate from COVID-19 in the state of New York was 397 per 100,000 people. New York is one of the states with the highest number of COVID-19 cases.

  2. Number of COVID-19 deaths in the United States as of March 10, 2023, by...

    • statista.com
    Updated Mar 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). Number of COVID-19 deaths in the United States as of March 10, 2023, by state [Dataset]. https://www.statista.com/statistics/1103688/coronavirus-covid19-deaths-us-by-state/
    Explore at:
    Dataset updated
    Mar 28, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    As of March 10, 2023, there have been 1.1 million deaths related to COVID-19 in the United States. There have been 101,159 deaths in the state of California, more than any other state in the country – California is also the state with the highest number of COVID-19 cases.

    The vaccine rollout in the U.S. Since the start of the pandemic, the world has eagerly awaited the arrival of a safe and effective COVID-19 vaccine. In the United States, the immunization campaign started in mid-December 2020 following the approval of a vaccine jointly developed by Pfizer and BioNTech. As of March 22, 2023, the number of COVID-19 vaccine doses administered in the U.S. had reached roughly 673 million. The states with the highest number of vaccines administered are California, Texas, and New York.

    Vaccines achieved due to work of research groups Chinese authorities initially shared the genetic sequence to the novel coronavirus in January 2020, allowing research groups to start studying how it invades human cells. The surface of the virus is covered with spike proteins, which enable it to bind to human cells. Once attached, the virus can enter the cells and start to make people ill. These spikes were of particular interest to vaccine manufacturers because they hold the key to preventing viral entry.

  3. n

    Coronavirus (Covid-19) Data in the United States

    • nytimes.com
    • openicpsr.org
    • +2more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html
    Explore at:
    Dataset provided by
    New York Times
    Description

    The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

    Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

    We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

    The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

  4. Rate of U.S. COVID-19 cases as of March 10, 2023, by state

    • statista.com
    Updated May 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Rate of U.S. COVID-19 cases as of March 10, 2023, by state [Dataset]. https://www.statista.com/statistics/1109004/coronavirus-covid19-cases-rate-us-americans-by-state/
    Explore at:
    Dataset updated
    May 15, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    As of March 10, 2023, the state with the highest rate of COVID-19 cases was Rhode Island followed by Alaska. Around 103.9 million cases have been reported across the United States, with the states of California, Texas, and Florida reporting the highest numbers of infections.

    From an epidemic to a pandemic The World Health Organization declared the COVID-19 outbreak as a pandemic on March 11, 2020. The term pandemic refers to multiple outbreaks of an infectious illness threatening multiple parts of the world at the same time; when the transmission is this widespread, it can no longer be traced back to the country where it originated. The number of COVID-19 cases worldwide is roughly 683 million, and it has affected almost every country in the world.

    The symptoms and those who are most at risk Most people who contract the virus will suffer only mild symptoms, such as a cough, a cold, or a high temperature. However, in more severe cases, the infection can cause breathing difficulties and even pneumonia. Those at higher risk include older persons and people with pre-existing medical conditions, including diabetes, heart disease, and lung disease. Those aged 85 years and older have accounted for around 27 percent of all COVID deaths in the United States, although this age group makes up just two percent of the total population

  5. COVID-19 cases and deaths per million in 210 countries as of July 13, 2022

    • statista.com
    • tokrwards.com
    Updated Nov 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). COVID-19 cases and deaths per million in 210 countries as of July 13, 2022 [Dataset]. https://www.statista.com/statistics/1104709/coronavirus-deaths-worldwide-per-million-inhabitants/
    Explore at:
    Dataset updated
    Nov 25, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    Based on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.

    The difficulties of death figures

    This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.

    Where are these numbers coming from?

    The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.

  6. Trends in COVID-19 Cases and Deaths in the United States, by County-level...

    • data.cdc.gov
    • data.virginia.gov
    • +1more
    csv, xlsx, xml
    Updated Jun 8, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC COVID-19 Response (2023). Trends in COVID-19 Cases and Deaths in the United States, by County-level Population Factors - ARCHIVED [Dataset]. https://data.cdc.gov/dataset/Trends-in-COVID-19-Cases-and-Deaths-in-the-United-/njmz-dpbc
    Explore at:
    xml, xlsx, csvAvailable download formats
    Dataset updated
    Jun 8, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC COVID-19 Response
    Area covered
    United States
    Description

    Reporting of Aggregate Case and Death Count data was discontinued on May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.

    The surveillance case definition for COVID-19, a nationally notifiable disease, was first described in a position statement from the Council for State and Territorial Epidemiologists, which was later revised. However, there is some variation in how jurisdictions implemented these case definitions. More information on how CDC collects COVID-19 case surveillance data can be found at FAQ: COVID-19 Data and Surveillance.

    Aggregate Data Collection Process Since the beginning of the COVID-19 pandemic, data were reported from state and local health departments through a robust process with the following steps:

    • Aggregate county-level counts were obtained indirectly, via automated overnight web collection, or directly, via a data submission process.
    • If more than one official county data source existed, CDC used a comprehensive data selection process comparing each official county data source to retrieve the highest case and death counts, unless otherwise specified by the state.
    • A CDC data team reviewed counts for congruency prior to integration and set up alerts to monitor for discrepancies in the data.
    • CDC routinely compiled these data and post the finalized information on COVID Data Tracker.
    • County level data were aggregated to obtain state- and territory- specific totals.
    • Counting of cases and deaths is based on date of report and not on the date of symptom onset. CDC calculates rates in these data by using population estimates provided by the US Census Bureau Population Estimates Program (2019 Vintage).
    • COVID-19 aggregate case and death data are organized in a time series that includes cumulative number of cases and deaths as reported by a jurisdiction on a given date. New case and death counts are calculated as the week-to-week change in cumulative counts of cases and deaths reported (i.e., newly reported cases and deaths = cumulative number of cases/deaths reported this week minus the cumulative total reported the prior week.

    This process was collaborative, with CDC and jurisdictions working together to ensure the accuracy of COVID-19 case and death numbers. County counts provided the most up-to-date numbers on cases and deaths by report date. Throughout data collection, CDC retrospectively updated counts to correct known data quality issues.

    Description This archived public use dataset focuses on the cumulative and weekly case and death rates per 100,000 persons within various sociodemographic factors across all states and their counties. All resulting data are expressed as rates calculated as the number of cases or deaths per 100,000 persons in counties meeting various classification criteria using the US Census Bureau Population Estimates Program (2019 Vintage).

    Each county within jurisdictions is classified into multiple categories for each factor. All rates in this dataset are based on classification of counties by the characteristics of their population, not individual-level factors. This applies to each of the available factors observed in this dataset. Specific factors and their corresponding categories are detailed below.

    Population-level factors Each unique population factor is detailed below. Please note that the “Classification” column describes each of the 12 factors in the dataset, including a data dictionary describing what each numeric digit means within each classification. The “Category” column uses numeric digits (2-6, depending on the factor) defined in the “Classification” column.

    Metro vs. Non-Metro – “Metro_Rural” Metro vs. Non-Metro classification type is an aggregation of the 6 National Center for Health Statistics (NCHS) Urban-Rural classifications, where “Metro” counties include Large Central Metro, Large Fringe Metro, Medium Metro, and Small Metro areas and “Non-Metro” counties include Micropolitan and Non-Core (Rural) areas. 1 – Metro, including “Large Central Metro, Large Fringe Metro, Medium Metro, and Small Metro” areas 2 – Non-Metro, including “Micropolitan, and Non-Core” areas

    Urban/rural - “NCHS_Class” Urban/rural classification type is based on the 2013 National Center for Health Statistics Urban-Rural Classification Scheme for Counties. Levels consist of:

    1 Large Central Metro
    2 Large Fringe Metro 3 Medium Metro 4 Small Metro 5 Micropolitan 6 Non-Core (Rural)

    American Community Survey (ACS) data were used to classify counties based on their age, race/ethnicity, household size, poverty level, and health insurance status distributions. Cut points were generated by using tertiles and categorized as High, Moderate, and Low percentages. The classification “Percent non-Hispanic, Native Hawaiian/Pacific Islander” is only available for “Hawaii” due to low numbers in this category for other available locations. This limitation also applies to other race/ethnicity categories within certain jurisdictions, where 0 counties fall into the certain category. The cut points for each ACS category are further detailed below:

    Age 65 - “Age65”

    1 Low (0-24.4%) 2 Moderate (>24.4%-28.6%) 3 High (>28.6%)

    Non-Hispanic, Asian - “NHAA”

    1 Low (<=5.7%) 2 Moderate (>5.7%-17.4%) 3 High (>17.4%)

    Non-Hispanic, American Indian/Alaskan Native - “NHIA”

    1 Low (<=0.7%) 2 Moderate (>0.7%-30.1%) 3 High (>30.1%)

    Non-Hispanic, Black - “NHBA”

    1 Low (<=2.5%) 2 Moderate (>2.5%-37%) 3 High (>37%)

    Hispanic - “HISP”

    1 Low (<=18.3%) 2 Moderate (>18.3%-45.5%) 3 High (>45.5%)

    Population in Poverty - “Pov”

    1 Low (0-12.3%) 2 Moderate (>12.3%-17.3%) 3 High (>17.3%)

    Population Uninsured- “Unins”

    1 Low (0-7.1%) 2 Moderate (>7.1%-11.4%) 3 High (>11.4%)

    Average Household Size - “HH”

    1 Low (1-2.4) 2 Moderate (>2.4-2.6) 3 High (>2.6)

    Community Vulnerability Index Value - “CCVI” COVID-19 Community Vulnerability Index (CCVI) scores are from Surgo Ventures, which range from 0 to 1, were generated based on tertiles and categorized as:

    1 Low Vulnerability (0.0-0.4) 2 Moderate Vulnerability (0.4-0.6) 3 High Vulnerability (0.6-1.0)

    Social Vulnerability Index Value – “SVI" Social Vulnerability Index (SVI) scores (vintage 2020), which also range from 0 to 1, are from CDC/ASTDR’s Geospatial Research, Analysis & Service Program. Cut points for CCVI and SVI scores were generated based on tertiles and categorized as:

    1 Low Vulnerability (0-0.333) 2 Moderate Vulnerability (0.334-0.666) 3 High Vulnerability (0.667-1)

  7. Excess Deaths Associated with COVID-19

    • datalumos.org
    delimited
    Updated Apr 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Department of Health and Human Services. Centers for Disease Control and Prevention. National Center for Health Statistics (2025). Excess Deaths Associated with COVID-19 [Dataset]. http://doi.org/10.3886/E227667V1
    Explore at:
    delimitedAvailable download formats
    Dataset updated
    Apr 24, 2025
    Authors
    United States Department of Health and Human Services. Centers for Disease Control and Prevention. National Center for Health Statistics
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2017 - 2023
    Area covered
    United States
    Description

    Estimates of excess deaths can provide information about the burden of mortality potentially related to the COVID-19 pandemic, including deaths that are directly or indirectly attributed to COVID-19. Excess deaths are typically defined as the difference between the observed numbers of deaths in specific time periods and expected numbers of deaths in the same time periods. This visualization provides weekly estimates of excess deaths by the jurisdiction in which the death occurred. Weekly counts of deaths are compared with historical trends to determine whether the number of deaths is significantly higher than expected.Counts of deaths from all causes of death, including COVID-19, are presented. As some deaths due to COVID-19 may be assigned to other causes of deaths (for example, if COVID-19 was not diagnosed or not mentioned on the death certificate), tracking all-cause mortality can provide information about whether an excess number of deaths is observed, even when COVID-19 mortality may be undercounted. Additionally, deaths from all causes excluding COVID-19 were also estimated. Comparing these two sets of estimates — excess deaths with and without COVID-19 — can provide insight about how many excess deaths are identified as due to COVID-19, and how many excess deaths are reported as due to other causes of death. These deaths could represent misclassified COVID-19 deaths, or potentially could be indirectly related to the COVID-19 pandemic (e.g., deaths from other causes occurring in the context of health care shortages or overburdened health care systems).Estimates of excess deaths can be calculated in a variety of ways, and will vary depending on the methodology and assumptions about how many deaths are expected to occur. Estimates of excess deaths presented in this webpage were calculated using Farrington surveillance algorithms (1). A range of values for the number of excess deaths was calculated as the difference between the observed count and one of two thresholds (either the average expected count or the upper bound of the 95% prediction interval), by week and jurisdiction.Provisional death counts are weighted to account for incomplete data. However, data for the most recent week(s) are still likely to be incomplete. Weights are based on completeness of provisional data in prior years, but the timeliness of data may have changed in 2020 relative to prior years, so the resulting weighted estimates may be too high in some jurisdictions and too low in others. As more information about the accuracy of the weighted estimates is obtained, further refinements to the weights may be made, which will impact the estimates. Any changes to the methods or weighting algorithm will be noted in the Technical Notes when they occur. More detail about the methods, weighting, data, and limitations can be found in the Technical Notes.This visualization includes several different estimates:Number of excess deaths: A range of estimates for the number of excess deaths was calculated as the difference between the observed count and one of two thresholds (either the average expected count or the upper bound threshold), by week and jurisdiction. Negative values, where the observed count fell below the threshold, were set to zero.Percent excess: The percent excess was defined as the number of excess deaths divided by the threshold.Total number of excess deaths: The total number of excess deaths in each jurisdiction was calculated by summing the excess deaths in each week, from February 1, 2020 to present. Similarly, the total number of excess deaths for the US overall was computed as a sum of jurisdiction-specific numbers of excess deaths (with negative values set to zero), and not directly estimated using the Farrington surveillance algorithms.Select a dashboard from the menu, then click on “Update Dashboard” to navigate through the different graphics.The first dashboard shows the weekly predicted counts of deaths from all causes, and the threshold for the expected number of deaths. Select a jurisdiction from the drop-down menu to show data for that jurisdiction.The second dashboard shows the weekly predicted counts of deaths from all causes and the weekly count of deaths from all causes excluding COVID-19. Select a jurisdiction from the drop-down menu to show data for that jurisdiction.The th

  8. f

    DataSheet1_Not One Pandemic: A Multilevel Mixture Model Investigation of the...

    • frontiersin.figshare.com
    docx
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Holmes Finch; Maria E. Hernández Finch; Katherine Mytych (2023). DataSheet1_Not One Pandemic: A Multilevel Mixture Model Investigation of the Relationship Between Poverty and the Course of the COVID-19 Pandemic Death Rate in the United States.docx [Dataset]. http://doi.org/10.3389/fsoc.2021.629042.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Frontiers
    Authors
    Holmes Finch; Maria E. Hernández Finch; Katherine Mytych
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    The COVID-19 pandemic, which began in China in late 2019, and subsequently spread across the world during the first several months of 2020, has had a dramatic impact on all facets of life. At the same time, it has not manifested in the same way in every nation. Some countries experienced a large initial spike in cases and deaths, followed by a rapid decline, whereas others had relatively low rates of both outcomes throughout the first half of 2020. The United States experienced a unique pattern of the virus, with a large initial spike, followed by a moderate decline in cases, followed by second and then third spikes. In addition, research has shown that in the United States the severity of the pandemic has been associated with poverty and access to health care services. This study was designed to examine whether the course of the pandemic has been uniform across America, and if not how it differed, particularly with respect to poverty. Results of a random intercept multilevel mixture model revealed that the pandemic followed four distinct paths in the country. The least ethnically diverse (85.1% white population) and most rural (82.8% rural residents) counties had the lowest death rates (0.06/1000) and the weakest link between deaths due to COVID-19 and poverty (b = 0.03). In contrast, counties with the highest proportion of urban residents (100%), greatest ethnic diversity (48.2% nonwhite), and highest population density (751.4 people per square mile) had the highest COVID-19 death rates (0.33/1000), and strongest relationship between the COVID-19 death rate and poverty (b = 46.21). Given these findings, American policy makers need to consider developing responses to future pandemics that account for local characteristics. These responses must take special account of pandemic responses among people of color, who suffered the highest death rates in the nation.

  9. T

    CORONAVIRUS DEATHS by Country Dataset

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Mar 4, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2020). CORONAVIRUS DEATHS by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/coronavirus-deaths
    Explore at:
    csv, excel, xml, jsonAvailable download formats
    Dataset updated
    Mar 4, 2020
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    World
    Description

    This dataset provides values for CORONAVIRUS DEATHS reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  10. Preliminary 2024-2025 U.S. COVID-19 Burden Estimates

    • data.cdc.gov
    • healthdata.gov
    • +1more
    csv, xlsx, xml
    Updated Sep 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Coronavirus and Other Respiratory Viruses Division (CORVD), National Center for Immunization and Respiratory Diseases (NCIRD). (2025). Preliminary 2024-2025 U.S. COVID-19 Burden Estimates [Dataset]. https://data.cdc.gov/Public-Health-Surveillance/Preliminary-2024-2025-U-S-COVID-19-Burden-Estimate/ahrf-yqdt
    Explore at:
    xlsx, csv, xmlAvailable download formats
    Dataset updated
    Sep 26, 2025
    Dataset provided by
    National Center for Immunization and Respiratory Diseases
    Authors
    Coronavirus and Other Respiratory Viruses Division (CORVD), National Center for Immunization and Respiratory Diseases (NCIRD).
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Area covered
    United States
    Description

    This dataset represents preliminary estimates of cumulative U.S. COVID-19 disease burden for the 2024-2025 period, including illnesses, outpatient visits, hospitalizations, and deaths. The weekly COVID-19-associated burden estimates are preliminary and based on continuously collected surveillance data from patients hospitalized with laboratory-confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. The data come from the Coronavirus Disease 2019 (COVID-19)-Associated Hospitalization Surveillance Network (COVID-NET), a surveillance platform that captures data from hospitals that serve about 10% of the U.S. population. Each week CDC estimates a range (i.e., lower estimate and an upper estimate) of COVID-19 -associated burden that have occurred since October 1, 2024.

    Note: Data are preliminary and subject to change as more data become available. Rates for recent COVID-19-associated hospital admissions are subject to reporting delays; as new data are received each week, previous rates are updated accordingly.

    References

    1. Reed C, Chaves SS, Daily Kirley P, et al. Estimating influenza disease burden from population-based surveillance data in the United States. PLoS One. 2015;10(3):e0118369. https://doi.org/10.1371/journal.pone.0118369 
    2. Rolfes, MA, Foppa, IM, Garg, S, et al. Annual estimates of the burden of seasonal influenza in the United States: A tool for strengthening influenza surveillance and preparedness. Influenza Other Respi Viruses. 2018; 12: 132– 137. https://doi.org/10.1111/irv.12486
    3. Tokars JI, Rolfes MA, Foppa IM, Reed C. An evaluation and update of methods for estimating the number of influenza cases averted by vaccination in the United States. Vaccine. 2018;36(48):7331-7337. doi:10.1016/j.vaccine.2018.10.026 
    4. Collier SA, Deng L, Adam EA, Benedict KM, Beshearse EM, Blackstock AJ, Bruce BB, Derado G, Edens C, Fullerton KE, Gargano JW, Geissler AL, Hall AJ, Havelaar AH, Hill VR, Hoekstra RM, Reddy SC, Scallan E, Stokes EK, Yoder JS, Beach MJ. Estimate of Burden and Direct Healthcare Cost of Infectious Waterborne Disease in the United States. Emerg Infect Dis. 2021 Jan;27(1):140-149. doi: 10.3201/eid2701.190676. PMID: 33350905; PMCID: PMC7774540.
    5. Reed C, Kim IK, Singleton JA,  et al. Estimated influenza illnesses and hospitalizations averted by vaccination–United States, 2013-14 influenza season. MMWR Morb Mortal Wkly Rep. 2014 Dec 12;63(49):1151-4. https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6349a2.htm 
    6. Reed C, Angulo FJ, Swerdlow DL, et al. Estimates of the Prevalence of Pandemic (H1N1) 2009, United States, April–July 2009. Emerg Infect Dis. 2009;15(12):2004-2007. https://dx.doi.org/10.3201/eid1512.091413
    7. Devine O, Pham H, Gunnels B, et al. Extrapolating Sentinel Surveillance Information to Estimate National COVID-19 Hospital Admission Rates: A Bayesian Modeling Approach. Influenza and Other Respiratory Viruses. https://onlinelibrary.wiley.com/doi/10.1111/irv.70026. Volume18, Issue10. October 2024.
    8. https://www.cdc.gov/covid/php/covid-net/index.html">COVID-NET | COVID-19 | CDC 
    9. https://www.cdc.gov/covid/hcp/clinical-care/systematic-review-process.html 
    10. https://academic.oup.com/pnasnexus/article/1/3/pgac079/6604394?login=false">Excess natural-cause deaths in California by cause and setting: March 2020 through February 2021 | PNAS Nexus | Oxford Academic (oup.com)
    11. Kruschke, J. K. 2011. Doing Bayesian data analysis: a tutorial with R and BUGS. Elsevier, Amsterdam, Section 3.3.5.

  11. Total number of U.S. COVID-19 cases as of March 10, 2023, by state

    • statista.com
    Updated Sep 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). Total number of U.S. COVID-19 cases as of March 10, 2023, by state [Dataset]. https://www.statista.com/statistics/1102807/coronavirus-covid19-cases-number-us-americans-by-state/
    Explore at:
    Dataset updated
    Sep 15, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    As of March 10, 2023, the state with the highest number of COVID-19 cases was California. Almost 104 million cases have been reported across the United States, with the states of California, Texas, and Florida reporting the highest numbers.

    From an epidemic to a pandemic The World Health Organization declared the COVID-19 outbreak a pandemic on March 11, 2020. The term pandemic refers to multiple outbreaks of an infectious illness threatening multiple parts of the world at the same time. When the transmission is this widespread, it can no longer be traced back to the country where it originated. The number of COVID-19 cases worldwide has now reached over 669 million.

    The symptoms and those who are most at risk Most people who contract the virus will suffer only mild symptoms, such as a cough, a cold, or a high temperature. However, in more severe cases, the infection can cause breathing difficulties and even pneumonia. Those at higher risk include older persons and people with pre-existing medical conditions, including diabetes, heart disease, and lung disease. People aged 85 years and older have accounted for around 27 percent of all COVID-19 deaths in the United States, although this age group makes up just two percent of the U.S. population

  12. Weekly United States COVID-19 Cases and Deaths by State - ARCHIVED

    • data.cdc.gov
    csv, xlsx, xml
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC COVID-19 Response (2023). Weekly United States COVID-19 Cases and Deaths by State - ARCHIVED [Dataset]. https://data.cdc.gov/w/pwn4-m3yp/tdwk-ruhb?cur=mQBYmd4Um4_
    Explore at:
    xlsx, csv, xmlAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC COVID-19 Response
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Area covered
    United States
    Description

    Reporting of new Aggregate Case and Death Count data was discontinued May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. This dataset will receive a final update on June 1, 2023, to reconcile historical data through May 10, 2023, and will remain publicly available.

    Aggregate Data Collection Process Since the start of the COVID-19 pandemic, data have been gathered through a robust process with the following steps:

    • A CDC data team reviews and validates the information obtained from jurisdictions’ state and local websites via an overnight data review process.
    • If more than one official county data source exists, CDC uses a comprehensive data selection process comparing each official county data source, and takes the highest case and death counts respectively, unless otherwise specified by the state.
    • CDC compiles these data and posts the finalized information on COVID Data Tracker.
    • County level data is aggregated to obtain state and territory specific totals.
    This process is collaborative, with CDC and jurisdictions working together to ensure the accuracy of COVID-19 case and death numbers. County counts provide the most up-to-date numbers on cases and deaths by report date. CDC may retrospectively update counts to correct data quality issues.

    Methodology Changes Several differences exist between the current, weekly-updated dataset and the archived version:

    • Source: The current Weekly-Updated Version is based on county-level aggregate count data, while the Archived Version is based on State-level aggregate count data.
    • Confirmed/Probable Cases/Death breakdown:  While the probable cases and deaths are included in the total case and total death counts in both versions (if applicable), they were reported separately from the confirmed cases and deaths by jurisdiction in the Archived Version.  In the current Weekly-Updated Version, the counts by jurisdiction are not reported by confirmed or probable status (See Confirmed and Probable Counts section for more detail).
    • Time Series Frequency: The current Weekly-Updated Version contains weekly time series data (i.e., one record per week per jurisdiction), while the Archived Version contains daily time series data (i.e., one record per day per jurisdiction).
    • Update Frequency: The current Weekly-Updated Version is updated weekly, while the Archived Version was updated twice daily up to October 20, 2022.
    Important note: The counts reflected during a given time period in this dataset may not match the counts reflected for the same time period in the archived dataset noted above. Discrepancies may exist due to differences between county and state COVID-19 case surveillance and reconciliation efforts.

    Confirmed and Probable Counts In this dataset, counts by jurisdiction are not displayed by confirmed or probable status. Instead, confirmed and probable cases and deaths are included in the Total Cases and Total Deaths columns, when available. Not all jurisdictions report probable cases and deaths to CDC.* Confirmed and probable case definition criteria are described here:

    Council of State and Territorial Epidemiologists (ymaws.com).

    Deaths CDC reports death data on other sections of the website: CDC COVID Data Tracker: Home, CDC COVID Data Tracker: Cases, Deaths, and Testing, and NCHS Provisional Death Counts. Information presented on the COVID Data Tracker pages is based on the same source (total case counts) as the present dataset; however, NCHS Death Counts are based on death certificates that use information reported by physicians, medical examiners, or coroners in the cause-of-death section of each certificate. Data from each of these pages are considered provisional (not complete and pending verification) and are therefore subject to change. Counts from previous weeks are continually revised as more records are received and processed.

    Number of Jurisdictions Reporting There are currently 60 public health jurisdictions reporting cases of COVID-19. This includes the 50 states, the District of Columbia, New York City, the U.S. territories of American Samoa, Guam, the Commonwealth of the Northern Mariana Islands, Puerto Rico, and the U.S Virgin Islands as well as three independent countries in compacts of free association with the United States, Federated States of Micronesia, Republic of the Marshall Islands, and Republic of Palau. New York State’s reported case and death counts do not include New York City’s counts as they separately report nationally notifiable conditions to CDC.

    CDC COVID-19 data are available to the public as summary or aggregate count files, including total counts of cases and deaths, available by state and by county. These and other data on COVID-19 are available from multiple public locations, such as:

    https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/cases-in-us.html

    https://www.cdc.gov/covid-data-tracker/index.html

    https://www.cdc.gov/coronavirus/2019-ncov/covid-data/covidview/index.html

    https://www.cdc.gov/coronavirus/2019-ncov/php/open-america/surveillance-data-analytics.html

    Additional COVID-19 public use datasets, include line-level (patient-level) data, are available at: https://data.cdc.gov/browse?tags=covid-19.

    Archived Data Notes:

    November 3, 2022: Due to a reporting cadence issue, case rates for Missouri counties are calculated based on 11 days’ worth of case count data in the Weekly United States COVID-19 Cases and Deaths by State data released on November 3, 2022, instead of the customary 7 days’ worth of data.

    November 10, 2022: Due to a reporting cadence change, case rates for Alabama counties are calculated based on 13 days’ worth of case count data in the Weekly United States COVID-19 Cases and Deaths by State data released on November 10, 2022, instead of the customary 7 days’ worth of data.

    November 10, 2022: Per the request of the jurisdiction, cases and deaths among non-residents have been removed from all Hawaii county totals throughout the entire time series. Cumulative case and death counts reported by CDC will no longer match Hawaii’s COVID-19 Dashboard, which still includes non-resident cases and deaths. 

    November 17, 2022: Two new columns, weekly historic cases and weekly historic deaths, were added to this dataset on November 17, 2022. These columns reflect case and death counts that were reported that week but were historical in nature and not reflective of the current burden within the jurisdiction. These historical cases and deaths are not included in the new weekly case and new weekly death columns; however, they are reflected in the cumulative totals provided for each jurisdiction. These data are used to account for artificial increases in case and death totals due to batched reporting of historical data.

    December 1, 2022: Due to cadence changes over the Thanksgiving holiday, case rates for all Ohio counties are reported as 0 in the data released on December 1, 2022.

    January 5, 2023: Due to North Carolina’s holiday reporting cadence, aggregate case and death data will contain 14 days’ worth of data instead of the customary 7 days. As a result, case and death metrics will appear higher than expected in the January 5, 2023, weekly release.

    January 12, 2023: Due to data processing delays, Mississippi’s aggregate case and death data will be reported as 0. As a result, case and death metrics will appear lower than expected in the January 12, 2023, weekly release.

    January 19, 2023: Due to a reporting cadence issue, Mississippi’s aggregate case and death data will be calculated based on 14 days’ worth of data instead of the customary 7 days in the January 19, 2023, weekly release.

    January 26, 2023: Due to a reporting backlog of historic COVID-19 cases, case rates for two Michigan counties (Livingston and Washtenaw) were higher than expected in the January 19, 2023 weekly release.

    January 26, 2023: Due to a backlog of historic COVID-19 cases being reported this week, aggregate case and death counts in Charlotte County and Sarasota County, Florida, will appear higher than expected in the January 26, 2023 weekly release.

    January 26, 2023: Due to data processing delays, Mississippi’s aggregate case and death data will be reported as 0 in the weekly release posted on January 26, 2023.

    February 2, 2023: As of the data collection deadline, CDC observed an abnormally large increase in aggregate COVID-19 cases and deaths reported for Washington State. In response, totals for new cases and new deaths released on February 2, 2023, have been displayed as zero at the state level until the issue is addressed with state officials. CDC is working with state officials to address the issue.

    February 2, 2023: Due to a decrease reported in cumulative case counts by Wyoming, case rates will be reported as 0 in the February 2, 2023, weekly release. CDC is working with state officials to verify the data submitted.

    February 16, 2023: Due to data processing delays, Utah’s aggregate case and death data will be reported as 0 in the weekly release posted on February 16, 2023. As a result, case and death metrics will appear lower than expected and should be interpreted with caution.

    February 16, 2023: Due to a reporting cadence change, Maine’s

  13. d

    Replication Data for: Two years of Covid-19 pandemic : A higher prevalence...

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Errasfa, Mourad (2023). Replication Data for: Two years of Covid-19 pandemic : A higher prevalence of the disease was associated with higher geographic latitudes, lower temperatures, and unfavorable epidemiologic and demographic conditions. [Dataset]. http://doi.org/10.7910/DVN/JYYZEI
    Explore at:
    Dataset updated
    Nov 8, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Errasfa, Mourad
    Description

    ABSTRACT Background : The Covid-19 pandemic associated with the SARS-CoV-2 has caused very high death tolls in many countries, while it has had less prevalence in other countries of Africa and Asia. Climate and geographic conditions, as well as other epidemiologic and demographic conditions, were a matter of debate on whether or not they could have an effect on the prevalence of Covid-19. Objective : In the present work, we sought a possible relevance of the geographic location of a given country on its Covid-19 prevalence. On the other hand, we sought a possible relation between the history of epidemiologic and demographic conditions of the populations and the prevalence of Covid-19 across four continents (America, Europe, Africa, and Asia). We also searched for a possible impact of pre-pandemic alcohol consumption in each country on the two year death tolls across the four continents. Methods : We have sought the death toll caused by Covid-19 in 39 countries and obtained the registered deaths from specialized web pages. For every country in the study, we have analysed the correlation of the Covid-19 death numbers with its geographic latitude, and its associated climate conditions, such as the mean annual temperature, the average annual sunshine hours, and the average annual UV index. We also analyzed the correlation of the Covid-19 death numbers with epidemiologic conditions such as cancer score and Alzheimer score, and with demographic parameters such as birth rate, mortality rate, fertility rate, and the percentage of people aged 65 and above. In regard to consumption habits, we searched for a possible relation between alcohol intake levels per capita and the Covid-19 death numbers in each country. Correlation factors and determination factors, as well as analyses by simple linear regression and polynomial regression, were calculated or obtained by Microsoft Exell software (2016). Results : In the present study, higher numbers of deaths related to Covid-19 pandemic were registered in many countries in Europe and America compared to other countries in Africa and Asia. The analysis by polynomial regression generated an inverted bell-shaped curve and a significant correlation between the Covid-19 death numbers and the geographic latitude of each country in our study. Higher death numbers were registered in the higher geographic latitudes of both hemispheres, while lower scores of deaths were registered in countries located around the equator line. In a bell shaped curve, the latitude levels were negatively correlated to the average annual levels (last 10 years) of temperatures, sunshine hours, and UV index of each country, with the highest scores of each climate parameter being registered around the equator line, while lower levels of temperature, sunshine hours, and UV index were registered in higher latitude countries. In addition, the linear regression analysis showed that the Covid-19 death numbers registered in the 39 countries of our study were negatively correlated with the three climate factors of our study, with the temperature as the main negatively correlated factor with Covid-19 deaths. On the other hand, cancer and Alzheimer's disease scores, as well as advanced age and alcohol intake, were positively correlated to Covid-19 deaths, and inverted bell-shaped curves were obtained when expressing the above parameters against a country’s latitude. Instead, the (birth rate/mortality rate) ratio and fertility rate were negatively correlated to Covid-19 deaths, and their values gave bell-shaped curves when expressed against a country’s latitude. Conclusion : The results of the present study prove that the climate parameters and history of epidemiologic and demographic conditions as well as nutrition habits are very correlated with Covid-19 prevalence. The results of the present study prove that low levels of temperature, sunshine hours, and UV index, as well as negative epidemiologic and demographic conditions and high scores of alcohol intake may worsen Covid-19 prevalence in many countries of the northern hemisphere, and this phenomenon could explain their high Covid-19 death tolls. Keywords : Covid-19, Coronavirus, SARS-CoV-2, climate, temperature, sunshine hours, UV index, cancer, Alzheimer disease, alcohol.

  14. d

    COVID-19 Cases and Deaths by Race/Ethnicity - ARCHIVE

    • catalog.data.gov
    • data.ct.gov
    • +1more
    Updated Aug 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ct.gov (2023). COVID-19 Cases and Deaths by Race/Ethnicity - ARCHIVE [Dataset]. https://catalog.data.gov/dataset/covid-19-cases-and-deaths-by-race-ethnicity
    Explore at:
    Dataset updated
    Aug 12, 2023
    Dataset provided by
    data.ct.gov
    Description

    Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve. The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj. The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 . The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 . The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed. COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken down by race and ethnicity. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the COVID-19 update. The following data show the number of COVID-19 cases and associated deaths per 100,000 population by race and ethnicity. Crude rates represent the total cases or deaths per 100,000 people. Age-adjusted rates consider the age of the person at diagnosis or death when estimating the rate and use a standardized population to provide a fair comparison between population groups with different age distributions. Age-adjustment is important in Connecticut as the median age of among the non-Hispanic white population is 47 years, whereas it is 34 years among non-Hispanic blacks, and 29 years among Hispanics. Because most non-Hispanic white residents who died were over 75 years of age, the age-adjusted rates are lower than the unadjusted rates. In contrast, Hispanic residents who died tend to be younger than 75 years of age which results in higher age-adjusted rates. The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used. Rates are standardized to the 2000 US Millions Standard population (data available here: https://seer.cancer.gov/stdpopulations/). Standardization was done using 19 age groups (0, 1-4, 5-9, 10-14, ..., 80-84, 85 years and older). More information about direct standardization for age adjustment is available here: https://www.cdc.gov/nchs/data/statnt/statnt06rv.pdf Categories are mutually exclusive. The category “multiracial” includes people who answered ‘yes’ to more than one race category. Counts may not add up to total case counts as data on race and ethnicity may be missing. Age adjusted rates calculated only for groups with more than 20 deaths. Abbreviation: NH=Non-Hispanic. Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical

  15. Weekly United States COVID-19 Cases and Deaths by County - ARCHIVED

    • data.cdc.gov
    • data.virginia.gov
    • +1more
    csv, xlsx, xml
    Updated Jul 10, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC COVID-19 Response (2023). Weekly United States COVID-19 Cases and Deaths by County - ARCHIVED [Dataset]. https://data.cdc.gov/w/yviw-z6j5/tdwk-ruhb?cur=0sEK0zoBw6T
    Explore at:
    xml, xlsx, csvAvailable download formats
    Dataset updated
    Jul 10, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC COVID-19 Response
    Area covered
    United States
    Description

    Note: The cumulative case count for some counties (with small population) is higher than expected due to the inclusion of non-permanent residents in COVID-19 case counts.

    Reporting of Aggregate Case and Death Count data was discontinued on May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.

    Aggregate Data Collection Process Since the beginning of the COVID-19 pandemic, data were reported through a robust process with the following steps:

    • Aggregate county-level counts were obtained indirectly, via automated overnight web collection, or directly, via a data submission process.
    • If more than one official county data source existed, CDC used a comprehensive data selection process comparing each official county data source to retrieve the highest case and death counts, unless otherwise specified by the state.
    • A CDC data team reviewed counts for congruency prior to integration. CDC routinely compiled these data and post the finalized information on COVID Data Tracker.
    • Cases and deaths are based on date of report and not on the date of symptom onset. CDC calculates rates in this data by using population estimates provided by the US Census Bureau Population Estimates Program (2019 Vintage).
    • COVID-19 aggregate case and death data were organized in a time series that includes cumulative number of cases and deaths as reported by a jurisdiction on a given date. New case and death counts were calculated as the week-to-week change in reported cumulative cases and deaths (i.e., newly reported cases and deaths = cumulative number of cases/deaths reported this week minus the cumulative total reported the week before.

    This process was collaborative, with CDC and jurisdictions working together to ensure the accuracy of COVID-19 case and death numbers. County counts provided the most up-to-date numbers on cases and deaths by report date. Throughout data collection, CDC retrospectively updated counts to correct known data quality issues. CDC also worked with jurisdictions after the end of the public health emergency declaration to finalize county data.

    • Source: The weekly archived dataset is based on county-level aggregate count data
    • Confirmed/Probable Cases/Death breakdown: Cumulative cases and deaths for each county are included. Total reported cases include probable and confirmed cases.
    • Time Series Frequency: The weekly archived dataset contains weekly time series data (i.e., one record per week per county)

    Important note: The counts reflected during a given time period in this dataset may not match the counts reflected for the same time period in the daily archived dataset noted above. Discrepancies may exist due to differences between county and state COVID-19 case surveillance and reconciliation efforts.

    The surveillance case definition for COVID-19, a nationally notifiable disease, was first described in a position statement from the Council for State and Territorial Epidemiologists, which was later revised. However, there is some variation in how jurisdictions implement these case classifications. More information on how CDC collects COVID-19 case surveillance data can be found at FAQ: COVID-19 Data and Surveillance.

    Confirmed and Probable Counts In this dataset, counts by jurisdiction are not displayed by confirmed or probable status. Instead, counts of confirmed and probable cases and deaths are included in the Total Cases and Total Deaths columns, when available. Not all jurisdictions reported probable cases and deaths to CDC. Confirmed and probable case definition criteria are described here: "https://ndc.services.cdc.gov/case-definitions/coronavirus-disease-2019-covid-19/">Coronavirus Disease 2019 (COVID-19) 2023 Case Definition | CDC Council of State and Territorial Epidemiologists (ymaws.com).

    Deaths COVID-19 deaths were reported to CDC from several sources since the beginning of the pandemic including aggregate death data and NCHS Provisional Death Counts. Historic information presented on the COVID Data Tracker pages were based on the same source (Aggregate Data) as the present dataset until the expiration of the public health emergency declaration on May 11, 2023; however, the NCHS Death Counts are based on death certificate data that use information reported by physicians, medical examiners, or coroners in the cause-of-death section of each certificate. Counts from previous weeks were continually revised as more records were received and processed.

    Number of Jurisdictions Reporting There were 60 public health jurisdictions that reported cases and deaths of COVID-19. This included the 50 states, the District of Columbia, New York City, the U.S. territories of American Samoa, Guam, the Commonwealth of the Northern Mariana Islands, Puerto Rico, and the U.S Virgin Islands as well as three independent countries in compacts of free association with the United States, Federated States of Micronesia, Republic of the Marshall Islands, and Republic of Palau. In total there were 3,222 counties for which counts were tracked within the 60 public health jurisdictions.

    Additional COVID-19 public use datasets, include line-level (patient-level) data, are available at: https://data.cdc.gov/browse?tags=covid-19.

    Note: In early 2020, Alaska enacted changes to their counties/boroughs due to low populations in certain areas:

    Case and death counts for Yakutat City and Borough, Alaska, are shown as 0 by default. Case and death counts for Hoonah-Angoon Census Area, Alaska, represent total cases and deaths in residents of Hoonah-Angoon Census Area, Alaska, and Yakutat City and Borough, Alaska. Case and death counts for Bristol Bay Borough, Alaska, are shown as 0 by default. Case and death counts for Lake and Peninsula Borough, Alaska, represent total cases and deaths in residents of Lake and Peninsula Borough, Alaska, and Bristol Bay Borough, Alaska.

    Historical cases and deaths are not tracked separately in the county level datasets, and differences in weekly new cases and deaths could exist when county-level data are aggregated to the state-level (i.e., when compared to this dataset: https://data.cdc.gov/Case-Surveillance/United-States-COVID-19-Cases-and-Deaths-by-State-o/9mfq-cb36).

  16. COVID-19 deaths worldwide as of May 2, 2023, by country and territory

    • statista.com
    • thefarmdosupply.com
    • +1more
    Updated May 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). COVID-19 deaths worldwide as of May 2, 2023, by country and territory [Dataset]. https://www.statista.com/statistics/1093256/novel-coronavirus-2019ncov-deaths-worldwide-by-country/
    Explore at:
    Dataset updated
    May 22, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    May 2, 2023
    Area covered
    Worldwide
    Description

    As of May 2, 2023, the outbreak of the coronavirus disease (COVID-19) had spread to almost every country in the world, and more than 6.86 million people had died after contracting the respiratory virus. Over 1.16 million of these deaths occurred in the United States.

    Waves of infections Almost every country and territory worldwide have been affected by the COVID-19 disease. At the end of 2021 the virus was once again circulating at very high rates, even in countries with relatively high vaccination rates such as the United States and Germany. As rates of new infections increased, some countries in Europe, like Germany and Austria, tightened restrictions once again, specifically targeting those who were not yet vaccinated. However, by spring 2022, rates of new infections had decreased in many countries and restrictions were once again lifted.

    What are the symptoms of the virus? It can take up to 14 days for symptoms of the illness to start being noticed. The most commonly reported symptoms are a fever and a dry cough, leading to shortness of breath. The early symptoms are similar to other common viruses such as the common cold and flu. These illnesses spread more during cold months, but there is no conclusive evidence to suggest that temperature impacts the spread of the SARS-CoV-2 virus. Medical advice should be sought if you are experiencing any of these symptoms.

  17. g

    Coronavirus COVID-19 Global Cases by the Center for Systems Science and...

    • github.com
    • systems.jhu.edu
    • +1more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE), Coronavirus COVID-19 Global Cases by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU) [Dataset]. https://github.com/CSSEGISandData/COVID-19
    Explore at:
    Dataset provided by
    Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE)
    Area covered
    Global
    Description

    2019 Novel Coronavirus COVID-19 (2019-nCoV) Visual Dashboard and Map:
    https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6

    • Confirmed Cases by Country/Region/Sovereignty
    • Confirmed Cases by Province/State/Dependency
    • Deaths
    • Recovered

    Downloadable data:
    https://github.com/CSSEGISandData/COVID-19

    Additional Information about the Visual Dashboard:
    https://systems.jhu.edu/research/public-health/ncov

  18. Coronavirus (COVID-19) deaths in Austria in 2023, by state

    • thefarmdosupply.com
    • statista.com
    Updated Jan 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Coronavirus (COVID-19) deaths in Austria in 2023, by state [Dataset]. https://www.thefarmdosupply.com/?_=%2Fstatistics%2F1109181%2Fcoronavirus-covid-19-deaths-by-state-austria%2F%23RslIny40YoL1bbEgyeyUHEfOSI5zbSLA
    Explore at:
    Dataset updated
    Jan 13, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2023
    Area covered
    Austria
    Description

    As of January 2023, Austria confirmed a total of 21,661 deaths from the coronavirus (COVID-19). The federal states with the most deaths thus far were Vienna and Lower Austria.

  19. COVID-19 deaths in Latin America 2025, by country

    • statista.com
    • tokrwards.com
    • +1more
    Updated Jun 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). COVID-19 deaths in Latin America 2025, by country [Dataset]. https://www.statista.com/statistics/1103965/latin-america-caribbean-coronavirus-deaths/
    Explore at:
    Dataset updated
    Jun 5, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    LAC, Latin America
    Description

    As of May 11, 2025, nearly 1.8 million people have died due COVID-19 in Latin America and the Caribbean. The country with the highest number was Brazil, reporting around 700,000 deaths. As a result of the pandemic, Brazil's GDP was forecast to decline by approximately six percent in 2020. Meanwhile, Mexico ranked second in number of deaths, with approximately 335 thousand occurrences. For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.

  20. COVID-19 Trends in Each Country

    • hub.arcgis.com
    Updated Mar 28, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2020). COVID-19 Trends in Each Country [Dataset]. https://hub.arcgis.com/maps/a16bb8b137ba4d8bbe645301b80e5740
    Explore at:
    Dataset updated
    Mar 28, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Area covered
    Earth
    Description

    On March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased its collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit: World Health Organization (WHO)For more information, visit the Johns Hopkins Coronavirus Resource Center.COVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.DOI: https://doi.org/10.6084/m9.figshare.125529863/7/2022 - Adjusted the rate of active cases calculation in the U.S. to reflect the rates of serious and severe cases due nearly completely dominant Omicron variant.6/24/2020 - Expanded Case Rates discussion to include fix on 6/23 for calculating active cases.6/22/2020 - Added Executive Summary and Subsequent Outbreaks sectionsRevisions on 6/10/2020 based on updated CDC reporting. This affects the estimate of active cases by revising the average duration of cases with hospital stays downward from 30 days to 25 days. The result shifted 76 U.S. counties out of Epidemic to Spreading trend and no change for national level trends.Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.Correction on 6/1/2020Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020. Revisions added on 4/30/2020 are highlighted.Revisions added on 4/23/2020 are highlighted.Executive SummaryCOVID-19 Trends is a methodology for characterizing the current trend for places during the COVID-19 global pandemic. Each day we assign one of five trends: Emergent, Spreading, Epidemic, Controlled, or End Stage to geographic areas to geographic areas based on the number of new cases, the number of active cases, the total population, and an algorithm (described below) that contextualize the most recent fourteen days with the overall COVID-19 case history. Currently we analyze the countries of the world and the U.S. Counties. The purpose is to give policymakers, citizens, and analysts a fact-based data driven sense for the direction each place is currently going. When a place has the initial cases, they are assigned Emergent, and if that place controls the rate of new cases, they can move directly to Controlled, and even to End Stage in a short time. However, if the reporting or measures to curtail spread are not adequate and significant numbers of new cases continue, they are assigned to Spreading, and in cases where the spread is clearly uncontrolled, Epidemic trend.We analyze the data reported by Johns Hopkins University to produce the trends, and we report the rates of cases, spikes of new cases, the number of days since the last reported case, and number of deaths. We also make adjustments to the assignments based on population so rural areas are not assigned trends based solely on case rates, which can be quite high relative to local populations.Two key factors are not consistently known or available and should be taken into consideration with the assigned trend. First is the amount of resources, e.g., hospital beds, physicians, etc.that are currently available in each area. Second is the number of recoveries, which are often not tested or reported. On the latter, we provide a probable number of active cases based on CDC guidance for the typical duration of mild to severe cases.Reasons for undertaking this work in March of 2020:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-25 days + 5% from past 26-49 days - total deaths. On 3/17/2022, the U.S. calculation was adjusted to: Active Cases = 100% of new cases in past 14 days + 6% from past 15-25 days + 3% from past 26-49 days - total deaths. Sources: https://www.cdc.gov/mmwr/volumes/71/wr/mm7104e4.htm https://covid.cdc.gov/covid-data-tracker/#variant-proportions If a new variant arrives and appears to cause higher rates of serious cases, we will roll back this adjustment. We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2024). COVID-19 death rates in the United States as of March 10, 2023, by state [Dataset]. https://www.statista.com/statistics/1109011/coronavirus-covid19-death-rates-us-by-state/
Organization logo

COVID-19 death rates in the United States as of March 10, 2023, by state

Explore at:
26 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
May 15, 2024
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
United States
Description

As of March 10, 2023, the death rate from COVID-19 in the state of New York was 397 per 100,000 people. New York is one of the states with the highest number of COVID-19 cases.

Search
Clear search
Close search
Google apps
Main menu