74 datasets found
  1. Population in the states of the U.S. 2024

    • statista.com
    Updated Jan 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Population in the states of the U.S. 2024 [Dataset]. https://www.statista.com/statistics/183497/population-in-the-federal-states-of-the-us/
    Explore at:
    Dataset updated
    Jan 3, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    United States
    Description

    California was the state with the highest resident population in the United States in 2024, with 39.43 million people. Wyoming had the lowest population with about 590,000 residents. Living the American Dream Ever since the opening of the West in the United States, California has represented the American Dream for both Americans and immigrants to the U.S. The warm weather, appeal of Hollywood and Silicon Valley, as well as cities that stick in the imagination such as San Francisco and Los Angeles, help to encourage people to move to California. Californian demographics California is an extremely diverse state, as no one ethnicity is in the majority. Additionally, it has the highest percentage of foreign-born residents in the United States. By 2040, the population of California is expected to increase by almost 10 million residents, which goes to show that its appeal, both in reality and the imagination, is going nowhere fast.

  2. Population density in the U.S. 2023, by state

    • statista.com
    Updated Dec 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Population density in the U.S. 2023, by state [Dataset]. https://www.statista.com/statistics/183588/population-density-in-the-federal-states-of-the-us/
    Explore at:
    Dataset updated
    Dec 3, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    In 2023, Washington, D.C. had the highest population density in the United States, with 11,130.69 people per square mile. As a whole, there were about 94.83 residents per square mile in the U.S., and Alaska was the state with the lowest population density, with 1.29 residents per square mile. The problem of population density Simply put, population density is the population of a country divided by the area of the country. While this can be an interesting measure of how many people live in a country and how large the country is, it does not account for the degree of urbanization, or the share of people who live in urban centers. For example, Russia is the largest country in the world and has a comparatively low population, so its population density is very low. However, much of the country is uninhabited, so cities in Russia are much more densely populated than the rest of the country. Urbanization in the United States While the United States is not very densely populated compared to other countries, its population density has increased significantly over the past few decades. The degree of urbanization has also increased, and well over half of the population lives in urban centers.

  3. Age distribution in the United States 2023

    • statista.com
    Updated Jan 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Age distribution in the United States 2023 [Dataset]. https://www.statista.com/statistics/270000/age-distribution-in-the-united-states/
    Explore at:
    Dataset updated
    Jan 31, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    This statistic depicts the age distribution in the United States from 2013 to 2023. In 2023, about 17.59 percent of the U.S. population fell into the 0-14 year category, 64.97 percent into the 15-64 age group and 17.43 percent of the population were over 65 years of age. The increasing population of the United States The United States of America is one of the most populated countries in the world, trailing just behind China and India. A total population count of around 320 million inhabitants and a more-or-less steady population growth over the past decade indicate that the country has steadily improved its living conditions and standards for the population. Leading healthier lifestyles and improved living conditions have resulted in a steady increase of the life expectancy at birth in the United States. Life expectancies of men and women at birth in the United States were at a record high in 2012. Furthermore, a constant fertility rate in recent years and a decrease in the death rate and infant mortality, all due to the improved standard of living and health care conditions, have helped not only the American population to increase but as a result, the share of the population younger than 15 and older than 65 years has also increased in recent years, as can be seen above.

  4. U.S. population by sex and age 2023

    • statista.com
    Updated Aug 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). U.S. population by sex and age 2023 [Dataset]. https://www.statista.com/statistics/241488/population-of-the-us-by-sex-and-age/
    Explore at:
    Dataset updated
    Aug 20, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The estimated population of the U.S. was approximately 334.9 million in 2023, and the largest age group was adults aged 30 to 34. There were 11.88 million males in this age category and around 11.64 million females. Which U.S. state has the largest population? The population of the United States continues to increase, and the country is the third most populous in the world behind China and India. The gender distribution has remained consistent for many years, with the number of females narrowly outnumbering males. In terms of where the residents are located, California was the state with the highest population in 2023. The U.S. population by race and ethnicity The United States is well known the world over for having a diverse population. In 2023, the number of Black or African American individuals was estimated to be 45.76 million, which represented an increase of over four million since the 2010 census. The number of Asian residents has increased at a similar rate during the same time period and the Hispanic population in the U.S. has also continued to grow.

  5. Population Density in the US (2020 Census)

    • data-bgky.hub.arcgis.com
    • hub.arcgis.com
    Updated Jun 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2023). Population Density in the US (2020 Census) [Dataset]. https://data-bgky.hub.arcgis.com/maps/a1926cb43e844c3f82275917d6eab47a
    Explore at:
    Dataset updated
    Jun 7, 2023
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This map shows population density of the United States. Areas in darker magenta have much higher population per square mile than areas in orange or yellow. Data is from the U.S. Census Bureau’s 2020 Census Demographic and Housing Characteristics. The map's layers contain total population counts by sex, age, and race groups for Nation, State, County, Census Tract, and Block Group in the United States and Puerto Rico. From the Census:"Population density allows for broad comparison of settlement intensity across geographic areas. In the U.S., population density is typically expressed as the number of people per square mile of land area. The U.S. value is calculated by dividing the total U.S. population (316 million in 2013) by the total U.S. land area (3.5 million square miles).When comparing population density values for different geographic areas, then, it is helpful to keep in mind that the values are most useful for small areas, such as neighborhoods. For larger areas (especially at the state or country scale), overall population density values are less likely to provide a meaningful measure of the density levels at which people actually live, but can be useful for comparing settlement intensity across geographies of similar scale." SourceAbout the dataYou can use this map as is and you can also modify it to use other attributes included in its layers. This map's layers contain total population counts by sex, age, and race groups data from the 2020 Census Demographic and Housing Characteristics. This is shown by Nation, State, County, Census Tract, Block Group boundaries. Each geography layer contains a common set of Census counts based on available attributes from the U.S. Census Bureau. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis.Vintage of boundaries and attributes: 2020 Demographic and Housing Characteristics Table(s): P1, H1, H3, P2, P3, P5, P12, P13, P17, PCT12 (Not all lines of these DHC tables are available in this feature layer.)Data downloaded from: U.S. Census Bureau’s data.census.gov siteDate the Data was Downloaded: May 25, 2023Geography Levels included: Nation, State, County, Census Tract, Block GroupNational Figures: included in Nation layer The United States Census Bureau Demographic and Housing Characteristics: 2020 Census Results 2020 Census Data Quality Geography & 2020 Census Technical Documentation Data Table Guide: includes the final list of tables, lowest level of geography by table and table shells for the Demographic Profile and Demographic and Housing Characteristics.News & Updates This map is ready to be used in ArcGIS Pro, ArcGIS Online and its configurable apps, Story Maps, dashboards, Notebooks, Python, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the U.S. Census Bureau when using this data. Data Processing Notes: These 2020 Census boundaries come from the US Census TIGER geodatabases. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For Census tracts and block groups, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract and block group boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are unchanged and available as attributes within the data table (units are square meters).  The layer contains all US states, Washington D.C., and Puerto Rico. Census tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99). Block groups that fall within the same criteria (Block Group denoted as 0 with no area land) have also been removed.Percentages and derived counts, are calculated values (that can be identified by the "_calc_" stub in the field name). Field alias names were created based on the Table Shells file available from the Data Table Guide for the Demographic Profile and Demographic and Housing Characteristics. Not all lines of all tables listed above are included in this layer. Duplicative counts were dropped. For example, P0030001 was dropped, as it is duplicative of P0010001.To protect the privacy and confidentiality of respondents, their data has been protected using differential privacy techniques by the U.S. Census Bureau.

  6. Number of families in the US by number of children 2000-2023

    • statista.com
    Updated Oct 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Number of families in the US by number of children 2000-2023 [Dataset]. https://www.statista.com/statistics/183790/number-of-families-in-the-us-by-number-of-children/
    Explore at:
    Dataset updated
    Oct 16, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    Around 6.8 million families had three or more children under 18 living in the household in 2023. In that same year, about 51.05 million households had no children under 18 living in the household.

  7. Number of children in the U.S. in 2022, by age group

    • statista.com
    Updated Jul 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Number of children in the U.S. in 2022, by age group [Dataset]. https://www.statista.com/statistics/457786/number-of-children-in-the-us-by-age/
    Explore at:
    Dataset updated
    Jul 5, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    United States
    Description

    In 2022, there were about 25.8 million children between the ages of 12 and 17 years old living in the United States. On the other hand, there were about 22.4 million children between the ages of zero and five years old in the country.

  8. ACS Poverty Status Variables - Boundaries

    • hub.arcgis.com
    • heat.gov
    • +12more
    Updated Oct 22, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). ACS Poverty Status Variables - Boundaries [Dataset]. https://hub.arcgis.com/maps/0e468b75bca545ee8dc4b039cbb5aff6
    Explore at:
    Dataset updated
    Oct 22, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows poverty status by age group. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Poverty status is based on income in past 12 months of survey. This layer is symbolized to show the percentage of the population whose income falls below the Federal poverty line. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B17020, C17002Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  9. 2022 American Community Survey: B25070 | Gross Rent as a Percentage of...

    • data.census.gov
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS, 2022 American Community Survey: B25070 | Gross Rent as a Percentage of Household Income in the Past 12 Months (ACS 1-Year Estimates Detailed Tables) [Dataset]. https://data.census.gov/table/ACSDT1Y2022.B25070
    Explore at:
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2022
    Description

    Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2022 American Community Survey 1-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..The 2022 American Community Survey (ACS) data generally reflect the March 2020 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas. In certain instances the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineations due to differences in the effective dates of the geographic entities..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.

  10. i

    National Family Health Survey 1992-1993 - India

    • datacatalog.ihsn.org
    • dev.ihsn.org
    • +2more
    Updated Jul 6, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    International Institute for Population Sciences (IIPS) (2017). National Family Health Survey 1992-1993 - India [Dataset]. https://datacatalog.ihsn.org/catalog/2547
    Explore at:
    Dataset updated
    Jul 6, 2017
    Dataset authored and provided by
    International Institute for Population Sciences (IIPS)
    Time period covered
    1992 - 1993
    Area covered
    India
    Description

    Abstract

    The National Family Health Survey (NFHS) was carried out as the principal activity of a collaborative project to strengthen the research capabilities of the Population Reasearch Centres (PRCs) in India, initiated by the Ministry of Health and Family Welfare (MOHFW), Government of India, and coordinated by the International Institute for Population Sciences (IIPS), Bombay. Interviews were conducted with a nationally representative sample of 89,777 ever-married women in the age group 13-49, from 24 states and the National Capital Territoty of Delhi. The main objective of the survey was to collect reliable and up-to-date information on fertility, family planning, mortality, and maternal and child health. Data collection was carried out in three phases from April 1992 to September 1993. THe NFHS is one of the most complete surveys of its kind ever conducted in India.

    The households covered in the survey included 500,492 residents. The young age structure of the population highlights the momentum of the future population growth of the country; 38 percent of household residents are under age 15, with their reproductive years still in the future. Persons age 60 or older constitute 8 percent of the population. The population sex ratio of the de jure residents is 944 females per 1,000 males, which is slightly higher than sex ratio of 927 observed in the 1991 Census.

    The primary objective of the NFHS is to provide national-level and state-level data on fertility, nuptiality, family size preferences, knowledge and practice of family planning, the potentiel demand for contraception, the level of unwanted fertility, utilization of antenatal services, breastfeeding and food supplemation practises, child nutrition and health, immunizations, and infant and child mortality. The NFHS is also designed to explore the demographic and socioeconomic determinants of fertility, family planning, and maternal and child health. This information is intended to assist policymakers, adminitrators and researchers in assessing and evaluating population and family welfare programmes and strategies. The NFHS used uniform questionnaires and uniform methods of sampling, data collection and analysis with the primary objective of providing a source of demographic and health data for interstate comparisons. The data collected in the NFHS are also comparable with those of the Demographic and Health Surveys (DHS) conducted in many other countries.

    Geographic coverage

    National

    Analysis unit

    • Household
    • Data collected for women 13-49, indicators calculated for women 15-49

    Universe

    The population covered by the 1992-93 DHS is defined as the universe of all women age 13-49 who were either permanent residents of the households in the NDHS sample or visitors present in the households on the night before the survey were eligible to be interviewed.

    Kind of data

    Sample survey data

    Sampling procedure

    SAMPLE DESIGN

    The sample design for the NFHS was discussed during a Sample Design Workshop held in Madurai in Octber, 1991. The workshop was attended by representative from the PRCs; the COs; the Office of the Registrar General, India; IIPS and the East-West Center/Macro International. A uniform sample design was adopted in all the NFHS states. The Sample design adopted in each state is a systematic, stratified sample of households, with two stages in rural areas and three stages in urban areas.

    SAMPLE SIZE AND ALLOCATION

    The sample size for each state was specified in terms of a target number of completed interviews with eligible women. The target sample size was set considering the size of the state, the time and ressources available for the survey and the need for separate estimates for urban and rural areas of the stat. The initial target sample size was 3,000 completed interviews with eligible women for states having a population of 25 million or less in 1991; 4,000 completed interviews for large states with more than 25 million population; 8,000 for Uttar Pradesh, the largest state; and 1,000 each for the six small northeastern states. In States with a substantial number of backward districts, the initial target samples were increased so as to allow separate estimates to be made for groups of backward districts.

    The urban and rural samples within states were drawn separetly and , to the extent possible, sample allocation was proportional to the size of the urban-rural populations (to facilitate the selection of a self-weighting sample for each state). In states where the urban population was not sufficiently large to provide a sample of at least 1,000 completed interviews with eligible women, the urban areas were appropriately oversampled (except in the six small northeastern states).

    THE RURAL SAMPLE: THE FRAME, STRATIFICATION AND SELECTION

    A two-stage stratified sampling was adopted for the rural areas: selection of villages followed by selection of households. Because the 1991 Census data were not available at the time of sample selection in most states, the 1981 Census list of villages served as the sampling frame in all the states with the exception of Assam, Delhi and Punjab. In these three states the 1991 Census data were used as the sampling frame.

    Villages were stratified prior to selection on the basis of a number of variables. The firts level of stratification in all the states was geographic, with districts subdivided into regions according to their geophysical characteristics. Within each of these regions, villages were further stratified using some of the following variables : village size, distance from the nearest town, proportion of nonagricultural workers, proportion of the population belonging to scheduled castes/scheduled tribes, and female literacy. However, not all variables were used in every state. Each state was examined individually and two or three variables were selected for stratification, with the aim of creating not more than 12 strata for small states and not more than 15 strata for large states. Females literacy was often used for implicit stratification (i.e., the villages were ordered prior to selection according to the proportion of females who were literate). Primary sampling Units (PSUs) were selected systematically, with probaility proportional to size (PPS). In some cases, adjacent villages with small population sizes were combined into a single PSU for the purpose of sample selection. On average, 30 households were selected for interviewing in each selected PSU.

    In every state, all the households in the selected PSUs were listed about two weeks prior to the survey. This listing provided the necessary frame for selecting households at the second sampling stage. The household listing operation consisted of preparing up-to-date notional and layout sketch maps of each selected PSU, assigning numbers to structures, recording addresses (or locations) of these structures, identifying the residential structures, and listing the names of the heads of all the households in the residentiak structures in the selected PSU. Each household listing team consisted of a lister and a mapper. The listing operation was supervised by the senior field staff of the concerned CO and the PRC in each state. Special efforts were made not to miss any household in the selected PSU during the listing operation. In PSUs with fewer than 500 households, a complete household listing was done. In PSUs with 500 or more households, segmentation of the PSU was done on the basis of existing wards in the PSU, and two segments were selected using either systematic sampling or PPS sampling. The household listing in such PSUs was carried out in the selected segments. The households to be interviewed were selected from provided with the original household listing, layout sketch map and the household sample selected for each PSU. All the selected households were approached during the data collection, and no substitution of a household was allowed under any circumstances.

    THE RURAL URBAN SAMPLE: THE FRAME, STRATIFICATION AND SELECTION

    A three-stage sample design was adopted for the urban areas in each state: selection of cities/towns, followed by urban blocks, and finally households. Cities and towns were selected using the 1991 population figures while urban blocks were selected using the 1991 list of census enumeration blocks in all the states with the exception of the firts phase states. For the first phase states, the list of urban blocks provided by the National Sample Survey Organization (NSSSO) served as the sampling frame.

    All cities and towns were subdivided into three strata: (1) self-selecting cities (i.e., cities with a population large enough to be selected with certainty), (2) towns that are district headquaters, and (3) other towns. Within each stratum, the cities/towns were arranged according to the same kind of geographic stratification used in the rural areas. In self-selecting cities, the sample was selected according to a two-stage sample design: selection of the required number of urban blocks, followed by selection of households in each of selected blocks. For district headquarters and other towns, a three stage sample design was used: selection of towns with PPS, followed by selection of two census blocks per selected town, followed by selection of households from each selected block. As in rural areas, a household listing was carried out in the selected blocks, and an average of 20 households per block was selected systematically.

    Mode of data collection

    Face-to-face

    Research instrument

    Three types of questionnaires were used in the NFHS: the Household Questionnaire, the Women's Questionnaire, and the Village Questionnaire. The overall content

  11. Population of the United States 1610-2020

    • statista.com
    Updated Aug 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Population of the United States 1610-2020 [Dataset]. https://www.statista.com/statistics/1067138/population-united-states-historical/
    Explore at:
    Dataset updated
    Aug 12, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In the past four centuries, the population of the United States has grown from a recorded 350 people around the Jamestown colony of Virginia in 1610, to an estimated 331 million people in 2020. The pre-colonization populations of the indigenous peoples of the Americas have proven difficult for historians to estimate, as their numbers decreased rapidly following the introduction of European diseases (namely smallpox, plague and influenza). Native Americans were also omitted from most censuses conducted before the twentieth century, therefore the actual population of what we now know as the United States would have been much higher than the official census data from before 1800, but it is unclear by how much. Population growth in the colonies throughout the eighteenth century has primarily been attributed to migration from the British Isles and the Transatlantic slave trade; however it is also difficult to assert the ethnic-makeup of the population in these years as accurate migration records were not kept until after the 1820s, at which point the importation of slaves had also been illegalized. Nineteenth century In the year 1800, it is estimated that the population across the present-day United States was around six million people, with the population in the 16 admitted states numbering at 5.3 million. Migration to the United States began to happen on a large scale in the mid-nineteenth century, with the first major waves coming from Ireland, Britain and Germany. In some aspects, this wave of mass migration balanced out the demographic impacts of the American Civil War, which was the deadliest war in U.S. history with approximately 620 thousand fatalities between 1861 and 1865. The civil war also resulted in the emancipation of around four million slaves across the south; many of whose ancestors would take part in the Great Northern Migration in the early 1900s, which saw around six million black Americans migrate away from the south in one of the largest demographic shifts in U.S. history. By the end of the nineteenth century, improvements in transport technology and increasing economic opportunities saw migration to the United States increase further, particularly from southern and Eastern Europe, and in the first decade of the 1900s the number of migrants to the U.S. exceeded one million people in some years. Twentieth and twenty-first century The U.S. population has grown steadily throughout the past 120 years, reaching one hundred million in the 1910s, two hundred million in the 1960s, and three hundred million in 2007. In the past century, the U.S. established itself as a global superpower, with the world's largest economy (by nominal GDP) and most powerful military. Involvement in foreign wars has resulted in over 620,000 further U.S. fatalities since the Civil War, and migration fell drastically during the World Wars and Great Depression; however the population continuously grew in these years as the total fertility rate remained above two births per woman, and life expectancy increased (except during the Spanish Flu pandemic of 1918).

    Since the Second World War, Latin America has replaced Europe as the most common point of origin for migrants, with Hispanic populations growing rapidly across the south and border states. Because of this, the proportion of non-Hispanic whites, which has been the most dominant ethnicity in the U.S. since records began, has dropped more rapidly in recent decades. Ethnic minorities also have a much higher birth rate than non-Hispanic whites, further contributing to this decline, and the share of non-Hispanic whites is expected to fall below fifty percent of the U.S. population by the mid-2000s. In 2020, the United States has the third-largest population in the world (after China and India), and the population is expected to reach four hundred million in the 2050s.

  12. Population estimates, quarterly

    • www150.statcan.gc.ca
    • open.canada.ca
    • +2more
    Updated Mar 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Population estimates, quarterly [Dataset]. http://doi.org/10.25318/1710000901-eng
    Explore at:
    Dataset updated
    Mar 19, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Estimated number of persons by quarter of a year and by year, Canada, provinces and territories.

  13. w

    Migration Household Survey 2009 - Nigeria

    • microdata.worldbank.org
    • datacatalog.ihsn.org
    • +2more
    Updated Jun 3, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zibah Consults Limited (2019). Migration Household Survey 2009 - Nigeria [Dataset]. https://microdata.worldbank.org/index.php/catalog/402
    Explore at:
    Dataset updated
    Jun 3, 2019
    Dataset authored and provided by
    Zibah Consults Limited
    Time period covered
    2009
    Area covered
    Nigeria
    Description

    Geographic coverage

    National

    Analysis unit

    • Household
    • Individual

    Universe

    18 of the 37 states in Nigeria were selected using procedures described in the methodology report

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    A. Sampling Frame The sampling frame was the 2006 National Population Census. For administrative purposes, Nigeria has 36 states and the Federal Capital Territory. These states are grouped into six geopolitical zones - the North Central, North East, North West, South East, South South and South West. The states in turn are divided into 776 Local Governments. The demographic and political characteristics of the states vary considerably. For example, the number of component local government areas in the states ranges from 8 in Bayelsa State (in the South South) to 44 in Kano State (in the North West). Likewise state populations vary widely from 1.41 million in the Abuja Federal Capital Territory to 9.38 million in Kano State. The National Bureau of Statistics splits the country further into 23, 070 enumeration areas (EAs). While the enumeration areas are equally distributed across the local government areas, with each local government area having 30 enumeration areas, the differences in the number of local government areas across states implies that there are also huge differences in the number of enumeration areas across states. Appendix table 1 summarizes the population according to the 2006 population census (in absolute and proportionate numbers), number of local government areas, and number of enumeration areas in each state .

    Given the above, a stratified random sampling technique was thought to be needed to select areas according to population and the expected prevalence of migrants. The National Bureau of Statistics (NBS) provided a randomly selected set of enumeration areas and households spread across all states in the Federation from the 2006 sampling frame. Every state in Nigeria has three senatorial zones (often referred to as North, Central and South or East, Central and West). The NBS sample enumeration areas were distributed such that within each state, local government areas from each senatorial zones were included in the sample, with Local Governments in each state nearly evenly distributed between rural and urban areas. In all, a total of 3188 enumeration areas were selected. These enumeration areas were unevenly spread across States; some states in the North West (Kano, Katsina, and Jigawa), and a few in the South South (Akwa Ibom and Delta) had over 100 enumeration areas selected while others such as Imo and Abia in the South East, and Borno, Gombe and Taraba in the North East, had as few as 20 enumeration areas selected. This selection partially reflected the relative population distribution and number of Local Government Areas in the component states. Annex Table B shows details of the states and geopolitical regions, their shares in population of the country, the number of Local Government Areas and enumeration areas in each state and the number of enumeration areas given in the NBS list that formed the frame for the study.

    B. The Sample for the Migration Survey

    a. Sample Selection of States, Local Governments and Enumeration Areas Originally, the intention was to have proportionate allocation across all states, using the population of each state in the 2006 Census to select the number of households to be included in the sample. But it was later recognized that this would not yield enough migrant households, particularly those with international migrants, especially as the total number of households that could likely be covered in the sample to was limited to 2000. Consequently, a disproportionate sampling approach was adopted, with the aim of oversampling areas of the country with more migrants. According to Bilsborrow (2006), this approach becomes necessary because migrants are rare populations for which a distinct disproportionate sampling procedure is needed to ensure they are adequately captured. Given the relative rareness of households with out-migrants to international destinations within the 10 year reference period (selected by the World Bank for all countries) prior to the planned survey, sampling methods appropriate for sampling rare elements were desirable, specifically, stratified sampling with two-phase sampling at the last stage.

    Establishing the strata would require that there be previous work, say from the most recent Census, to determine migration incidence among the states. However, the needed census data could not be obtained from either the National Bureau of Statistics or the National Population Commission. Therefore, the stratification procedure had to rely on available literature, particularly Hernandez-Coss and Bun (2007), Agu (2009) and a few other recent, smaller studies on migration and remittances in Nigeria. Information from this literature was supplemented by expert judgement about migration from team members who had worked on economic surveys in Nigeria in the past. Information from the literature and the expert assessment indicated that migration from households is considerably higher in the South than in the North. Following this understanding, the states were formed into two strata- those with high and those with low incidence of migration. In all, 18 States (16 in the South and 2 in the North) were put into the high migration incidence stratum while 19 states (18 in the North and 1 in the South) were classified l into the low migration incidence stratum (column C of Appendix Table 1).

    The Aggregate population of the 18 states in the high migration incidence stratum was 67.04 million, spread across 10,850 Enumeration areas. Thus, the mean population of an EA in the high migration stratum was 6179. In turn, the aggregate population of the 19 states in the low migration incidence stratum was 72.95 million spread across 12,110 EAs yielding a mean EA population of 6024. These numbers were close enough to assume the mean population of EAs was essentially the same. To oversample states in the high stratum, it was decided to select twice as high a proportion of the states as in the low stratum. To further concentrate the sample and make field work more efficient in being oriented to EAs more likely to have international migrants, we decided to select randomly twice as many LGAs in each state in the high stratum states as in the low stratum states.

    Thus, 12 states were randomly selected with probabilities of selection proportionate to the population size of each state (so states with larger populations were accordingly more likely to fall in the sample) from the high stratum states. Then two LGAs were randomly selected from each sample state and 2 EAs per sample LGA (one urban, one rural) to yield a total of 12 x 2 x 2 or 48 EAs in the high stratum states. For the low stratum, 6 states were randomly selected. From each of these, 1 LGA was randomly picked and 2 EAs were selected per sample LGA to give a total of 6 x 1 x 2 or 12 EAs in the low stratum. This yielded a total of 60 EAs for both strata. Given the expected range of 2000 households to be sampled, approximately 67 households were to be sampled from each local government area or 34 households from each enumeration area.

    So far, the discussion has assumed two groups of households - migrant and non-migrant households. However, the study was interested in not just lumping all migrants together, but rather in classifying migrants according to whether their destination was within or outside the country. Migrant households were thus subdivided into those with former household members who were international migrants and those with former household members who were internal migrants. Three strata of households were therefore required, namely:

    1. Households with an international migrant: at least one person who was a member of the household since Jan. 1, 2000 left to live in an international destination and has remained abroad;
    2. Households with an internal migrant: at least one person who was a member of the household since Jan. 1, 2000 left to live elsewhere in Nigeria (outside the sample LGA) and has not returned to the LGA; and
    3. Households with no migrant: No member of the household has left to live elsewhere either within or outside the country since Jan. 1, 2000.

    The selection of states to be included in the sample from both strata was based on Probabilities of Selection Proportional to (Estimated) Size or PPES. The population in each stratum was cumulated and systematic sampling was performed, with an interval of 12.16 million for the low stratum (72.95 million divided by 6 States), and 5.59 million for the high stratum (67.04 million divided by 12 States). This yields approximately double the rate of sampling in the high migration stratum, as earlier explained. Using a random start between 0 and 12.16, the following states were sampled in the low stratum: Niger, Bauchi, Yobe, Kano, Katsina, and Zamfara. In the high stratum, states sampled were Abia, Ebonyi, Imo, Akwa Ibom, Delta, Edo, Rivers, Lagos, Ondo, Osun and Oyo. Given its large population size, Lagos fell into the sample twice. The final sample, with LGAs and EAs moving from North to South (i.e. from the low to the high stratum states) is presented in Table 1 below.

    The sample was concentrated in the South since that is where it was expected that more households have international migrants. It was expected that the survey would still also be reasonably representative of the whole country and of both internal migrant and non-migrant households through weighting the data. To this effect, field teams were asked to keep careful track at all stages of the numbers of people and households listed compared to the number in the

  14. World population by age and region 2024

    • statista.com
    Updated Mar 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). World population by age and region 2024 [Dataset]. https://www.statista.com/statistics/265759/world-population-by-age-and-region/
    Explore at:
    Dataset updated
    Mar 11, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    Globally, about 25 percent of the population is under 15 years of age and 10 percent is over 65 years of age. Africa has the youngest population worldwide. In Sub-Saharan Africa, more than 40 percent of the population is below 15 years, and only three percent are above 65, indicating the low life expectancy in several of the countries. In Europe, on the other hand, a higher share of the population is above 65 years than the population under 15 years. Fertility rates The high share of children and youth in Africa is connected to the high fertility rates on the continent. For instance, South Sudan and Niger have the highest population growth rates globally. However, about 50 percent of the world’s population live in countries with low fertility, where women have less than 2.1 children. Some countries in Europe, like Latvia and Lithuania, have experienced a population decline of one percent, and in the Cook Islands, it is even above two percent. In Europe, the majority of the population was previously working-aged adults with few dependents, but this trend is expected to reverse soon, and it is predicted that by 2050, the older population will outnumber the young in many developed countries. Growing global population As of 2025, there are 8.1 billion people living on the planet, and this is expected to reach more than nine billion before 2040. Moreover, the global population is expected to reach 10 billions around 2060, before slowing and then even falling slightly by 2100. As the population growth rates indicate, a significant share of the population increase will happen in Africa.

  15. K

    California 2050 Projected Urban Growth

    • koordinates.com
    csv, dwg, geodatabase +6
    Updated Oct 13, 2003
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of California (2003). California 2050 Projected Urban Growth [Dataset]. https://koordinates.com/layer/671-california-2050-projected-urban-growth/
    Explore at:
    dwg, geopackage / sqlite, geodatabase, kml, pdf, shapefile, mapinfo tab, mapinfo mif, csvAvailable download formats
    Dataset updated
    Oct 13, 2003
    Dataset authored and provided by
    State of California
    License

    https://koordinates.com/license/attribution-3-0/https://koordinates.com/license/attribution-3-0/

    Area covered
    Description

    50 year Projected Urban Growth scenarios. Base year is 2000. Projected year in this dataset is 2050.

    By 2020, most forecasters agree, California will be home to between 43 and 46 million residents-up from 35 million today. Beyond 2020 the size of California's population is less certain. Depending on the composition of the population, and future fertility and migration rates, California's 2050 population could be as little as 50 million or as much as 70 million. One hundred years from now, if present trends continue, California could conceivably have as many as 90 million residents. Where these future residents will live and work is unclear. For most of the 20th Century, two-thirds of Californians have lived south of the Tehachapi Mountains and west of the San Jacinto Mountains-in that part of the state commonly referred to as Southern California. Yet most of coastal Southern California is already highly urbanized, and there is relatively little vacant land available for new development. More recently, slow-growth policies in Northern California and declining developable land supplies in Southern California are squeezing ever more of the state's population growth into the San Joaquin Valley. How future Californians will occupy the landscape is also unclear. Over the last fifty years, the state's population has grown increasingly urban. Today, nearly 95 percent of Californians live in metropolitan areas, mostly at densities less than ten persons per acre. Recent growth patterns have strongly favored locations near freeways, most of which where built in the 1950s and 1960s. With few new freeways on the planning horizon, how will California's future growth organize itself in space? By national standards, California's large urban areas are already reasonably dense, and economic theory suggests that densities should increase further as California's urban regions continue to grow. In practice, densities have been rising in some urban counties, but falling in others.

    These are important issues as California plans its long-term future. Will California have enough land of the appropriate types and in the right locations to accommodate its projected population growth? Will future population growth consume ever-greater amounts of irreplaceable resource lands and habitat? Will jobs continue decentralizing, pushing out the boundaries of metropolitan areas? Will development densities be sufficient to support mass transit, or will future Californians be stuck in perpetual gridlock? Will urban and resort and recreational growth in the Sierra Nevada and Trinity Mountain regions lead to the over-fragmentation of precious natural habitat? How much water will be needed by California's future industries, farms, and residents, and where will that water be stored? Where should future highway, transit, and high-speed rail facilities and rights-of-way be located? Most of all, how much will all this growth cost, both economically, and in terms of changes in California's quality of life? Clearly, the more precise our current understanding of how and where California is likely to grow, the sooner and more inexpensively appropriate lands can be acquired for purposes of conservation, recreation, and future facility siting. Similarly, the more clearly future urbanization patterns can be anticipated, the greater our collective ability to undertake sound city, metropolitan, rural, and bioregional planning.

    Consider two scenarios for the year 2100. In the first, California's population would grow to 80 million persons and would occupy the landscape at an average density of eight persons per acre, the current statewide urban average. Under this scenario, and assuming that 10% percent of California's future population growth would occur through infill-that is, on existing urban land-California's expanding urban population would consume an additional 5.06 million acres of currently undeveloped land. As an alternative, assume the share of infill development were increased to 30%, and that new population were accommodated at a density of about 12 persons per acre-which is the current average density of the City of Los Angeles. Under this second scenario, California's urban population would consume an additional 2.6 million acres of currently undeveloped land. While both scenarios accommodate the same amount of population growth and generate large increments of additional urban development-indeed, some might say even the second scenario allows far too much growth and development-the second scenario is far kinder to California's unique natural landscape.

    This report presents the results of a series of baseline population and urban growth projections for California's 38 urban counties through the year 2100. Presented in map and table form, these projections are based on extrapolations of current population trends and recent urban development trends. The next section, titled Approach, outlines the methodology and data used to develop the various projections. The following section, Baseline Scenario, reviews the projections themselves. A final section, entitled Baseline Impacts, quantitatively assesses the impacts of the baseline projections on wetland, hillside, farmland and habitat loss.

  16. National Sample Survey 2004 (60th Round) - Schedule 25 - Morbidity and...

    • datacatalog.ihsn.org
    • catalog.ihsn.org
    • +1more
    Updated Mar 29, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Sample Survey Organisation (2019). National Sample Survey 2004 (60th Round) - Schedule 25 - Morbidity and Healthcare - India [Dataset]. https://datacatalog.ihsn.org/catalog/3230
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    National Sample Survey Organisation
    Time period covered
    2004
    Area covered
    India
    Description

    Abstract

    The schedule on morbidity and health care (Schedule 25.0) framed for the 60th round consists of 13 blocks. The different blocks of the schedule are: Block 0: descriptive identification of sample household Block 1: identification of sample household Block 2: particulars of field operation Block 3: household characteristics Block 4: demographic particulars of household members Block 5: particulars of earstwhile household members who died during last 365 days Block 6: particulars of economic independence and ailments for persons aged 60 years and above Block 7: particulars of medical treatment received as inpatient of a hospital during last 365 days Block 8: expenses incurred for treatment of members treated as impatient of hospital during last 365 days and source of finance Block 9: particulars of spells of ailment of household members during last 15 days (including hospitalisation) Block 10: expenses incurred during last 15 days for treatment of members (not as an inpatient of hospital) and source of finance Block 11: particulars of immunisation of children (0 - 4 yrs.), pre-natal and post-natal care for ever married women of age below 50 years during last 365 days Block 12: remarks by investigator Block 13: comments by supervisory officer(s)

    Geographic coverage

    The survey will cover the whole of the Indian Union except (i) Leh (Ladakh) and Kargil districts of Jammu & Kashmir, (ii) interior villages of Nagaland situated beyond five kilometres of the bus route and (iii) villages in Andaman and Nicobar Islands which remain inaccessible throughout the year.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Sample Design

    Outline of sample design

    A stratified multi-stage design has been adopted for the 60th round survey. The first stage units (FSU) will be the 1991 census villages in the rural sector and Urban Frame Survey (UFS) blocks in the urban sector. The ultimate stage units (USU) will be households in both the sectors. In case of large villages/blocks requiring hamlet-group (hg)/sub-block (sb) formation, one intermediate stage will be the selection of two hgs/sbs from each FSU.

    Sampling Frame for First Stage Units

    For the rural sector, the list of Census 1991 villages (panchayat wards for Kerala) and Census 1981 villages for J & K will constitute the sampling frame. For the urban sector, the list of latest available Urban Frame Survey (UFS) blocks will be considered as the sampling frame.

    Stratification

    Rural sector: Two special strata will be formed at the State/ UT level, viz. Stratum 1: all FSUs with population between 0 to 50 and Stratum 2: FSUs with population more than 15,000.

    Special stratum 1 will be formed if at least 50 such FSUs are found in a State/UT. Similarly, special stratum 2 will be formed if at least 4 such FSUs are found in a State/UT. Otherwise, such FSUs will be merged with the general strata. From FSUs other than those covered under special strata 1 and 2, general strata will be formed and its numbering will start from 3. Each district of a State/UT will normally be treated as a separate stratum. However, if the census rural population of the district is greater than or equal to 2.5 million as per population census 2001 or 2 million as per population census 1991, the district will be split into two or more strata, by grouping contiguous tehsils to form strata. However, in Gujarat, some districts are not wholly included in an NSS region. In such cases, the part of the district falling in an NSS region will constitute a separate stratum.

    Urban sector: In the urban sector, strata will be formed within each NSS region on the basis of size class of towns as per Population Census 2001. The stratum numbers and their composition (within each region) are given below. stratum 1 : all towns with population less than 50,000
    stratum 2 : all towns with population 50,000 or more but less than 2 lakhs
    stratum 3 : all towns with population 2 lakhs or more but less than 10 lakhs
    stratum 4, 5, 6,...: each town with population 10 lakhs or more

    The stratum numbers will remain as above even if, in some regions, some of the strata are not formed.

    Total sample size (FSUs)

    7612 FSUs have been allocated at all-India level on the basis of investigator strength in different States/UTs for central sample and 8260 for state sample.

    Allocation of total sample to States and UTs

    The total number of sample FSUs is allocated to the States and UTs in proportion to provisional population as per Census 2001 subject to the availability of investigators ensuring more or less uniform work-load.

    Allocation of State/UT level sample to rural and urban sectors

    State/UT level sample is allocated between two sectors in proportion to provisional population as per Census 2001 with 1.5 weightage to urban sector subject to the restriction that urban sample size for bigger states like Maharashtra, Tamil Nadu etc. should not exceed the rural sample size. Earlier practice of giving double weightage to urban sector has been modified considering the fact that there has been considerable growth in urban population. A minimum of 8 FSUs will be allocated to each state/UT separately for rural and urban areas.

    Allocation to strata:

    Within each sector of a State/UT, the respective sample size will be allocated to the different strata in proportion to the stratum population as per census 2001. Allocations at stratum level will be adjusted to a multiple of 4 with a minimum sample size of 4.

    Selection of FSUs

    FSUs will be selected with Probability Proportional to Size With Replacement (PPSWR), size being the population as per Population Census 1991 in all the strata for rural sector except for stratum 1. In stratum 1 of rural sector and in all the strata of urban sector, selection will be done using Simple Random Sampling Without Replacement (SRSWOR). Within each stratum, samples will be drawn in the form of two independent sub-samples in both the rural and urban sectors.

    Selection of hamlet-groups/sub-blocks/households - important steps

    Proper identification of the FSU boundaries: The first task of the field investigators is to ascertain the exact boundaries of the sample FSU as per its identification particulars given in the sample list. For urban samples, the boundaries of each Urban Frame Survey (UFS) block may be identified by referring to the map corresponding to the frame code specified in the sample list (even though map of the block for a latter period of the UFS might be available).

    Criterion for hamlet-group/sub-block formation: After identification of the FSU, it is to be determined whether listing will be done in the whole sample FSU or not. In case the population of the selected village or block is found to be 1200 or more, it will be divided into a suitable number (say, D) of „hamlet-groups? in the rural sector and „sub-blocks? in the urban sector as stated below. less than 1200 (no hamlet-groups/sub-blocks) 1
    1200 to 1799 3
    1800 to 2399 4
    2400 to 2999 5
    3000 to 3599 6
    …………..and so on

    For rural areas of Himachal Pradesh, Sikkim, Nagaland and Poonch, Rajouri, Udhampur, Doda districts of Jammu and Kashmir and Idukki district of Kerala, the number of hamlet-groups will be formed as follows. approximate present population of the sample village no. of hgs to be formed
    less than 600 (no hamlet-groups) 1
    600 to 899 3
    900 to 1199 4
    1200 to 1499 5
    .………..and so on

    Two hamlet-groups/sub-blocks will be selected from a large village/UFS block wherever hamlet-groups/sub-blocks have been formed, by SRSWOR. Listing and selection of the households will be done independently in the two selected hamlet-groups/sub-blocks.

    Formation of hamlet-groups/sub-blocks: In case hamlet-groups/sub-blocks are to be formed in the sample FSU, the same should be done by more or less equalizing population (details are in Chapter Two). Note that while doing so, it is to be ensured that the hamlet-groups/sub-blocks formed are clearly identifiable in terms of physical landmarks.

    Listing of households: Having determined the hamlet-groups/sub-blocks, i.e. area(s) to be considered for listing, the next step is to list all the households (including those found to be temporarily locked after ascertaining the temporariness of locking of households through local enquiry). The hamlet-group/sub-block with sample hg/sb number 1 will be listed first and that with sample hg/sb number 2 will be listed next.

    Formation of Second Stage Strata and allocation of households for Schedule 25.0

    In each selected village/block/hamlet-group/sub-block, four second stage strata (SSS) will be formed as given below. SSS 1: households with at least one member hospitalised during last 365 days
    SSS 2: from the remaining households, households having at least one child of age below 5 years
    SSS 3: from the remaining households, households with at least one member of age 60 years or above
    SSS 4: other households

    Selection of households for Schedules 1.0, 10 and 25.0

    From each SSS the sample households for all the schedules will be selected by SRSWOR. If a household is selected for more than one schedule only one schedule will be canvassed in that household in the priority order of Schedule 1.0, Schedule 10 and Schedule 25.0 and in that case the household will be replaced for the other schedule. If a household is selected for Schedule 1.0 it will not be selected for Schedule 10 or Schedule 25.0. Similarly, if a household is not selected for Schedule 1.0 but selected for Schedule 10 it will not be selected for Schedule 25.0. However, for the household, selected from SSS1 of Schedule 25.0, the Schedule 25.0 will be canvassed even if the household is selected for other schedules.

    Sampling

  17. w

    Washington Cities by Population

    • washington-demographics.com
    Updated Jun 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristen Carney (2024). Washington Cities by Population [Dataset]. https://www.washington-demographics.com/cities_by_population
    Explore at:
    Dataset updated
    Jun 20, 2024
    Dataset provided by
    Cubit Planning, Inc.
    Authors
    Kristen Carney
    License

    https://www.washington-demographics.com/terms_and_conditionshttps://www.washington-demographics.com/terms_and_conditions

    Area covered
    Washington
    Description

    A dataset listing Washington cities by population for 2024.

  18. U.S. population of metropolitan areas in 2023

    • statista.com
    Updated Jul 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). U.S. population of metropolitan areas in 2023 [Dataset]. https://www.statista.com/statistics/183600/population-of-metropolitan-areas-in-the-us/
    Explore at:
    Dataset updated
    Jul 26, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    In 2023, the metropolitan area of New York-Newark-Jersey City had the biggest population in the United States. Based on annual estimates from the census, the metropolitan area had around 19.5 million inhabitants, which was a slight decrease from the previous year. The Los Angeles and Chicago metro areas rounded out the top three. What is a metropolitan statistical area? In general, a metropolitan statistical area (MSA) is a core urbanized area with a population of at least 50,000 inhabitants – the smallest MSA is Carson City, with an estimated population of nearly 56,000. The urban area is made bigger by adjacent communities that are socially and economically linked to the center. MSAs are particularly helpful in tracking demographic change over time in large communities and allow officials to see where the largest pockets of inhabitants are in the country. How many MSAs are in the United States? There were 421 metropolitan statistical areas across the U.S. as of July 2021. The largest city in each MSA is designated the principal city and will be the first name in the title. An additional two cities can be added to the title, and these will be listed in population order based on the most recent census. So, in the example of New York-Newark-Jersey City, New York has the highest population, while Jersey City has the lowest. The U.S. Census Bureau conducts an official population count every ten years, and the new count is expected to be announced by the end of 2030.

  19. ACS Context for Child Well-Being - Centroids

    • mapdirect-fdep.opendata.arcgis.com
    Updated Mar 10, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2020). ACS Context for Child Well-Being - Centroids [Dataset]. https://mapdirect-fdep.opendata.arcgis.com/maps/558ba524a8ee4e5f86d63b967f6c1e21
    Explore at:
    Dataset updated
    Mar 10, 2020
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows demographic context for child well-being work. This is shown by tract, county, and state centroids. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percentage of the child population (under age 18) that is living below the Federal poverty line. The size of the symbol shows the count of child population under the poverty line. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B01001, B05009, B09001, B09005 (formerly B09008), B10002, B13016, B14005, B16003, B16004, B17020, B23008, B27010, B28005 Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  20. ACS English Ability and Linguistic Isolation Variables - Boundaries

    • hub.arcgis.com
    • covid-hub.gio.georgia.gov
    • +2more
    Updated Nov 14, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2019). ACS English Ability and Linguistic Isolation Variables - Boundaries [Dataset]. https://hub.arcgis.com/maps/0c4d1027de6b4d6eb896d95f1240e1aa
    Explore at:
    Dataset updated
    Nov 14, 2019
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows English ability and linguistic isolation by age group. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Linguistically isolated households are households in which no one 14 and over speak English only or speaks a language other than English at home and speaks English very well. This layer is symbolized to show the percent of adult (18+) population who have limited English ability. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B16003, B16004 (Not all lines of ACS table B16004 are available in this feature layer.)Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Population in the states of the U.S. 2024 [Dataset]. https://www.statista.com/statistics/183497/population-in-the-federal-states-of-the-us/
Organization logo

Population in the states of the U.S. 2024

Explore at:
19 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jan 3, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
2024
Area covered
United States
Description

California was the state with the highest resident population in the United States in 2024, with 39.43 million people. Wyoming had the lowest population with about 590,000 residents. Living the American Dream Ever since the opening of the West in the United States, California has represented the American Dream for both Americans and immigrants to the U.S. The warm weather, appeal of Hollywood and Silicon Valley, as well as cities that stick in the imagination such as San Francisco and Los Angeles, help to encourage people to move to California. Californian demographics California is an extremely diverse state, as no one ethnicity is in the majority. Additionally, it has the highest percentage of foreign-born residents in the United States. By 2040, the population of California is expected to increase by almost 10 million residents, which goes to show that its appeal, both in reality and the imagination, is going nowhere fast.

Search
Clear search
Close search
Google apps
Main menu