In the Cook Islands in 2024, the population decreased by about 2.24 percent compared to the previous year, making it the country with the highest population decline rate in 2024. Of the 20 countries with the highest rate of population decline, the majority are island nations, where emigration rates are high (especially to Australia, New Zealand, and the United States), or they are located in Eastern Europe, which suffers from a combination of high emigration rates and low birth rates.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the State Line City population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of State Line City across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of State Line City was 123, a 0% decrease year-by-year from 2022. Previously, in 2022, State Line City population was 123, an increase of 1.65% compared to a population of 121 in 2021. Over the last 20 plus years, between 2000 and 2023, population of State Line City decreased by 14. In this period, the peak population was 143 in the year 2010. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for State Line City Population by Year. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Population: Growth data was reported at 0.713 % in 2017. This records a decrease from the previous number of 0.734 % for 2016. United States US: Population: Growth data is updated yearly, averaging 0.979 % from Dec 1960 (Median) to 2017, with 58 observations. The data reached an all-time high of 1.702 % in 1960 and a record low of 0.711 % in 2013. United States US: Population: Growth data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Population and Urbanization Statistics. Annual population growth rate for year t is the exponential rate of growth of midyear population from year t-1 to t, expressed as a percentage . Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship.; ; Derived from total population. Population source: (1) United Nations Population Division. World Population Prospects: 2017 Revision, (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Reprot (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme.; Weighted average;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the United States population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of United States across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2024, the population of United States was 340.11 million, a 0.98% increase year-by-year from 2023. Previously, in 2023, United States population was 336.81 million, an increase of 0.83% compared to a population of 334.02 million in 2022. Over the last 20 plus years, between 2000 and 2024, population of United States increased by 57.95 million. In this period, the peak population was 340.11 million in the year 2024. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for United States Population by Year. You can refer the same here
In the past four centuries, the population of the United States has grown from a recorded 350 people around the Jamestown colony of Virginia in 1610, to an estimated 331 million people in 2020. The pre-colonization populations of the indigenous peoples of the Americas have proven difficult for historians to estimate, as their numbers decreased rapidly following the introduction of European diseases (namely smallpox, plague and influenza). Native Americans were also omitted from most censuses conducted before the twentieth century, therefore the actual population of what we now know as the United States would have been much higher than the official census data from before 1800, but it is unclear by how much. Population growth in the colonies throughout the eighteenth century has primarily been attributed to migration from the British Isles and the Transatlantic slave trade; however it is also difficult to assert the ethnic-makeup of the population in these years as accurate migration records were not kept until after the 1820s, at which point the importation of slaves had also been illegalized. Nineteenth century In the year 1800, it is estimated that the population across the present-day United States was around six million people, with the population in the 16 admitted states numbering at 5.3 million. Migration to the United States began to happen on a large scale in the mid-nineteenth century, with the first major waves coming from Ireland, Britain and Germany. In some aspects, this wave of mass migration balanced out the demographic impacts of the American Civil War, which was the deadliest war in U.S. history with approximately 620 thousand fatalities between 1861 and 1865. The civil war also resulted in the emancipation of around four million slaves across the south; many of whose ancestors would take part in the Great Northern Migration in the early 1900s, which saw around six million black Americans migrate away from the south in one of the largest demographic shifts in U.S. history. By the end of the nineteenth century, improvements in transport technology and increasing economic opportunities saw migration to the United States increase further, particularly from southern and Eastern Europe, and in the first decade of the 1900s the number of migrants to the U.S. exceeded one million people in some years. Twentieth and twenty-first century The U.S. population has grown steadily throughout the past 120 years, reaching one hundred million in the 1910s, two hundred million in the 1960s, and three hundred million in 2007. In the past century, the U.S. established itself as a global superpower, with the world's largest economy (by nominal GDP) and most powerful military. Involvement in foreign wars has resulted in over 620,000 further U.S. fatalities since the Civil War, and migration fell drastically during the World Wars and Great Depression; however the population continuously grew in these years as the total fertility rate remained above two births per woman, and life expectancy increased (except during the Spanish Flu pandemic of 1918).
Since the Second World War, Latin America has replaced Europe as the most common point of origin for migrants, with Hispanic populations growing rapidly across the south and border states. Because of this, the proportion of non-Hispanic whites, which has been the most dominant ethnicity in the U.S. since records began, has dropped more rapidly in recent decades. Ethnic minorities also have a much higher birth rate than non-Hispanic whites, further contributing to this decline, and the share of non-Hispanic whites is expected to fall below fifty percent of the U.S. population by the mid-2000s. In 2020, the United States has the third-largest population in the world (after China and India), and the population is expected to reach four hundred million in the 2050s.
This graph shows population projections for the United States of America. The estimated population of the USA in 2050 is 398 million residents. Population The U.S. Census Bureau presents annual projections for the growth of the U.S. population up to the year 2060. By 2050, it is estimated that the American population will surpass 398 million citizens. The U.S. census also projects a regressing annual growth rate, starting at 0.8 percent in 2015 and decreasing to 0.46 percent by 2060.
The UN population division publishes population projections for the entire world up to the year 2100. The United Nations also projects a regressing annual growth rate of the world population. Between 2015 and 2020, the population is expected to increase by 1.04 percent annually. Around 2060, the annual growth rate will have decreased to 0.34 percent.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Illinois population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Illinois across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2024, the population of Illinois was 12.71 million, a 0.54% increase year-by-year from 2023. Previously, in 2023, Illinois population was 12.64 million, an increase of 0.16% compared to a population of 12.62 million in 2022. Over the last 20 plus years, between 2000 and 2024, population of Illinois increased by 272,590. In this period, the peak population was 12.9 million in the year 2009. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Illinois Population by Year. You can refer the same here
Prior to the arrival of European explorers in the Americas in 1492, it is estimated that the population of the continent was around sixty million people. Over the next two centuries, most scholars agree that the indigenous population fell to just ten percent of its pre-colonization level, primarily due to the Old World diseases (namely smallpox) brought to the New World by Europeans and African slaves, as well as through violence and famine.
Distribution
It is thought that the most densely populated region of the Americas was in the fertile Mexican valley, home to over one third of the entire continent, including several Mesoamerican civilizations such as the Aztec empire. While the mid-estimate shows a population of over 21 million before European arrival, one estimate suggests that there were just 730,000 people of indigenous descent in Mexico in 1620, just one hundred years after Cortes' arrival. Estimates also suggest that the Andes, home to the Incas, was the second most-populous region in the Americas, while North America (in this case, the region north of the Rio Grande river) may have been the most sparsely populated region. There is some contention as to the size of the pre-Columbian populations in the Caribbean, as the mass genocides, forced relocation, and pandemics that followed in the early stages of Spanish colonization make it difficult to predict these numbers.
Varying estimates Estimating the indigenous populations of the Americas has proven to be a challenge and point of contention for modern historians. Totals from reputable sources range from 8.4 million people to 112.55 million, and while both of these totals were published in the 1930s and 1960s respectively, their continued citation proves the ambiguity surrounding this topic. European settlers' records from the 15th to 17th centuries have also created challenges, due to their unrealistic population predictions and inaccurate methodologies (for example, many early settlers only counted the number of warriors in each civilization). Nonetheless, most modern historians use figures close to those given in the "Middle estimate" shown here, with similar distributions by region.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Blue Ridge population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Blue Ridge across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Blue Ridge was 1,200, a 0% decrease year-by-year from 2022. Previously, in 2022, Blue Ridge population was 1,200, an increase of 1.10% compared to a population of 1,187 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Blue Ridge increased by 460. In this period, the peak population was 1,200 in the year 2022. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Blue Ridge Population by Year. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Chart and table of population level and growth rate for the state of California from 1900 to 2024.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This paper documents a set of facts about the dramatic decline in birth rates in the United States between 2007 and 2020 and explores possible explanations for it. The overall reduction in the birth rate reflects both very large declines within certain groups of women, including teens and Hispanic women – and smaller declines among demographic groups that comprise a large population share, including college-educated white women. We explore potential economic, policy, and social factors that might be responsible for the overall decline. We conclude from our empirical examination of possible factors that there is not a readily identifiable economic or policy factor or set of factors this is likely responsible for a substantial share of the decline. Instead, the patterns observed suggest that widespread, hard to quantify changes in preferences for having children, aspirations for life, and the nature of parenting are more likely behind the recent decline in US births. We conclude with a brief discussion about the societal consequences for a declining birth rate and what the United States might do about it.
The world's population first reached one billion people in 1803, and reach eight billion in 2023, and will peak at almost 11 billion by the end of the century. Although it took thousands of years to reach one billion people, it did so at the beginning of a phenomenon known as the demographic transition; from this point onwards, population growth has skyrocketed, and since the 1960s the population has increased by one billion people every 12 to 15 years. The demographic transition sees a sharp drop in mortality due to factors such as vaccination, sanitation, and improved food supply; the population boom that follows is due to increased survival rates among children and higher life expectancy among the general population; and fertility then drops in response to this population growth. Regional differences The demographic transition is a global phenomenon, but it has taken place at different times across the world. The industrialized countries of Europe and North America were the first to go through this process, followed by some states in the Western Pacific. Latin America's population then began growing at the turn of the 20th century, but the most significant period of global population growth occurred as Asia progressed in the late-1900s. As of the early 21st century, almost two thirds of the world's population live in Asia, although this is set to change significantly in the coming decades. Future growth The growth of Africa's population, particularly in Sub-Saharan Africa, will have the largest impact on global demographics in this century. From 2000 to 2100, it is expected that Africa's population will have increased by a factor of almost five. It overtook Europe in size in the late 1990s, and overtook the Americas a decade later. In contrast to Africa, Europe's population is now in decline, as birth rates are consistently below death rates in many countries, especially in the south and east, resulting in natural population decline. Similarly, the population of the Americas and Asia are expected to go into decline in the second half of this century, and only Oceania's population will still be growing alongside Africa. By 2100, the world's population will have over three billion more than today, with the vast majority of this concentrated in Africa. Demographers predict that climate change is exacerbating many of the challenges that currently hinder progress in Africa, such as political and food instability; if Africa's transition is prolonged, then it may result in further population growth that would place a strain on the region's resources, however, curbing this growth earlier would alleviate some of the pressure created by climate change.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Bumble bees (Bombus) are vitally important pollinators of wild plants and agricultural crops worldwide. Fragmentary observations, however, have suggested population declines in several North American species. Despite rising concern over these observations in the United States, highlighted in a recent National Academy of Sciences report, a national assessment of the geographic scope and possible causal factors of bumble bee decline is lacking. Here, we report results of a 3-y interdisciplinary study of changing distributions, population genetic structure, and levels of pathogen infection in bumble bee populations across the United States. We compare current and historical distributions of eight species, compiling a database of >73,000 museum records for comparison with data from intensive nationwide surveys of >16,000 specimens. We show that the relative abundances of four species have declined by up to 96% and that their surveyed geographic ranges have contracted by 23–87%, some within the last 20 y. We also show that declining populations have significantly higher infection levels of the microsporidian pathogen Nosema bombi and lower genetic diversity compared with co-occurring populations of the stable (nondeclining) species. Higher pathogen prevalence and reduced genetic diversity are, thus, realistic predictors of these alarming patterns of decline in North America, although cause and effect remain uncertain. Bumble bees (Bombus) are integral wild pollinators within native plant communities throughout temperate ecosystems, and recent domestication has boosted their economic importance in crop pollination to a level surpassed only by the honey bee. Their robust size, long tongues, and buzz-pollination behavior (high-frequency buzzing to release pollen from flowers) significantly increase the efficiency of pollen transfer in multibillion dollar crops such as tomatoes and berries. Disturbing reports of bumble bee population declines in Europe have recently spilled over into North America, fueling environmental and economic concerns of global decline. However, the evidence for large-scale range reductions across North America is lacking. Many reports of decline are unpublished, and the few published studies are limited to independent local surveys in northern California/southern Oregon, Ontario, Canada, and Illinois. Furthermore, causal factors leading to the alleged decline of bumble bee populations in North America remain speculative. One compelling but untested hypothesis for the cause of decline in the United States entails the spread of a putatively introduced pathogen, Nosema bombi, which is an obligate intracellular microsporidian parasite found commonly in bumble bees throughout Europe but largely unstudied in North America. Pathogenic effects of N. bombi may vary depending on the host species and reproductive caste and include reductions in colony growth and individual life span and fitness. Population genetic factors could also play a role in Bombus population decline. For instance, small effective population sizes and reduced gene flow among fragmented habitats can result in losses of genetic diversity with negative consequences, and the detrimental impacts of these genetic factors can be especially intensified in bees. Population genetic studies of Bombus are rare worldwide. A single study in the United States identified lower genetic diversity and elevated genetic differentiation (FST) among Illinois populations of the putatively declining B. pensylvanicus relative to those of a codistributed stable species. Similar patterns have been observed in comparative studies of some European species, but most investigations have been geographically restricted and based on limited sampling within and among populations. Although the investigations to date have provided important information on the increasing rarity of some bumble bee species in local populations, the different survey protocols and limited geographic scope of these studies cannot fully capture the general patterns necessary to evaluate the underlying processes or overall gravity of declines. Furthermore, valid tests of the N. bombi hypothesis and its risk to populations across North America call for data on its geographic distribution and infection prevalence among species. Likewise, testing the general importance of population genetic factors in bumble bee decline requires genetic comparisons derived from sampling of multiple stable and declining populations on a large geographic scale. From such range-wide comparisons, we provide incontrovertible evidence that multiple Bombus species have experienced sharp population declines at the national level. We also show that declining populations are associated with both high N. bombi infection levels and low genetic diversity. This data was used in the paper "Patterns of widespread decline in North American bumble bees" published in the Proceedings of the National Academy of United States of America. For more information about this dataset contact: Sydney A. Cameron: scameron@life.illinois.edu James Strange: James.Strange@ars.usda.gov Resources in this dataset:Resource Title: Data from: Patterns of Widespread Decline in North American Bumble Bees (Data Dictionary). File Name: meta.xmlResource Description: This is an XML data dictionary for Data from: Patterns of Widespread Decline in North American Bumble Bees.Resource Title: Patterns of Widespread Decline in North American Bumble Bees (DWC Archive). File Name: occurrence.csvResource Description: File modified to remove fields with no recorded values.Resource Title: Patterns of Widespread Decline in North American Bumble Bees (DWC Archive). File Name: dwca-usda-ars-patternsofwidespreaddecline-bumblebees-v1.1.zipResource Description: Data from: Patterns of Widespread Decline in North American Bumble Bees -- this is a Darwin Core Archive file. The Darwin Core Archive is a zip file that contains three documents.
The occurrence data is stored in the occurrence.txt file. The metadata that describes the columns of this document is called meta.xml. This document is also the data dictionary for this dataset. The metadata that describes the dataset, including author and contact information for this dataset is called eml.xml.
Find the data files at https://bison.usgs.gov/ipt/resource?r=usda-ars-patternsofwidespreaddecline-bumblebees
Prior to the American Civil War, New York, Pennsylvania, and Ohio were the most populous states in the Union, each with between two and four million inhabitants. Industrialization in the north was one of the key drivers of population growth during this period, through both internal and external migration, and Illinois saw the largest population growth during the 1860s largely due to the expansion of industry around Chicago. The gradual industrialization of the north in the early 1800s also contributed to the decline of slavery in the Union states, and the economic differences between the Union and Confederacy was a key factor in both the build-up to the Civil War, as well as the Union's eventual victory in 1865.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the State Line population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of State Line across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2022, the population of State Line was 39, a 0.00% decrease year-by-year from 2021. Previously, in 2021, State Line population was 39, an increase of 5.41% compared to a population of 37 in 2020. Over the last 20 plus years, between 2000 and 2022, population of State Line decreased by 20. In this period, the peak population was 61 in the year 2002. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for State Line Population by Year. You can refer the same here
Greater sage-grouse (Centrocercus urophasianus) are at the center of state and national land use policies largely because of their unique life-history traits as an ecological indicator for health of sagebrush ecosystems. These data represent an updated population trend analysis and Targeted Annual Warning System (TAWS) for state and federal land and wildlife managers to use best available science to help guide current management and conservation plans aimed at benefitting sage-grouse populations range-wide. This analysis relied on previously published population trend modeling methodology from Coates and others (2021, 2022) and includes population lek count data from 1960-2023. Bayesian state-space models estimated 2.8 percent average annual decline in sage-grouse populations across their geographical range, which varied among subpopulations at the largest scale of analysis, termed climate clusters (2.1-3.1). Cumulative declines were 41.1, 64.5, and 78.4 percent range-wide during Period 5 (19 years), Period 3 (35 years), and Period 1 (55 years), respectively. Mean extirpation probabilities calculated across all neighborhood clusters at approximately 18, 37, and 55 years in the future were 0.15 (SD of 0.25), 0.22 (SD of 0.27), and 0.26 (SD of 0.29), respectively. We also present updated results to the TAWS which models rates of change in abundance from spatially structured populations and identifies when local declines fall out of synchrony with trends at larger spatial scales. The TAWS framework provides signals that alert managers to the categorical significance of observed declines while avoiding signals where declines result from drivers operating at larger spatial scales (for example, periodic reductions in primary productivity owing to drought). Definitions: Watch: Assigned to populations that exhibit evidence of population decline below those of their respective climate cluster (slow signal) over 2 consecutive years. Warning: Assigned to populations that experienced slow signals in 3 out of 4 consecutive years OR a relatively strong magnitude (fast signal) of evidence for 2 out of 3 years. Watches may identify the need for intensive monitoring whereas warnings may identify the need for management intervention aimed at stabilizing populations. References: Coates, P.S., Prochazka, B.G., O’Donnell, M.S., Aldridge, C.L., Edmunds, D.R., Monroe, A.P., Ricca, M.A., Wann, G.T., Hanser, S.E., Wiechman, L.A., and Chenaille, M.P., 2021, Range-wide greater sage-grouse hierarchical monitoring framework-Implications for defining population boundaries, trend estimation, and a targeted annual warning system: U.S. Geological Survey Open-File Report 2020-1154, 243 p., https://doi.org/10.3133/ofr20201154. Coates, P.S., Prochazka, B.G., Aldridge, C.L., O’Donnell, M.S., Edmunds, D.R., Monroe, A.P., Hanser, S.E., Wiechman, L.A., and Chenaille, M.P., 2022, Range-wide population trend analysis for greater sage-grouse (Centrocercus urophasianus)-Updated 1960-2021: U.S. Geological Survey Data Report 1165, 16 p., https://doi.org/10.3133/dr1165
This statistic shows the total population of the three Baltic states of Estonia, Latvia and Lithuania from 1950 to 2020. Although the populations are quite different, all three countries followed a relatively similar trend throughout the last seventy years. Each country's population was devastated during the Second World War, Lithuania losing over 14 percent of the population, and Latvia and Estonia losing 12.5 percent and 7.3 percent respectively. In 1950 the populations were at around one, two and 2.5 million people respectively, and all three populations grew steadily until 1990 (although Estonia's grew at a slower rate than the other two countries). Independence movements After the Second World War the three Baltic states were incorporated into the Soviet Union, but when the Soviet economy began failing in the 1980s these states became increasingly dissatisfied with Soviet policies in the region. With growing nationalism in the area, the countries coordinated peaceful protests aimed at restoring independence to the region, in what would become known as the Singing Revolution, which involved a human chain that involved approximately 2 million people and stretched for over 675 kilometers connecting the three capital cities. Large declines following independence Within two years of the revolution all three countries became independent from the Soviet Union, and this change coincides with the drops in population of all three countries. By 1995 the populations of each country had dropped, and at a faster rate in Estonia and Latvia than in Lithuania. This decline has continued for the past 30 years, with the numbers falling at every five year interval for each country. By 2020, Estonia's population will have dropped by almost 240 thousand people, Latvia's by over 770 thousand, and Lithuania's by almost one million. The fall of the Soviet Union, combined with the Baltic nations joining the EU in 2004, meant that emigration was much easier and many from the Baltics went to Western Europe in search of work. Along with a declining natural birth rate, the populations of each country have been in steady decline and this trend is expected to continue into the next few decades, although new figures do suggest some growth for Estonia.
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
This filtered view contains most current population estimate and population change and change rate from prior non-overlapping data collection period for individual Iowa counties whose population has decreased. Data is from the American Community Survey, Five Year Estimates, Table B02001.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Chart and table of population level and growth rate for the state of Illinois from 1900 to 2024.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
America’s white population saw increases between 1790 when the first census was taken until 1960 when the population growth began to decline. According to numbers released by the Census in 2017, the nation experienced an absolute decline of about 9,000 whites between 2015 and 2016 and more than 31,000 whites between 2016 and 2017. Using a simple linear projection, we could expect to see a continued decline in white population of anywhere between 17,000 and 20,000 people from 2017 to the next decennial census in 2020.
In the Cook Islands in 2024, the population decreased by about 2.24 percent compared to the previous year, making it the country with the highest population decline rate in 2024. Of the 20 countries with the highest rate of population decline, the majority are island nations, where emigration rates are high (especially to Australia, New Zealand, and the United States), or they are located in Eastern Europe, which suffers from a combination of high emigration rates and low birth rates.