Facebook
TwitterWest Virginia and Kansas had the lowest cost of living across all U.S. states, with composite costs being half of those found in Hawaii. This was according to a composite index that compares prices for various goods and services on a state-by-state basis. In West Virginia, the cost of living index amounted to **** — well below the national benchmark of 100. Virginia— which had an index value of ***** — was only slightly above that benchmark. Expensive places to live included Hawaii, Massachusetts, and California. Housing costs in the U.S. Housing is usually the highest expense in a household’s budget. In 2023, the average house sold for approximately ******* U.S. dollars, but house prices in the Northeast and West regions were significantly higher. Conversely, the South had some of the least expensive housing. In West Virginia, Mississippi, and Louisiana, the median price of the typical single-family home was less than ******* U.S. dollars. That makes living expenses in these states significantly lower than in states such as Hawaii and California, where housing is much pricier. What other expenses affect the cost of living? Utility costs such as electricity, natural gas, water, and internet also influence the cost of living. In Alaska, Hawaii, and Connecticut, the average monthly utility cost exceeded *** U.S. dollars. That was because of the significantly higher prices for electricity and natural gas in these states.
Facebook
TwitterThis statistic shows the best states to make living in the United States in 2019. In 2019, Wyoming was ranked as the best state to make a living in the United States, with the cost of living index at **** value and the median income of ****** U.S. dollars.
Facebook
TwitterQuality of life is a measure of comfort, health, and happiness by a person or a group of people. Quality of life is determined by both material factors, such as income and housing, and broader considerations like health, education, and freedom. Each year, US & World News releases its “Best States to Live in” report, which ranks states on the quality of life each state provides its residents. In order to determine rankings, U.S. News & World Report considers a wide range of factors, including healthcare, education, economy, infrastructure, opportunity, fiscal stability, crime and corrections, and the natural environment. More information on these categories and what is measured in each can be found below:
Healthcare includes access, quality, and affordability of healthcare, as well as health measurements, such as obesity rates and rates of smoking. Education measures how well public schools perform in terms of testing and graduation rates, as well as tuition costs associated with higher education and college debt load. Economy looks at GDP growth, migration to the state, and new business. Infrastructure includes transportation availability, road quality, communications, and internet access. Opportunity includes poverty rates, cost of living, housing costs and gender and racial equality. Fiscal Stability considers the health of the government's finances, including how well the state balances its budget. Crime and Corrections ranks a state’s public safety and measures prison systems and their populations. Natural Environment looks at the quality of air and water and exposure to pollution.
Facebook
TwitterThe Consumer Sentiment Index in the United States stood at 51 in November 2025. This reflected a drop of 2.6 point from the previous survey. Furthermore, this was its lowest level measured since June 2022. The index is normalized to a value of 100 in December 1964 and based on a monthly survey of consumers, conducted in the continental United States. It consists of about 50 core questions which cover consumers' assessments of their personal financial situation, their buying attitudes and overall economic conditions.
Facebook
TwitterIn 2025, the Consumer Price Index (CPI) for medical professional services in the United States was at 432.46, compared to the period from 1982 to 1984 (=100). The CPI for hospital services was at 1,102.12.
Facebook
TwitterOf the most populous cities in the U.S., San Jose, California had the highest annual income requirement at ******* U.S. dollars annually for homeowners to have an affordable and comfortable life in 2024. This can be compared to Houston, Texas, where homeowners needed an annual income of ****** U.S. dollars in 2024.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average for 2021 based on 165 countries was 79.81 index points. The highest value was in Bermuda: 212.7 index points and the lowest value was in Syria: 33.25 index points. The indicator is available from 2017 to 2021. Below is a chart for all countries where data are available.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F1937611%2F82267b1a15f8669ec2a072972bebccb5%2Fquality-of-life-by-us-state.png?generation=1717697280376438&alt=media" alt="">
This dataset provides insights into the quality of life across different states in the United States for the year 2024. Quality of life, encompassing aspects like comfort, health, and happiness, is evaluated through various metrics including affordability, economy, education, and safety. Dive into this dataset to understand how different states fare in terms of overall quality of life and its individual components.
These descriptions provide an overview of what each column represents and the specific aspects of quality of life they assess for each U.S. state.
Facebook
TwitterThere is more to housing affordability than the rent or mortgage you pay. Transportation costs are the second-biggest budget item for most families, but it can be difficult for people to fully factor transportation costs into decisions about where to live and work. The Location Affordability Index (LAI) is a user-friendly source of standardized data at the neighborhood (census tract) level on combined housing and transportation costs to help consumers, policymakers, and developers make more informed decisions about where to live, work, and invest. Compare eight household profiles (see table below) —which vary by household income, size, and number of commuters—and see the impact of the built environment on affordability in a given location while holding household demographics constant.*$11,880 for a single person household in 2016 according to US Dept. of Health and Human Services: https://aspe.hhs.gov/computations-2016-poverty-guidelinesThis layer is symbolized by the percentage of housing and transportation costs as a percentage of income for the Median-Income Family profile, but the costs as a percentage of income for all household profiles are listed in the pop-up:Also available is a gallery of 8 web maps (one for each household profile) all symbolized the same way for easy comparison: Median-Income Family, Very Low-Income Individual, Working Individual, Single Professional, Retired Couple, Single-Parent Family, Moderate-Income Family, and Dual-Professional Family.An accompanying story map provides side-by-side comparisons and additional context.--Variables used in HUD's calculations include 24 measures such as people per household, average number of rooms per housing unit, monthly housing costs (mortgage/rent as well as utility and maintenance expenses), average number of cars per household, median commute distance, vehicle miles traveled per year, percent of trips taken on transit, street connectivity and walkability (measured by block density), and many more.To learn more about the Location Affordability Index (v.3) visit: https://www.hudexchange.info/programs/location-affordability-index/. There you will find some background and an FAQ page, which includes the question:"Manhattan, San Francisco, and downtown Boston are some of the most expensive places to live in the country, yet the LAI shows them as affordable for the typical regional household. Why?" These areas have some of the lowest transportation costs in the country, which helps offset the high cost of housing. The area median income (AMI) in these regions is also high, so when costs are shown as a percent of income for the typical regional household these neighborhoods appear affordable; however, they are generally unaffordable to households earning less than the AMI.Date of Coverage: 2012-2016 Date Released: March 2019Date Downloaded from HUD Open Data: 4/18/19Further Documentation:LAI Version 3 Data and MethodologyLAI Version 3 Technical Documentation_**The documentation below is in reference to this items placement in the NM Supply Chain Data Hub. The documentation is of use to understanding the source of this item, and how to reproduce it for updates**
Title: Location Affordability Index - NMCDC Copy
Summary: This layer contains the Location Affordability Index from U.S. Dept. of Housing and Urban Development (HUD) - standardized household, housing, and transportation cost estimates by census tract for 8 household profiles.
Notes: This map is copied from source map: https://nmcdc.maps.arcgis.com/home/item.html?id=de341c1338c5447da400c4e8c51ae1f6, created by dianaclavery_uo, and identified in Living Atlas.
Prepared by: dianaclavery_uo, copied by EMcRae_NMCDC
Source: This map is copied from source map: https://nmcdc.maps.arcgis.com/home/item.html?id=de341c1338c5447da400c4e8c51ae1f6, created by dianaclavery_uo, and identified in Living Atlas. Check the source documentation or other details above for more information about data sources.
Feature Service: https://nmcdc.maps.arcgis.com/home/item.html?id=447a461f048845979f30a2478b9e65bb
UID: 73
Data Requested: Family income spent on basic need
Method of Acquisition: Search for Location Affordability Index in the Living Atlas. Make a copy of most recent map available. To update this map, copy the most recent map available. In a new tab, open the AGOL Assistant Portal tool and use the functions in the portal to copy the new maps JSON, and paste it over the old map (this map with item id
Date Acquired: Map copied on May 10, 2022
Priority rank as Identified in 2022 (scale of 1 being the highest priority, to 11 being the lowest priority): 6
Tags: PENDING
Facebook
TwitterCost comparison table showing community type costs by location
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This table contains data on the percent of households paying more than 30% (or 50%) of monthly household income towards housing costs for California, its regions, counties, cities/towns, and census tracts. Data is from the U.S. Department of Housing and Urban Development (HUD), Consolidated Planning Comprehensive Housing Affordability Strategy (CHAS) and the U.S. Census Bureau, American Community Survey (ACS). The table is part of a series of indicators in the [Healthy Communities Data and Indicators Project of the Office of Health Equity] Affordable, quality housing is central to health, conferring protection from the environment and supporting family life. Housing costs—typically the largest, single expense in a family's budget—also impact decisions that affect health. As housing consumes larger proportions of household income, families have less income for nutrition, health care, transportation, education, etc. Severe cost burdens may induce poverty—which is associated with developmental and behavioral problems in children and accelerated cognitive and physical decline in adults. Low-income families and minority communities are disproportionately affected by the lack of affordable, quality housing. More information about the data table and a data dictionary can be found in the Attachments.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
A dataset comprising various variables around housing and demographics for the top 50 American cities by population.
Variables:
Zip Code: Zip code within which the listing is present.
Price: Listed price for the property.
Beds: Number of beds mentioned in the listing.
Baths: Number of baths mentioned in the listing.
Living Space: The total size of the living space, in square feet, mentioned in the listing.
Address: Street address of the listing.
City: City name where the listing is located.
State: State name where the listing is located.
Zip Code Population: The estimated number of individuals within the zip code. Data from Simplemaps.com.
Zip Code Density: The estimated number of individuals per square mile within the zip code. Data from Simplemaps.com.
County: County where the listing is located.
Median Household income: Estimated median household income. Data from the U.S. Census Bureau.
Latitude: Latitude of the zip code. ** Data from Simplemaps.com.**
Longitude: Longitude of the zip code. Data from Simplemaps.com.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Drinking water affordability affects all residents including those with piped water connections and self-supply, private wells. Self-supply drinking water well users make up 12–15% of the United States population and are often overlooked during affordability studies. To the best of our knowledge, this study is the first attempt to quantify statewide water affordability costs for all residents, both utility customers and private well users. This study applies several geospatial methodologies: percent median household income (MHI), number of households beneath affordability thresholds, and hours worked at minimum wage. The greatest determinant of private well affordability was found to be initial capital costs. These costs were represented as a monthly loan payment plus operations and maintenance costs; a range of results were found. For operations and maintenance costs only, 9% of private well serviced homes exceeded the 2.5% MHI threshold while for monthly loan payments, corresponding to a $13,500 capital cost, 51% of households exceeded the same affordability metric. There are 3.17% of centralized water utility serviced households spending greater than 2.5% of their median household income on water while 16.3% of utility-serviced households fall below an income threshold representing 2.5% of the block group MHI. This range of results highlights the need for a multifaceted solution to ensure the human right to affordable water.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
About This Dataset
This dataset is the original 70-city version used in my first published research paper: “A Data-Driven Survey on Cost of Living and Salary Affordability in Indian Cities” (IJRASET, 2025) Link: https://www.ijraset.com/best-journal/a-datadriven-survey-on-cost-of-livingsalary-affordability-in-indian-cities
It was created using web-scraping techniques from LivingCost.org and converted to INR using a consistent USD→INR exchange rate. This dataset forms the foundational base for affordability analysis, exploratory data analysis (EDA), and benchmarking cost-of-living patterns across India.
The dataset includes 70+ Indian cities, with fields covering living cost, rent, salary, affordability ratio (“months covered”), and derived financial indicators. It is clean, structured, and suitable for beginner to intermediate analytics projects.
Why This Dataset?
This dataset is ideal for:
EDA practice for college & school projects
Correlation and regression analysis
Basic ML tasks (predicting salary, affordability, rent, etc.)
Urban economics mini-projects
Dashboard creation (PowerBI, Tableau)
Data cleaning and preprocessing assignments
It is designed to be simple enough for students but structured enough for real-world analysis.
Features Included
Each row represents a city/state-level affordability profile with:
Cost of living (USD & INR)
Rent for a single person (USD & INR)
Monthly after-tax salary (USD & INR)
Income after rent
“Months Covered” affordability ratio
Source URLs for verification
Exchange rate used
This makes the dataset both transparent and reliable for academic usage.
Data Quality
Web-scraped directly from LivingCost.org
Cleaned and standardized
Currency converted uniformly
Non-city entries flagged
Fully reproducible from the source
This dataset served as the master input for my peer-reviewed paper and has been validated through statistical analysis.
Intended Audience
Students (school, undergraduate, postgraduate)
Data science beginners
Educators needing real datasets for teaching
Analysts looking for quick EDA practice
Researchers exploring affordability or urban economics
Note
A more comprehensive 200+ city enhanced dataset (used in my second paper) will be uploaded soon, including ICT metrics, GDP, and extended affordability indicators.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
By [source]
This dataset provides an extensive look into the financial health of software developers in major cities and metropolitan areas around the United States. We explore disparities between states and cities in terms of mean software developer salaries, median home prices, cost of living avgs, rent avgs, cost of living plus rent avgs and local purchasing power averages. Through this data set we can gain insights on how to better understand which areas are more financially viable than others when seeking employment within the software development field. Our data allow us to uncover patterns among certain geographic locations in order to identify other compelling financial opportunities that software developers may benefit from
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset contains valuable information about software developer salaries across states and cities in the United States. It is important for recruiters and professionals alike to understand what kind of compensation software developers are likely to receive, as it may be beneficial when considering job opportunities or applying for a promotion. This guide will provide an overview of what you can learn from this dataset.
The data is organized by metropolitan areas, which encompass multiple cities within the same geographical region (e.g., “New York-Northern New Jersey” covers both New York City and Newark). From there, each metro can be broken down further into a number of different factors that may affect software developer salaries in the area:
- Mean Software Developer Salary (adjusted): The average salary of software developers in that particular metro area after accounting for cost of living differences within the region.
- Mean Software Developer Salary (unadjusted): The average salary of software developers in that particular metro area before adjusting for cost-of-living discrepancies between locales.
- Number of Software Developer Jobs: This column lists how many total jobs are available to software developers in this particular metropolitan area.
- Median Home Price: A metric which shows median value of all homes currently on the market within this partcular city or state. It helps gauge how expensive housing costs might be to potential residents who already have an idea about their income/salary range expectations when considering a move/relocation into another location or potentially looking at mortgage/rental options etc.. 5) Cost Of Living Avg: A metric designed to measure affordability using local prices paid on common consumer goods like food , transportation , health care , housing & other services etc.. Also prominent here along with rent avg ,cost od living plus rent avg helping compare relative cost structures between different locations while assessing potential remunerations & risk associated with them . 6)Local Purchasing Power Avg : A measure reflecting expected difference in discretionary spending ability among households regardless their income level upon relocation due to price discrepancies across locations allows individual assessment critical during job search particularly regarding relocation as well as comparison based decision making across prospective candidates during any hiring process . 7 ) Rent Avg : Average rental costs for homes / apartments dealbreakers even among prime job prospects particularly medium income earners.(basis family size & other constraints ) 8 ) Cost Of Living Plus Rent Avg : Used here as one sized fits perspective towards measuring overall cost structure including items
- Comparing salaries of software developers in different cities to determine which city provides the best compensation package.
- Estimating the cost of relocating to a new city by looking at average costs such as rent and cost of living.
- Predicting job growth for software developers by analyzing factors like local purchasing power, median home price and number of jobs available
If you use this dataset in your research, please credit the original authors. Data Source
License: CC0 1.0 Universal (CC0 1.0) - Public Domain Dedication No Copyright - You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking perm...
Facebook
TwitterCost comparison table showing community type costs by location
Facebook
TwitterCost comparison table showing community type costs by location
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Alabama cost of living for the counties with the lowest and highest MHI in Alabama (2022 U.S. Dollars).
Facebook
TwitterIn the United States, Hawaii was the state with the most expensive housing, with the typical value of single-family homes in the 35th to 65th percentile range exceeding ******* U.S. dollars. Unsurprisingly, Hawaii also ranked top as the state with the highest cost of living. Meanwhile, a property was the least expensive in West Virginia, where it cost under ******* U.S. dollars to buy the typical single-family home. Single-family home prices increased across most states in the United States between December 2023 and December 2024, except in Louisiana, Florida, and the District of Colombia. According to the Federal Housing Association, house appreciation in 13 states exceeded **** percent in 2023.
Facebook
TwitterCost comparison table showing community type costs by location
Facebook
TwitterWest Virginia and Kansas had the lowest cost of living across all U.S. states, with composite costs being half of those found in Hawaii. This was according to a composite index that compares prices for various goods and services on a state-by-state basis. In West Virginia, the cost of living index amounted to **** — well below the national benchmark of 100. Virginia— which had an index value of ***** — was only slightly above that benchmark. Expensive places to live included Hawaii, Massachusetts, and California. Housing costs in the U.S. Housing is usually the highest expense in a household’s budget. In 2023, the average house sold for approximately ******* U.S. dollars, but house prices in the Northeast and West regions were significantly higher. Conversely, the South had some of the least expensive housing. In West Virginia, Mississippi, and Louisiana, the median price of the typical single-family home was less than ******* U.S. dollars. That makes living expenses in these states significantly lower than in states such as Hawaii and California, where housing is much pricier. What other expenses affect the cost of living? Utility costs such as electricity, natural gas, water, and internet also influence the cost of living. In Alaska, Hawaii, and Connecticut, the average monthly utility cost exceeded *** U.S. dollars. That was because of the significantly higher prices for electricity and natural gas in these states.