Facebook
TwitterThe New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.
Facebook
TwitterDESCRIPTION
Johns Hopkins' county-level COVID-19 case and death data, paired with population and rates per 100,000
SUMMARY Updates April 9, 2020 The population estimate data for New York County, NY has been updated to include all five New York City counties (Kings County, Queens County, Bronx County, Richmond County and New York County). This has been done to match the Johns Hopkins COVID-19 data, which aggregates counts for the five New York City counties to New York County. April 20, 2020 Johns Hopkins death totals in the US now include confirmed and probable deaths in accordance with CDC guidelines as of April 14. One significant result of this change was an increase of more than 3,700 deaths in the New York City count. This change will likely result in increases for death counts elsewhere as well. The AP does not alter the Johns Hopkins source data, so probable deaths are included in this dataset as well. April 29, 2020 The AP is now providing timeseries data for counts of COVID-19 cases and deaths. The raw counts are provided here unaltered, along with a population column with Census ACS-5 estimates and calculated daily case and death rates per 100,000 people. Please read the updated caveats section for more information.
Overview The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.
The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.
The AP is updating this dataset hourly at 45 minutes past the hour.
To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.
Queries Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic
Filter cases by state here
Rank states by their status as current hotspots. Calculates the 7-day rolling average of new cases per capita in each state: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=481e82a4-1b2f-41c2-9ea1-d91aa4b3b1ac
Find recent hotspots within your state by running a query to calculate the 7-day rolling average of new cases by capita in each county: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=b566f1db-3231-40fe-8099-311909b7b687&showTemplatePreview=true
Join county-level case data to an earlier dataset released by AP on local hospital capacity here. To find out more about the hospital capacity dataset, see the full details.
Pull the 100 counties with the highest per-capita confirmed cases here
Rank all the counties by the highest per-capita rate of new cases in the past 7 days here. Be aware that because this ranks per-capita caseloads, very small counties may rise to the very top, so take into account raw caseload figures as well.
Interactive Embed Code
Caveats This data represents the number of cases and deaths reported by each state and has been collected by Johns Hopkins from a number of sources cited on their website. In some cases, deaths or cases of people who've crossed state lines -- either to receive treatment or because they became sick and couldn't return home while traveling -- are reported in a state they aren't currently in, because of state reporting rules. In some states, there are a number of cases not assigned to a specific county -- for those cases, the county name is "unassigned to a single county" This data should be credited to Johns Hopkins University's COVID-19 tracking project. The AP is simply making it available here for ease of use for reporters and members. Caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates. Population estimates at the county level are drawn from 2014-18 5-year estimates from the American Community Survey. The Urban/Rural classification scheme is from the Center for Disease Control and Preventions's National Center for Health Statistics. It puts each county into one of six categories --...
Facebook
TwitterAs of March 10, 2023, the state with the highest number of COVID-19 cases was California. Almost 104 million cases have been reported across the United States, with the states of California, Texas, and Florida reporting the highest numbers.
From an epidemic to a pandemic The World Health Organization declared the COVID-19 outbreak a pandemic on March 11, 2020. The term pandemic refers to multiple outbreaks of an infectious illness threatening multiple parts of the world at the same time. When the transmission is this widespread, it can no longer be traced back to the country where it originated. The number of COVID-19 cases worldwide has now reached over 669 million.
The symptoms and those who are most at risk Most people who contract the virus will suffer only mild symptoms, such as a cough, a cold, or a high temperature. However, in more severe cases, the infection can cause breathing difficulties and even pneumonia. Those at higher risk include older persons and people with pre-existing medical conditions, including diabetes, heart disease, and lung disease. People aged 85 years and older have accounted for around 27 percent of all COVID-19 deaths in the United States, although this age group makes up just two percent of the U.S. population
Facebook
TwitterThe COVID-19 dashboard includes data on city/town COVID-19 activity, confirmed and probable cases of COVID-19, confirmed and probable deaths related to COVID-19, and the demographic characteristics of cases and deaths.
Facebook
TwitterAs of March 10, 2023, the state with the highest rate of COVID-19 cases was Rhode Island followed by Alaska. Around 103.9 million cases have been reported across the United States, with the states of California, Texas, and Florida reporting the highest numbers of infections.
From an epidemic to a pandemic The World Health Organization declared the COVID-19 outbreak as a pandemic on March 11, 2020. The term pandemic refers to multiple outbreaks of an infectious illness threatening multiple parts of the world at the same time; when the transmission is this widespread, it can no longer be traced back to the country where it originated. The number of COVID-19 cases worldwide is roughly 683 million, and it has affected almost every country in the world.
The symptoms and those who are most at risk Most people who contract the virus will suffer only mild symptoms, such as a cough, a cold, or a high temperature. However, in more severe cases, the infection can cause breathing difficulties and even pneumonia. Those at higher risk include older persons and people with pre-existing medical conditions, including diabetes, heart disease, and lung disease. Those aged 85 years and older have accounted for around 27 percent of all COVID deaths in the United States, although this age group makes up just two percent of the total population
Facebook
TwitterThe COVID Tracking Project collects information from 50 US states, the District of Columbia, and 5 other US territories to provide the most comprehensive testing data we can collect for the novel coronavirus, SARS-CoV-2. We attempt to include positive and negative results, pending tests, and total people tested for each state or district currently reporting that data.
Testing is a crucial part of any public health response, and sharing test data is essential to understanding this outbreak. The CDC is currently not publishing complete testing data, so we’re doing our best to collect it from each state and provide it to the public. The information is patchy and inconsistent, so we’re being transparent about what we find and how we handle it—the spreadsheet includes our live comments about changing data and how we’re working with incomplete information.
From here, you can also learn about our methodology, see who makes this, and find out what information states provide and how we handle it.
Facebook
TwitterAs of November 11, 2022, almost 96.8 million confirmed cases of COVID-19 had been reported by the World Health Organization (WHO) for the United States. The pandemic has impacted all 50 states, with vast numbers of cases recorded in California, Texas, and Florida.
The coronavirus in the U.S. The coronavirus hit the United States in mid-March 2020, and cases started to soar at an alarming rate. The country has performed a high number of COVID-19 tests, which is a necessary step to manage the outbreak, but new coronavirus cases in the U.S. have spiked several times since the pandemic began, most notably at the end of 2022. However, restrictions in many states have been eased as new cases have declined.
The origin of the coronavirus In December 2019, officials in Wuhan, China, were the first to report cases of pneumonia with an unknown cause. A new human coronavirus – SARS-CoV-2 – has since been discovered, and COVID-19 is the infectious disease it causes. All available evidence to date suggests that COVID-19 is a zoonotic disease, which means it can spread from animals to humans. The WHO says transmission is likely to have happened through an animal that is handled by humans. Researchers do not support the theory that the virus was developed in a laboratory.
Facebook
Twitterhttps://www.worldbank.org/en/about/legal/terms-of-use-for-datasetshttps://www.worldbank.org/en/about/legal/terms-of-use-for-datasets
The Covid-19 curve in the United States is rising again after months of decline, with the number of new cases per day doubling over the past three weeks, driven by the fast-spreading Delta variant, lagging vaccination rates, and Fourth of July gatherings
In the United States of America, from 3 January 2020 to 5:05 pm CEST, 14 July 2021, there have been 33,572,715 confirmed cases of COVID-19 with 602,409 deaths, reported to WHO. As of 9 July 2021, a total of 334,282,915 vaccine doses have been administered.
Content
This Column is a resource to help advance the understanding of the virus all-state in the USA
Facebook
Twitterhttps://www.usa.gov/government-workshttps://www.usa.gov/government-works
After over two years of public reporting, the State Profile Report will no longer be produced and distributed after February 2023. The final release was on February 23, 2023. We want to thank everyone who contributed to the design, production, and review of this report and we hope that it provided insight into the data trends throughout the COVID-19 pandemic. Data about COVID-19 will continue to be updated at CDC’s COVID Data Tracker.
The State Profile Report (SPR) is generated by the Data Strategy and Execution Workgroup in the Joint Coordination Cell, in collaboration with the White House. It is managed by an interagency team with representatives from multiple agencies and offices (including the United States Department of Health and Human Services (HHS), the Centers for Disease Control and Prevention, the HHS Assistant Secretary for Preparedness and Response, and the Indian Health Service). The SPR provides easily interpretable information on key indicators for each state, down to the county level.
It is a weekly snapshot in time that:
Facebook
TwitterCOVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.Revisions added on 4/23/2020 are highlighted.Revisions added on 4/30/2020 are highlighted.Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020. Correction on 6/1/2020Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.Reasons for undertaking this work:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-30 days + 5% from past 31-56 days - total deaths.We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source used as basis:Stephen A. Lauer, MS, PhD *; Kyra H. Grantz, BA *; Qifang Bi, MHS; Forrest K. Jones, MPH; Qulu Zheng, MHS; Hannah R. Meredith, PhD; Andrew S. Azman, PhD; Nicholas G. Reich, PhD; Justin Lessler, PhD. 2020. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Annals of Internal Medicine DOI: 10.7326/M20-0504.New Cases per Day (NCD) = Measures the daily spread of COVID-19. This is the basis for all rates. Back-casting revisions: In the Johns Hopkins’ data, the structure is to provide the cumulative number of cases per day, which presumes an ever-increasing sequence of numbers, e.g., 0,0,1,1,2,5,7,7,7, etc. However, revisions do occur and would look like, 0,0,1,1,2,5,7,7,6. To accommodate this, we revised the lists to eliminate decreases, which make this list look like, 0,0,1,1,2,5,6,6,6.Reporting Interval: In the early weeks, Johns Hopkins' data provided reporting every day regardless of change. In late April, this changed allowing for days to be skipped if no new data was available. The day was still included, but the value of total cases was set to Null. The processing therefore was updated to include tracking of the spacing between intervals with valid values.100 News Cases in a day as a spike threshold: Empirically, this is based on COVID-19’s rate of spread, or r0 of ~2.5, which indicates each case will infect between two and three other people. There is a point at which each administrative area’s capacity will not have the resources to trace and account for all contacts of each patient. Thus, this is an indicator of uncontrolled or epidemic trend. Spiking activity in combination with the rate of new cases is the basis for determining whether an area has a spreading or epidemic trend (see below). Source used as basis:World Health Organization (WHO). 16-24 Feb 2020. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). Obtained online.Mean of Recent Tail of NCD = Empirical, and a COVID-19-specific basis for establishing a recent trend. The recent mean of NCD is taken from the most recent fourteen days. A minimum of 21 days of cases is required for analysis but cannot be considered reliable. Thus, a preference of 42 days of cases ensures much higher reliability. This analysis is not explanatory and thus, merely represents a likely trend. The tail is analyzed for the following:Most recent 2 days: In terms of likelihood, this does not mean much, but can indicate a reason for hope and a basis to share positive change that is not yet a trend. There are two worthwhile indicators:Last 2 days count of new cases is less than any in either the past five or 14 days. Past 2 days has only one or fewer new cases – this is an extremely positive outcome if the rate of testing has continued at the same rate as the previous 5 days or 14 days. Most recent 5 days: In terms of likelihood, this is more meaningful, as it does represent at short-term trend. There are five worthwhile indicators:Past five days is greater than past 2 days and past 14 days indicates the potential of the past 2 days being an aberration. Past five days is greater than past 14 days and less than past 2 days indicates slight positive trend, but likely still within peak trend time frame.Past five days is less than the past 14 days. This means a downward trend. This would be an
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Note: Starting October 10th, 2025 this dataset is deprecated and is no longer being updated. As of April 27, 2023 updates changed from daily to weekly.
Summary The cumulative number of positive COVID-19 cases among Maryland residents within a single Maryland jurisdiction.
Description The MD COVID-19 - Cases by County data layer is a collection of positive COVID-19 test results that have been reported each day by the local health department via the ESSENCE system.
Terms of Use The Spatial Data, and the information therein, (collectively the "Data") is provided "as is" without warranty of any kind, either expressed, implied, or statutory. The user assumes the entire risk as to quality and performance of the Data. No guarantee of accuracy is granted, nor is any responsibility for reliance thereon assumed. In no event shall the State of Maryland be liable for direct, indirect, incidental, consequential or special damages of any kind. The State of Maryland does not accept liability for any damages or misrepresentation caused by inaccuracies in the Data or as a result to changes to the Data, nor is there responsibility assumed to maintain the Data in any manner or form. The Data can be freely distributed as long as the metadata entry is not modified or deleted. Any data derived from the Data must acknowledge the State of Maryland in the metadata.
Facebook
Twitter2019 Novel Coronavirus COVID-19 (2019-nCoV) Visual Dashboard and Map:
https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6
Downloadable data:
https://github.com/CSSEGISandData/COVID-19
Additional Information about the Visual Dashboard:
https://systems.jhu.edu/research/public-health/ncov
Facebook
TwitterAs of March 10, 2023, the death rate from COVID-19 in the state of New York was 397 per 100,000 people. New York is one of the states with the highest number of COVID-19 cases.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
COVID cases and deaths for LA County and California State. Updated daily.
Data source: Johns Hopkins University (https://coronavirus.jhu.edu/us-map), Johns Hopkins GitHub (https://github.com/CSSEGISandData/COVID-19/blob/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_US.csv). Code available: https://github.com/CityOfLosAngeles/covid19-indicators.
Facebook
TwitterAround 282 thousand new cases of COVID-19 were reported in the United States during the week ending November 11, 2022. Between January 20, 2020 and November 11, 2022 there had been around 96.8 million confirmed cases of COVID-19 with over one million deaths in the U.S. as reported by the World Health Organization.
How did the coronavirus outbreak start? Pneumonia cases with an unknown cause were first reported in the Hubei province of China at the end of December 2019. Patients described symptoms including a fever and difficulty breathing, and early reports suggested no evidence of human-to-human transmission. We now know that a novel coronavirus named SARS-CoV-2 is causing the disease COVID-19. The virus has been characterized as a pandemic and continues to spread from person to person – there have been around 642 million cases worldwide as of November 17, 2022.
The importance of isolation and quarantine In an effort to contain the early spread of the virus, China tightened travel restrictions and enforced isolation measures in the hardest-hit areas. The World Health Organization endorsed this strategy, and countries around the world implemented similar quarantine measures. Staying at home can limit the spread of the virus, and this applies to individuals who are only showing mild symptoms or none at all. Asymptomatic carriers of the virus – those that are experiencing no symptoms – may transmit the virus to people who are at a higher risk of getting very sick.
Facebook
TwitterAttribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
COVID-19 is on a rise worldwide. It was first identified in the city of Wuhan in China in 2019 and has now spread into a global pandemic. California is currently the fourth largest affected state in USA. The state's confirmed cases have been on a rise since early March 2020 due to more testing capabilities. In this dire time, it is extremely important to understand the factors affecting the spread of the virus in California, identify susceptible population and predict the trajectory of the infected and dead cases on a daily basis.
Update: 4 April 2020, 7:27 PM Pacific Time (PT)
This data contains information about confirmed cases (13927) and fatalities (321) due to COVID-19 in 58 California counties along with instructions provided by health agencies in all counties. A breakdown of confirmed cases in the cities of California is also provided. The information has been sourced from Los Angeles Times.
As mentioned by LA Times, "The tallies here are mostly limited to residents of California, which is the standard method used to count patients by the state’s health authorities. Those totals do not include people from other states who are quarantined here, such as the passengers and crew of the Grand Princess cruise ship that docked in Oakland."
LA Times - https://www.latimes.com/projects/california-coronavirus-cases-tracking-outbreak/
Please consider upvoting if the data is found useful in any way. If there are any improvement suggestions, do let me know.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
From World Health Organization - On 31 December 2019, WHO was alerted to several cases of pneumonia in Wuhan City, Hubei Province of China. The virus did not match any other known virus. This raised concern because when a virus is new, we do not know how it affects people.
So daily level information on the affected people can give some interesting insights when it is made available to the broader data science community.
Johns Hopkins University has made an excellent dashboard using the affected cases data. Data is extracted from the google sheets associated and made available here.
Now data is available as csv files in the Johns Hopkins Github repository. Please refer to the github repository for the Terms of Use details. Uploading it here for using it in Kaggle kernels and getting insights from the broader DS community.
2019 Novel Coronavirus (2019-nCoV) is a virus (more specifically, a coronavirus) identified as the cause of an outbreak of respiratory illness first detected in Wuhan, China. Early on, many of the patients in the outbreak in Wuhan, China reportedly had some link to a large seafood and animal market, suggesting animal-to-person spread. However, a growing number of patients reportedly have not had exposure to animal markets, indicating person-to-person spread is occurring. At this time, it’s unclear how easily or sustainably this virus is spreading between people - CDC
This dataset has daily level information on the number of affected cases, deaths and recovery from 2019 novel coronavirus. Please note that this is a time series data and so the number of cases on any given day is the cumulative number.
The data is available from 22 Jan, 2020.
Here’s a polished version suitable for a professional Kaggle dataset description:
This dataset contains time-series and case-level records of the COVID-19 pandemic. The primary file is covid_19_data.csv, with supporting files for earlier records and individual-level line list data.
This is the primary dataset and contains aggregated COVID-19 statistics by location and date.
This file contains earlier COVID-19 records. It is no longer updated and is provided only for historical reference. For current analysis, please use covid_19_data.csv.
This file provides individual-level case information, obtained from an open data source. It includes patient demographics, travel history, and case outcomes.
Another individual-level case dataset, also obtained from public sources, with detailed patient-level information useful for micro-level epidemiological analysis.
✅ Use covid_19_data.csv for up-to-date aggregated global trends.
✅ Use the line list datasets for detailed, individual-level case analysis.
If you are interested in knowing country level data, please refer to the following Kaggle datasets:
India - https://www.kaggle.com/sudalairajkumar/covid19-in-india
South Korea - https://www.kaggle.com/kimjihoo/coronavirusdataset
Italy - https://www.kaggle.com/sudalairajkumar/covid19-in-italy
Brazil - https://www.kaggle.com/unanimad/corona-virus-brazil
USA - https://www.kaggle.com/sudalairajkumar/covid19-in-usa
Switzerland - https://www.kaggle.com/daenuprobst/covid19-cases-switzerland
Indonesia - https://www.kaggle.com/ardisragen/indonesia-coronavirus-cases
Johns Hopkins University for making the data available for educational and academic research purposes
MoBS lab - https://www.mobs-lab.org/2019ncov.html
World Health Organization (WHO): https://www.who.int/
DXY.cn. Pneumonia. 2020. http://3g.dxy.cn/newh5/view/pneumonia.
BNO News: https://bnonews.com/index.php/2020/02/the-latest-coronavirus-cases/
National Health Commission of the People’s Republic of China (NHC): http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml
China CDC (CCDC): http://weekly.chinacdc.cn/news/TrackingtheEpidemic.htm
Hong Kong Department of Health: https://www.chp.gov.hk/en/features/102465.html
Macau Government: https://www.ssm.gov.mo/portal/
Taiwan CDC: https://sites.google....
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Intercept and holiday coefficients with 95% confidence intervals based on robust standard errors.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Day of week and county demographic coefficients and 95% confidence intervals based on robust standard errors.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Coefficients and 95% confidence intervals based on robust standard errors for the excess zero model.
Facebook
TwitterThe New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.