100+ datasets found
  1. Data from: Excel Templates: A Helpful Tool for Teaching Statistics

    • tandf.figshare.com
    zip
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alejandro Quintela-del-Río; Mario Francisco-Fernández (2023). Excel Templates: A Helpful Tool for Teaching Statistics [Dataset]. http://doi.org/10.6084/m9.figshare.3408052.v2
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Taylor & Francishttps://taylorandfrancis.com/
    Authors
    Alejandro Quintela-del-Río; Mario Francisco-Fernández
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This article describes a free, open-source collection of templates for the popular Excel (2013, and later versions) spreadsheet program. These templates are spreadsheet files that allow easy and intuitive learning and the implementation of practical examples concerning descriptive statistics, random variables, confidence intervals, and hypothesis testing. Although they are designed to be used with Excel, they can also be employed with other free spreadsheet programs (changing some particular formulas). Moreover, we exploit some possibilities of the ActiveX controls of the Excel Developer Menu to perform interactive Gaussian density charts. Finally, it is important to note that they can be often embedded in a web page, so it is not necessary to employ Excel software for their use. These templates have been designed as a useful tool to teach basic statistics and to carry out data analysis even when the students are not familiar with Excel. Additionally, they can be used as a complement to other analytical software packages. They aim to assist students in learning statistics, within an intuitive working environment. Supplementary materials with the Excel templates are available online.

  2. f

    UC_vs_US Statistic Analysis.xlsx

    • figshare.com
    xlsx
    Updated Jul 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    F. (Fabiano) Dalpiaz (2020). UC_vs_US Statistic Analysis.xlsx [Dataset]. http://doi.org/10.23644/uu.12631628.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jul 9, 2020
    Dataset provided by
    Utrecht University
    Authors
    F. (Fabiano) Dalpiaz
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Sheet 1 (Raw-Data): The raw data of the study is provided, presenting the tagging results for the used measures described in the paper. For each subject, it includes multiple columns: A. a sequential student ID B an ID that defines a random group label and the notation C. the used notation: user Story or use Cases D. the case they were assigned to: IFA, Sim, or Hos E. the subject's exam grade (total points out of 100). Empty cells mean that the subject did not take the first exam F. a categorical representation of the grade L/M/H, where H is greater or equal to 80, M is between 65 included and 80 excluded, L otherwise G. the total number of classes in the student's conceptual model H. the total number of relationships in the student's conceptual model I. the total number of classes in the expert's conceptual model J. the total number of relationships in the expert's conceptual model K-O. the total number of encountered situations of alignment, wrong representation, system-oriented, omitted, missing (see tagging scheme below) P. the researchers' judgement on how well the derivation process explanation was explained by the student: well explained (a systematic mapping that can be easily reproduced), partially explained (vague indication of the mapping ), or not present.

    Tagging scheme:
    Aligned (AL) - A concept is represented as a class in both models, either
    

    with the same name or using synonyms or clearly linkable names; Wrongly represented (WR) - A class in the domain expert model is incorrectly represented in the student model, either (i) via an attribute, method, or relationship rather than class, or (ii) using a generic term (e.g., user'' instead ofurban planner''); System-oriented (SO) - A class in CM-Stud that denotes a technical implementation aspect, e.g., access control. Classes that represent legacy system or the system under design (portal, simulator) are legitimate; Omitted (OM) - A class in CM-Expert that does not appear in any way in CM-Stud; Missing (MI) - A class in CM-Stud that does not appear in any way in CM-Expert.

    All the calculations and information provided in the following sheets
    

    originate from that raw data.

    Sheet 2 (Descriptive-Stats): Shows a summary of statistics from the data collection,
    

    including the number of subjects per case, per notation, per process derivation rigor category, and per exam grade category.

    Sheet 3 (Size-Ratio):
    

    The number of classes within the student model divided by the number of classes within the expert model is calculated (describing the size ratio). We provide box plots to allow a visual comparison of the shape of the distribution, its central value, and its variability for each group (by case, notation, process, and exam grade) . The primary focus in this study is on the number of classes. However, we also provided the size ratio for the number of relationships between student and expert model.

    Sheet 4 (Overall):
    

    Provides an overview of all subjects regarding the encountered situations, completeness, and correctness, respectively. Correctness is defined as the ratio of classes in a student model that is fully aligned with the classes in the corresponding expert model. It is calculated by dividing the number of aligned concepts (AL) by the sum of the number of aligned concepts (AL), omitted concepts (OM), system-oriented concepts (SO), and wrong representations (WR). Completeness on the other hand, is defined as the ratio of classes in a student model that are correctly or incorrectly represented over the number of classes in the expert model. Completeness is calculated by dividing the sum of aligned concepts (AL) and wrong representations (WR) by the sum of the number of aligned concepts (AL), wrong representations (WR) and omitted concepts (OM). The overview is complemented with general diverging stacked bar charts that illustrate correctness and completeness.

    For sheet 4 as well as for the following four sheets, diverging stacked bar
    

    charts are provided to visualize the effect of each of the independent and mediated variables. The charts are based on the relative numbers of encountered situations for each student. In addition, a "Buffer" is calculated witch solely serves the purpose of constructing the diverging stacked bar charts in Excel. Finally, at the bottom of each sheet, the significance (T-test) and effect size (Hedges' g) for both completeness and correctness are provided. Hedges' g was calculated with an online tool: https://www.psychometrica.de/effect_size.html. The independent and moderating variables can be found as follows:

    Sheet 5 (By-Notation):
    

    Model correctness and model completeness is compared by notation - UC, US.

    Sheet 6 (By-Case):
    

    Model correctness and model completeness is compared by case - SIM, HOS, IFA.

    Sheet 7 (By-Process):
    

    Model correctness and model completeness is compared by how well the derivation process is explained - well explained, partially explained, not present.

    Sheet 8 (By-Grade):
    

    Model correctness and model completeness is compared by the exam grades, converted to categorical values High, Low , and Medium.

  3. m

    Dataset of development of business during the COVID-19 crisis

    • data.mendeley.com
    • narcis.nl
    Updated Nov 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tatiana N. Litvinova (2020). Dataset of development of business during the COVID-19 crisis [Dataset]. http://doi.org/10.17632/9vvrd34f8t.1
    Explore at:
    Dataset updated
    Nov 9, 2020
    Authors
    Tatiana N. Litvinova
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    To create the dataset, the top 10 countries leading in the incidence of COVID-19 in the world were selected as of October 22, 2020 (on the eve of the second full of pandemics), which are presented in the Global 500 ranking for 2020: USA, India, Brazil, Russia, Spain, France and Mexico. For each of these countries, no more than 10 of the largest transnational corporations included in the Global 500 rating for 2020 and 2019 were selected separately. The arithmetic averages were calculated and the change (increase) in indicators such as profitability and profitability of enterprises, their ranking position (competitiveness), asset value and number of employees. The arithmetic mean values of these indicators for all countries of the sample were found, characterizing the situation in international entrepreneurship as a whole in the context of the COVID-19 crisis in 2020 on the eve of the second wave of the pandemic. The data is collected in a general Microsoft Excel table. Dataset is a unique database that combines COVID-19 statistics and entrepreneurship statistics. The dataset is flexible data that can be supplemented with data from other countries and newer statistics on the COVID-19 pandemic. Due to the fact that the data in the dataset are not ready-made numbers, but formulas, when adding and / or changing the values in the original table at the beginning of the dataset, most of the subsequent tables will be automatically recalculated and the graphs will be updated. This allows the dataset to be used not just as an array of data, but as an analytical tool for automating scientific research on the impact of the COVID-19 pandemic and crisis on international entrepreneurship. The dataset includes not only tabular data, but also charts that provide data visualization. The dataset contains not only actual, but also forecast data on morbidity and mortality from COVID-19 for the period of the second wave of the pandemic in 2020. The forecasts are presented in the form of a normal distribution of predicted values and the probability of their occurrence in practice. This allows for a broad scenario analysis of the impact of the COVID-19 pandemic and crisis on international entrepreneurship, substituting various predicted morbidity and mortality rates in risk assessment tables and obtaining automatically calculated consequences (changes) on the characteristics of international entrepreneurship. It is also possible to substitute the actual values identified in the process and following the results of the second wave of the pandemic to check the reliability of pre-made forecasts and conduct a plan-fact analysis. The dataset contains not only the numerical values of the initial and predicted values of the set of studied indicators, but also their qualitative interpretation, reflecting the presence and level of risks of a pandemic and COVID-19 crisis for international entrepreneurship.

  4. Canaan Valley NWR forest inventory factory database used to generate...

    • catalog.data.gov
    Updated Nov 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Fish and Wildlife Service (2025). Canaan Valley NWR forest inventory factory database used to generate statistics and summary Excel-based reports [Dataset]. https://catalog.data.gov/dataset/canaan-valley-nwr-forest-inventory-factory-database-used-to-generate-statistics-and-summar
    Explore at:
    Dataset updated
    Nov 25, 2025
    Dataset provided by
    U.S. Fish and Wildlife Servicehttp://www.fws.gov/
    Description

    Canaan Valley NWR forest inventory factory database used to generate statistics and summary Excel-based reports

  5. f

    Excel spreadsheet containing the underlying numerical data and statistical...

    • datasetcatalog.nlm.nih.gov
    Updated Jul 31, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MacNaughton, Wallace K.; Flannigan, Kyle; Baggio, Cristiane H.; Rajeev, Sruthi; Wang, Arthur; Kraemer, Lucas; Shute, Adam; Leon-Coria, Aralia; McKay, Derek M.; Boim, Annaliese; Wang, Susan Joanne; Li, ShuHua; Finney, Constance A. M.; Callejas, Blanca E. (2024). Excel spreadsheet containing the underlying numerical data and statistical analysis for all figures and tables. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001393869
    Explore at:
    Dataset updated
    Jul 31, 2024
    Authors
    MacNaughton, Wallace K.; Flannigan, Kyle; Baggio, Cristiane H.; Rajeev, Sruthi; Wang, Arthur; Kraemer, Lucas; Shute, Adam; Leon-Coria, Aralia; McKay, Derek M.; Boim, Annaliese; Wang, Susan Joanne; Li, ShuHua; Finney, Constance A. M.; Callejas, Blanca E.
    Description

    Excel spreadsheet containing the underlying numerical data and statistical analysis for all figures and tables.

  6. d

    Navigating Stats Can Data & Scrubbing Data Clean with Excel Workshop

    • search.dataone.org
    • borealisdata.ca
    Updated Jul 31, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Costanzo, Lucia; Jadon, Vivek (2024). Navigating Stats Can Data & Scrubbing Data Clean with Excel Workshop [Dataset]. http://doi.org/10.5683/SP3/FF6AI9
    Explore at:
    Dataset updated
    Jul 31, 2024
    Dataset provided by
    Borealis
    Authors
    Costanzo, Lucia; Jadon, Vivek
    Description

    Ahoy, data enthusiasts! Join us for a hands-on workshop where you will hoist your sails and navigate through the Statistics Canada website, uncovering hidden treasures in the form of data tables. With the wind at your back, you’ll master the art of downloading these invaluable Stats Can datasets while braving the occasional squall of data cleaning challenges using Excel with your trusty captains Vivek and Lucia at the helm.

  7. f

    Additional file 1 of An Excel program for calculating statistics presented...

    • datasetcatalog.nlm.nih.gov
    • springernature.figshare.com
    Updated Apr 6, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Marfak, Abdelghafour; Youlyouz-Marfak, Ibtissam (2021). Additional file 1 of An Excel program for calculating statistics presented in Marfak et al.’s article ‘Improved RIDIT statistic approach provides more intuitive and informative interpretation of EQ-5D Data’ [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000795733
    Explore at:
    Dataset updated
    Apr 6, 2021
    Authors
    Marfak, Abdelghafour; Youlyouz-Marfak, Ibtissam
    Description

    Additional file1: Excel program for calculating Improved RIDIT statistics for EQ-5D-3L data.

  8. FIRE1102: previous data tables

    • gov.uk
    Updated Oct 18, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Home Office (2018). FIRE1102: previous data tables [Dataset]. https://www.gov.uk/government/statistical-data-sets/fire1102-previous-data-tables
    Explore at:
    Dataset updated
    Oct 18, 2018
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Home Office
    Description

    FIRE1102: Total staff numbers (full time equivalent) by role and fire and rescue authority (17 October 2024)

    https://assets.publishing.service.gov.uk/media/67077dab3b919067bb482f30/fire-statistics-data-tables-fire1102-191023.xlsx">FIRE1102: Total staff numbers (full time equivalent) by role and fire and rescue authority (19 October 2023) (MS Excel Spreadsheet, 472 KB)

    https://assets.publishing.service.gov.uk/media/652d1f486972600014ccf86e/fire-statistics-data-tables-fire1102-201022.xlsx">FIRE1102: Total staff numbers (full time equivalent) by role and fire and rescue authority (20 October 2022) (MS Excel Spreadsheet, 461 KB)

    https://assets.publishing.service.gov.uk/media/634e78c78fa8f5346f4fea45/fire-statistics-data-tables-fire1102-211021.xlsx">FIRE1102: Total staff numbers (full time equivalent) by role and fire and rescue authority (21 October 2021) (MS Excel Spreadsheet, 404 KB)

    https://assets.publishing.service.gov.uk/media/61699a16d3bf7f5601cf3038/fire-statistics-data-tables-fire1102-221020.xlsx">FIRE1102: Total staff numbers (full time equivalent) by role and fire and rescue authority (22 October 2020) (MS Excel Spreadsheet, 348 KB)

    https://assets.publishing.service.gov.uk/media/5f86a5a08fa8f51707a7c1ec/fire-statistics-data-tables-fire1102-311019.xlsx">FIRE1102: Total staff numbers (full time equivalent) by role and fire and rescue authority (31 October 2019) (MS Excel Spreadsheet, 300 KB)

    https://assets.publishing.service.gov.uk/media/5db6ff89ed915d1d02a59fe3/fire-statistics-data-tables-fire1102-181018.xlsx">FIRE1102: Total staff numbers (full time equivalent) by role and fire and rescue authority (18 October 2018) (MS Excel Spreadsheet, 251 KB)

    https://assets.publishing.service.gov.uk/media/5bb4dcc5ed915d076cc2ac66/fire-statistics-data-tables-fire1102.xlsx">FIRE1102: Total staff numbers (full time equivalent) by role and fire and rescue authority (26 October 2017) (MS Excel Spreadsheet, 276 KB)

    Related content

    Fire statistics data tables
    Fire statistics guidance
    Fire statistics

  9. Statistical Function in Excel

    • kaggle.com
    zip
    Updated Feb 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sanjana Murthy (2024). Statistical Function in Excel [Dataset]. https://www.kaggle.com/datasets/sanjanamurthy392/statistical-function
    Explore at:
    zip(1412940 bytes)Available download formats
    Dataset updated
    Feb 7, 2024
    Authors
    Sanjana Murthy
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    This data contains functions like: Sum, Average, Max, Min, Sumif, Sumifs, Count, Countblank, Countifs, Counta, Averageif, Averageifs.

  10. d

    Protected Areas Database of the United States (PAD-US) 3.0 Vector Analysis...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Oct 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Protected Areas Database of the United States (PAD-US) 3.0 Vector Analysis and Summary Statistics [Dataset]. https://catalog.data.gov/dataset/protected-areas-database-of-the-united-states-pad-us-3-0-vector-analysis-and-summary-stati
    Explore at:
    Dataset updated
    Oct 22, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    United States
    Description

    Spatial analysis and statistical summaries of the Protected Areas Database of the United States (PAD-US) provide land managers and decision makers with a general assessment of management intent for biodiversity protection, natural resource management, and recreation access across the nation. The PAD-US 3.0 Combined Fee, Designation, Easement feature class (with Military Lands and Tribal Areas from the Proclamation and Other Planning Boundaries feature class) was modified to remove overlaps, avoiding overestimation in protected area statistics and to support user needs. A Python scripted process ("PADUS3_0_CreateVectorAnalysisFileScript.zip") associated with this data release prioritized overlapping designations (e.g. Wilderness within a National Forest) based upon their relative biodiversity conservation status (e.g. GAP Status Code 1 over 2), public access values (in the order of Closed, Restricted, Open, Unknown), and geodatabase load order (records are deliberately organized in the PAD-US full inventory with fee owned lands loaded before overlapping management designations, and easements). The Vector Analysis File ("PADUS3_0VectorAnalysisFile_ClipCensus.zip") associated item of PAD-US 3.0 Spatial Analysis and Statistics ( https://doi.org/10.5066/P9KLBB5D ) was clipped to the Census state boundary file to define the extent and serve as a common denominator for statistical summaries. Boundaries of interest to stakeholders (State, Department of the Interior Region, Congressional District, County, EcoRegions I-IV, Urban Areas, Landscape Conservation Cooperative) were incorporated into separate geodatabase feature classes to support various data summaries ("PADUS3_0VectorAnalysisFileOtherExtents_Clip_Census.zip") and Comma-separated Value (CSV) tables ("PADUS3_0SummaryStatistics_TabularData_CSV.zip") summarizing "PADUS3_0VectorAnalysisFileOtherExtents_Clip_Census.zip" are provided as an alternative format and enable users to explore and download summary statistics of interest (Comma-separated Table [CSV], Microsoft Excel Workbook [.XLSX], Portable Document Format [.PDF] Report) from the PAD-US Lands and Inland Water Statistics Dashboard ( https://www.usgs.gov/programs/gap-analysis-project/science/pad-us-statistics ). In addition, a "flattened" version of the PAD-US 3.0 combined file without other extent boundaries ("PADUS3_0VectorAnalysisFile_ClipCensus.zip") allow for other applications that require a representation of overall protection status without overlapping designation boundaries. The "PADUS3_0VectorAnalysis_State_Clip_CENSUS2020" feature class ("PADUS3_0VectorAnalysisFileOtherExtents_Clip_Census.gdb") is the source of the PAD-US 3.0 raster files (associated item of PAD-US 3.0 Spatial Analysis and Statistics, https://doi.org/10.5066/P9KLBB5D ). Note, the PAD-US inventory is now considered functionally complete with the vast majority of land protection types represented in some manner, while work continues to maintain updates and improve data quality (see inventory completeness estimates at: http://www.protectedlands.net/data-stewards/ ). In addition, changes in protected area status between versions of the PAD-US may be attributed to improving the completeness and accuracy of the spatial data more than actual management actions or new acquisitions. USGS provides no legal warranty for the use of this data. While PAD-US is the official aggregation of protected areas ( https://www.fgdc.gov/ngda-reports/NGDA_Datasets.html ), agencies are the best source of their lands data.

  11. Immigration statistics data tables, year ending December 2020

    • gov.uk
    Updated Feb 25, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Home Office (2021). Immigration statistics data tables, year ending December 2020 [Dataset]. https://www.gov.uk/government/statistical-data-sets/immigration-statistics-data-tables-year-ending-december-2020
    Explore at:
    Dataset updated
    Feb 25, 2021
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Home Office
    Description

    The Home Office has changed the format of the published data tables for a number of areas (asylum and resettlement, entry clearance visas, extensions, citizenship, returns, detention, and sponsorship). These now include summary tables, and more detailed datasets (available on a separate page, link below). A list of all available datasets on a given topic can be found in the ‘Contents’ sheet in the ‘summary’ tables. Information on where to find historic data in the ‘old’ format is in the ‘Notes’ page of the ‘summary’ tables.

    The Home Office intends to make these changes in other areas in the coming publications. If you have any feedback, please email MigrationStatsEnquiries@homeoffice.gov.uk.

    Related content

    Immigration statistics, year ending September 2020
    Immigration Statistics Quarterly Release
    Immigration Statistics User Guide
    Publishing detailed data tables in migration statistics
    Policy and legislative changes affecting migration to the UK: timeline
    Immigration statistics data archives

    Asylum and resettlement

    https://assets.publishing.service.gov.uk/media/602bab69e90e070562513e35/asylum-summary-dec-2020-tables.xlsx">Asylum and resettlement summary tables, year ending December 2020 (MS Excel Spreadsheet, 359 KB)

    Detailed asylum and resettlement datasets

    Sponsorship

    https://assets.publishing.service.gov.uk/media/602bab8fe90e070552b33515/sponsorship-summary-dec-2020-tables.xlsx">Sponsorship summary tables, year ending December 2020 (MS Excel Spreadsheet, 67.7 KB)

    Detailed sponsorship datasets

    Entry clearance visas granted outside the UK

    https://assets.publishing.service.gov.uk/media/602bf8708fa8f50384219401/visas-summary-dec-2020-tables.xlsx">Entry clearance visas summary tables, year ending December 2020 (MS Excel Spreadsheet, 70.3 KB)

    Detailed entry clearance visas datasets

    Passenger arrivals (admissions)

    https://assets.publishing.service.gov.uk/media/602bac148fa8f5037f5d849c/passenger-arrivals-admissions-summary-dec-2020-tables.xlsx">Passenger arrivals (admissions) summary tables, year ending December 2020 (MS Excel Spreadsheet, 70.6 KB)

    Detailed Passengers initially refused entry at port datasets

    Extensions

    https://assets.publishing.service.gov.uk/media/602bac3d8fa8f50383c41f7c/extentions-summary-dec-2020-tables.xlsx">Extensions summary tables, year ending December 2020 (MS Excel Spreadsheet, 41.5 KB)

    <a href="https://www.gov.uk/governmen

  12. q

    Linear Regression (Excel) and Cellular Respiration for Biology, Chemistry...

    • qubeshub.org
    Updated Jan 11, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Irene Corriette; Beatriz Gonzalez; Daniela Kitanska; Henriette Mozsolits; Sheela Vemu (2022). Linear Regression (Excel) and Cellular Respiration for Biology, Chemistry and Mathematics [Dataset]. http://doi.org/10.25334/5PX5-H796
    Explore at:
    Dataset updated
    Jan 11, 2022
    Dataset provided by
    QUBES
    Authors
    Irene Corriette; Beatriz Gonzalez; Daniela Kitanska; Henriette Mozsolits; Sheela Vemu
    Description

    Students typically find linear regression analysis of data sets in a biology classroom challenging. These activities could be used in a Biology, Chemistry, Mathematics, or Statistics course. The collection provides student activity files with Excel instructions and Instructor Activity files with Excel instructions and solutions to problems.

    Students will be able to perform linear regression analysis, find correlation coefficient, create a scatter plot and find the r-square using MS Excel 365. Students will be able to interpret data sets, describe the relationship between biological variables, and predict the value of an output variable based on the input of an predictor variable.

  13. f

    Excel spreadsheet with individual numerical data underlying plots and...

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    • +1more
    Updated Mar 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    van Zwam, Maxime C.; Bosman, Willem; van Straaten, Wendy; van den Dries, Koen; Weijers, Suzanne; Joosten, Ben; Dhar, Anubhav; van Haren, Jeffrey; Palani, Saravanan; Seta, Emiel (2024). Excel spreadsheet with individual numerical data underlying plots and statistical analyses. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001332221
    Explore at:
    Dataset updated
    Mar 11, 2024
    Authors
    van Zwam, Maxime C.; Bosman, Willem; van Straaten, Wendy; van den Dries, Koen; Weijers, Suzanne; Joosten, Ben; Dhar, Anubhav; van Haren, Jeffrey; Palani, Saravanan; Seta, Emiel
    Description

    The data are organized into separate sheets corresponding to the following figure panels: 1C, 1G, 2B, 2D, 2F, 2H, 4C, 4D, 4F, 5B, 5C, S3B, S5C, S5E, S7B, S8B, S10B, S12A, S12B, and S21B. (XLSX)

  14. f

    Microsoft Excel spreadsheet of model coefficient estimates and summary...

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    Updated Nov 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lieberman, Daniel E.; Sibson, Benjamin E.; Harris, Alexandra R.; Yegian, Andrew K.; Ojiambo, Robert M.; Uwimana, Aimable; Nuhu, Assuman; Anderson, Dennis E.; Thomas, Alec (2024). Microsoft Excel spreadsheet of model coefficient estimates and summary statistics. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001413145
    Explore at:
    Dataset updated
    Nov 4, 2024
    Authors
    Lieberman, Daniel E.; Sibson, Benjamin E.; Harris, Alexandra R.; Yegian, Andrew K.; Ojiambo, Robert M.; Uwimana, Aimable; Nuhu, Assuman; Anderson, Dennis E.; Thomas, Alec
    Description

    Microsoft Excel spreadsheet of model coefficient estimates and summary statistics.

  15. i

    Grant Giving Statistics for Excel Through Athletics

    • instrumentl.com
    Updated Mar 6, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Grant Giving Statistics for Excel Through Athletics [Dataset]. https://www.instrumentl.com/990-report/excel-through-athletics
    Explore at:
    Dataset updated
    Mar 6, 2022
    Variables measured
    Total Assets, Total Giving
    Description

    Financial overview and grant giving statistics of Excel Through Athletics

  16. B

    Working with Statistics Canada Data Tables in Excel / Travailler avec des...

    • borealisdata.ca
    Updated Nov 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Julie Marcoux (2023). Working with Statistics Canada Data Tables in Excel / Travailler avec des tableaux de données de Statistique Canada dans Excel [Dataset]. http://doi.org/10.5683/SP3/R8REJA
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 15, 2023
    Dataset provided by
    Borealis
    Authors
    Julie Marcoux
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Area covered
    Canada
    Description

    Learn to decide which CSV version of a Statistics Canada data table to download depending on your goals and needs, and learn how to best work with the file in Excel once downloaded. Apprenez à décider de la meilleure version CSV d’un tableau de données de Statistique Canada à télécharger en fonction de vos objectifs et de vos besoins, et apprenez comment travailler avec le fichier dans Excel une fois téléchargé.

  17. Learn Excel to excel's YouTube Channel Statistics

    • vidiq.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    vidIQ, Learn Excel to excel's YouTube Channel Statistics [Dataset]. https://vidiq.com/youtube-stats/channel/UCgslKNwt0FnaCZFw5Xz47vQ/
    Explore at:
    Dataset authored and provided by
    vidIQ
    Time period covered
    Nov 1, 2025 - Nov 30, 2025
    Area covered
    Worldwide
    Variables measured
    subscribers, video count, video views, engagement rate, upload frequency, estimated earnings
    Description

    Comprehensive YouTube channel statistics for Learn Excel to excel, featuring 187,000 subscribers and 13,006,000 total views. This dataset includes detailed performance metrics such as subscriber growth, video views, engagement rates, and estimated revenue. The channel operates in the Lifestyle category. Track 174 videos with daily and monthly performance data, including view counts, subscriber changes, and earnings estimates. Analyze growth trends, engagement patterns, and compare performance against similar channels in the same category.

  18. Datasheet.Excel.Pretest-posttest.Statistical t-test results.xlsx

    • figshare.com
    xlsx
    Updated Nov 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Theophile Shyiramunda (2023). Datasheet.Excel.Pretest-posttest.Statistical t-test results.xlsx [Dataset]. http://doi.org/10.6084/m9.figshare.24486685.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Nov 13, 2023
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Theophile Shyiramunda
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This data set is for the research entitled"Group Discussions in Secondary School Chemistry: Unveiling Pedagogical Alchemy for Academic Advancement".

  19. d

    Population education level statistics for people aged 15 and over

    • data.gov.tw
    xml
    Updated Jul 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dept. of Statistics (2024). Population education level statistics for people aged 15 and over [Dataset]. https://data.gov.tw/en/datasets/18546
    Explore at:
    xmlAvailable download formats
    Dataset updated
    Jul 11, 2024
    Dataset authored and provided by
    Dept. of Statistics
    License

    https://data.gov.tw/licensehttps://data.gov.tw/license

    Description

    Statistical Area Level of Education of Population Aged 15 and Over_ Secondary Release Area, Statistical Area Level of Education of Population Aged 15 and Over_ Primary Release Area, Statistical Area Level of Education of Population Aged 15 and Over_ Minimum Statistical AreaThe Ministry of the Interior's Statistics Department provides the latest annual statistical data for various counties and cities on the Government Open Data Platform in XML format. When viewed in a browser, it appears as a series of characters and numbers. Typically, this format is suitable for programmers to develop applications using the data, rather than being random characters. If you wish to download the data in CSV format (which can be viewed in Excel), please refer to the Social Economic Data Service Platform on the Land Information System website (segis.moi.gov.tw) for downloading.

  20. FIRE1111: previous data tables

    • gov.uk
    Updated Oct 18, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Home Office (2018). FIRE1111: previous data tables [Dataset]. https://www.gov.uk/government/statistical-data-sets/fire1111-previous-data-tables
    Explore at:
    Dataset updated
    Oct 18, 2018
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Home Office
    Description

    FIRE1111: Staff leaving fire authorities, by reason and by role, England (17 October 2024)

    https://assets.publishing.service.gov.uk/media/670781693b919067bb482f32/fire-statistics-data-tables-fire1111-191023.xlsx">FIRE1111: Staff leaving fire authorities, by reason and by role, England (19 October 2023) (MS Excel Spreadsheet, 60.9 KB)

    https://assets.publishing.service.gov.uk/media/652d39ab6b6fbf000db756dd/fire-statistics-data-tables-fire1111-201022.xlsx">FIRE1111: Staff leaving fire authorities, by reason and by role, England (20 October 2022) (MS Excel Spreadsheet, 591 KB)

    https://assets.publishing.service.gov.uk/media/634e7e57e90e0731a20e0293/fire-statistics-data-tables-fire1111-211021.xlsx">FIRE1111: Staff leaving fire authorities, by reason and by role, England (21 October 2021) (MS Excel Spreadsheet, 506 KB)

    https://assets.publishing.service.gov.uk/media/616d45bee90e071976488f5f/fire-statistics-data-tables-fire1111-221020.xlsx">FIRE1111: Staff leaving fire authorities, by reason and by role, England (22 October 2020) (MS Excel Spreadsheet, 403 KB)

    https://assets.publishing.service.gov.uk/media/5f86b2add3bf7f6337ea2728/fire-statistics-data-tables-fire1111-311019.xlsx">FIRE1111: Staff leaving fire authorities, by reason and by role, England (31 October 2019) (MS Excel Spreadsheet, 305 KB)

    https://assets.publishing.service.gov.uk/media/5db70841ed915d1d01ae3c17/fire-statistics-data-tables-fire1111-181018.xlsx">FIRE1111: Staff leaving fire authorities, by reason and by role, England (18 October 2018) (MS Excel Spreadsheet, 195 KB)

    https://assets.publishing.service.gov.uk/media/5bbcc0d340f0b6385452223e/fire-statistics-data-tables-fire1111.xlsx">FIRE1111: Staff leaving fire authorities, by reason and by role, England (26 October 2017) (MS Excel Spreadsheet, 184 KB)

    Related content

    Fire statistics data tables
    Fire statistics guidance
    Fire statistics

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Alejandro Quintela-del-Río; Mario Francisco-Fernández (2023). Excel Templates: A Helpful Tool for Teaching Statistics [Dataset]. http://doi.org/10.6084/m9.figshare.3408052.v2
Organization logo

Data from: Excel Templates: A Helpful Tool for Teaching Statistics

Related Article
Explore at:
zipAvailable download formats
Dataset updated
May 30, 2023
Dataset provided by
Taylor & Francishttps://taylorandfrancis.com/
Authors
Alejandro Quintela-del-Río; Mario Francisco-Fernández
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

This article describes a free, open-source collection of templates for the popular Excel (2013, and later versions) spreadsheet program. These templates are spreadsheet files that allow easy and intuitive learning and the implementation of practical examples concerning descriptive statistics, random variables, confidence intervals, and hypothesis testing. Although they are designed to be used with Excel, they can also be employed with other free spreadsheet programs (changing some particular formulas). Moreover, we exploit some possibilities of the ActiveX controls of the Excel Developer Menu to perform interactive Gaussian density charts. Finally, it is important to note that they can be often embedded in a web page, so it is not necessary to employ Excel software for their use. These templates have been designed as a useful tool to teach basic statistics and to carry out data analysis even when the students are not familiar with Excel. Additionally, they can be used as a complement to other analytical software packages. They aim to assist students in learning statistics, within an intuitive working environment. Supplementary materials with the Excel templates are available online.

Search
Clear search
Close search
Google apps
Main menu