Facebook
TwitterBuilding strong quantitative skills prepares undergraduate biology students for successful careers in science and medicine. While math and statistics anxiety can negatively impact student learning within biology classrooms, instructors may reduce this anxiety by steadily building student competency in quantitative reasoning through instructional scaffolding, application-based approaches, and simple computer program interfaces. However, few statistical programs exist that meet all needs of an inclusive, inquiry-based laboratory course. These needs include an open-source program, a simple interface, little required background knowledge in statistics for student users, and customizability to minimize cognitive load, align with course learning outcomes, and create desirable difficulty. To address these needs, we used the Shiny package in R to develop a custom statistical analysis application. Our “BioStats” app provides students with scaffolded learning experiences in applied statistics that promotes student agency and is customizable by the instructor. It introduces students to the strengths of the R interface, while eliminating the need for complex coding in the R programming language. It also prioritizes practical implementation of statistical analyses over learning statistical theory. To our knowledge, this is the first statistics teaching tool where students are presented basic statistics initially, more complex analyses as they advance, and includes an option to learn R statistical coding. The BioStats app interface yields a simplified introduction to applied statistics that is adaptable to many biology laboratory courses.
Primary Image: Singing Junco. A sketch of a junco singing on a pine tree branch, created by the lead author of this paper.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
R Scripts contain statistical data analisys for streamflow and sediment data, including Flow Duration Curves, Double Mass Analysis, Nonlinear Regression Analysis for Suspended Sediment Rating Curves, Stationarity Tests and include several plots.
Facebook
TwitterA little paragraph from one real dataset, with a few little changes to protect students' private information. Permissions are given.
You are going to help teachers with only the data: 1. Prediction: To tell what makes a brilliant student who can apply for a graduate school, whether abroad or not. 2. Application: To help those who fails to apply for a graduate school with advice in job searching.
Some of the original structure are deleted or censored. For those are left: Basic data like: - ID - class: categorical, initially students were divided into 2 classes, yet teachers suspect that of different classes students may performance significant differently. - gender - race: categorical and censored - GPA: real numbers, float
Some teachers assume that scores of math curriculums can represent one's likelihood perfectly: - Algebra: real numbers, Advanced Algebra - ......
Some assume that background of students can affect their choices and likelihood significantly, which are all censored as: - from1: students' home locations - from2: a probably bad indicator for preference on mathematics - from 3: how did students apply for this university (undergraduate) - from4: a probably bad indicator for family background. 0 with more wealth, 4 with more poverty
The final indicator y: - 0, one fails to apply for the graduate school, who may apply again or search jobs in the future - 1, success, inland - 2, success, abroad
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Aggregated responses of the 9-point post-course team-work questionnaire that was sent out to the students in this gamification pilot study. The dataset is divided into the two teams game-based and instructor-section based teams. A Mann Whitney U Test was performed on the dataset.
Facebook
TwitterAbstract Objective: To report the statistical analysis plan (first version) for the Balanced Solutions versus Saline in Intensive Care Study (BaSICS). Methods: BaSICS is a multicenter factorial randomized controlled trial that will assess the effects of Plasma-Lyte 148 versus 0.9% saline as the fluid of choice in critically ill patients, as well as the effects of a slow (333mL/h) versus rapid (999mL/h) infusion speed during fluid challenges, on important patient outcomes. The fluid type will be blinded for investigators, patients and the analyses. No blinding will be possible for the infusion speed for the investigators, but all analyses will be kept blinded during the analysis procedure. Results: BaSICS will have 90-day mortality as its primary endpoint, which will be tested using mixed-effects Cox proportional hazard models, considering sites as a random variable (frailty models) adjusted for age, organ dysfunction and admission type. Important secondary endpoints include renal replacement therapy up to 90 days, acute renal failure, organ dysfunction at days 3 and 7, and mechanical ventilation-free days within 28 days. Conclusion: This manuscript provides details on the first version of the statistical analysis plan for the BaSICS trial and will guide the study’s analysis when follow-up is finished.
Facebook
TwitterOne of the first steps in a reference interview is determining what is it the user really wants or needs. In many cases, the question comes down to the unit of analysis: what is it that is being investigated or researched? This presentation will take us through the concept of the unit of analysis so that we can improve our reference service — and make our lives easier as a result! Note: This presentation precedes Working with Complex Surveys: Canadian Travel Survey by Chuck Humphrey (14-Mar-2002).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Graphical analysis of the toxicity testing and the potency of millet extracts in reversing the tachycardic and bradycardic conditions. The results show significant changes and it is effectively supported by the statistical data (correlation analysis) performed using the basic functions of Microsoft Excel.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This resource contains a Jupyter Notebook that is used to introduce hydrologic data analysis and conservation laws. This resource is part of a HydroLearn Physical Hydrology learning module available at https://edx.hydrolearn.org/courses/course-v1:Utah_State_University+CEE6400+2019_Fall/about
In this activity, the student learns how to (1) calculate the residence time of water in land and rivers for the global hydrologic cycle; (2) quantify the relative and absolute uncertainties in components of the water balance; (3) navigate public websites and databases, extract key watershed attributes, and perform basic hydrologic data analysis for a watershed of interest; (4) assess, compare, and interpret hydrologic trends in the context of a specific watershed.
Please note that in problems 3-8, the user is asked to use an R package (i.e., dataRetrieval) and select a U.S. Geological Survey (USGS) streamflow gage to retrieve streamflow data and then apply the hydrological data analysis to the watershed of interest. We acknowledge that the material relies on USGS data that are only available within the U.S. If running for other watersheds of interest outside the U.S. or wishing to work with other datasets, the user must take some further steps and develop codes to prepare the streamflow dataset. Once a streamflow time series dataset is obtained for an international catchment of interest, the user would need to read that file into the workspace before working through subsequent analyses.
Facebook
TwitterAttribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
The “Students Performance Data” dataset provides academic and demographic information of students. It includes their marks in Maths, Science, and English along with attendance and city details. This dataset is ideal for beginners learning data entry, analysis, and visualization using tools like Excel or Kaggle Notebooks.
Facebook
TwitterThis dataset provides detailed insights into daily active users (DAU) of a platform or service, captured over a defined period of time. The dataset includes information such as the number of active users per day, allowing data analysts and business intelligence teams to track usage trends, monitor platform engagement, and identify patterns in user activity over time.
The data is ideal for performing time series analysis, statistical analysis, and trend forecasting. You can utilize this dataset to measure the success of platform initiatives, evaluate user behavior, or predict future trends in engagement. It is also suitable for training machine learning models that focus on user activity prediction or anomaly detection.
The dataset is structured in a simple and easy-to-use format, containing the following columns:
Each row in the dataset represents a unique date and its corresponding number of active users. This allows for time-based analysis, such as calculating the moving average of active users, detecting seasonality, or spotting sudden spikes or drops in engagement.
This dataset can be used for a wide range of purposes, including:
Here are some specific analyses you can perform using this dataset:
To get started with this dataset, you can load it into your preferred analysis tool. Here's how to do it using Python's pandas library:
import pandas as pd
# Load the dataset
data = pd.read_csv('path_to_dataset.csv')
# Display the first few rows
print(data.head())
# Basic statistics
print(data.describe())
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data is becoming increasingly ubiquitous today, and data literacy has emerged an essential skill in the workplace. Therefore, it is necessary to equip high school students with data literacy skills in order to prepare them for further learning and future employment. In Indonesia, there is a growing shift towards integrating data literacy in the high school curriculum. As part of a pilot intervention project, academics from two leading Universities organised data literacy boot camps for high school students across various cities in Indonesia. The boot camps aimed at increasing participants’ awareness of the power of analytical and exploration skills, which in turn, would contribute to creating independent and data-literate students. This paper explores student participants’ self-perception of their data literacy as a result of the skills acquired from the boot camps. Qualitative and quantitative data were collected through student surveys and a focus group discussion, and were used to analyse student perception post-intervention. The findings indicate that students became more aware of the usefulness of data literacy and its application in future studies and work after participating in the boot camp. Of the materials delivered at the boot camps, students found the greatest benefit in learning basic statistical concepts and applying them through the use of Microsoft Excel as a tool for basic data analysis. These findings provide valuable policy recommendations that educators and policymakers can use as guidelines for effective data literacy teaching in high schools.
Facebook
TwitterThis data package contains claims-based data about beneficiaries of Medicare program services including Inpatient, Outpatient, related to Chronic Conditions, Skilled Nursing Facility, Home Health Agency, Hospice, Carrier, Durable Medical Equipment (DME) and data related to Prescription Drug Events. It is necessary to mention that the values are estimated and counted, by using a random sample of fee-for-service Medicare claims.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IntroductionA required step for presenting results of clinical studies is the declaration of participants demographic and baseline characteristics as claimed by the FDAAA 801. The common workflow to accomplish this task is to export the clinical data from the used electronic data capture system and import it into statistical software like SAS software or IBM SPSS. This software requires trained users, who have to implement the analysis individually for each item. These expenditures may become an obstacle for small studies. Objective of this work is to design, implement and evaluate an open source application, called ODM Data Analysis, for the semi-automatic analysis of clinical study data.MethodsThe system requires clinical data in the CDISC Operational Data Model format. After uploading the file, its syntax and data type conformity of the collected data is validated. The completeness of the study data is determined and basic statistics, including illustrative charts for each item, are generated. Datasets from four clinical studies have been used to evaluate the application’s performance and functionality.ResultsThe system is implemented as an open source web application (available at https://odmanalysis.uni-muenster.de) and also provided as Docker image which enables an easy distribution and installation on local systems. Study data is only stored in the application as long as the calculations are performed which is compliant with data protection endeavors. Analysis times are below half an hour, even for larger studies with over 6000 subjects.DiscussionMedical experts have ensured the usefulness of this application to grant an overview of their collected study data for monitoring purposes and to generate descriptive statistics without further user interaction. The semi-automatic analysis has its limitations and cannot replace the complex analysis of statisticians, but it can be used as a starting point for their examination and reporting.
Facebook
TwitterBasic statistical analysis of SNP markers in bread wheat.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average environmental and occupational physiologist may find statistics are difficult to interpret and use since their formal training in statistics is limited. Unfortunately, poor statistical practices can generate erroneous or at least misleading results and distorts the evidence in the scientific literature. These problems are exacerbated when statistics are used as thoughtless ritual that is performed after the data are collected. The situation is worsened when statistics are then treated as strict judgements about the data (i.e., significant versus non-significant) without a thought given to how these statistics were calculated or their practical meaning. We propose that researchers should consider statistics at every step of the research process whether that be the designing of experiments, collecting data, analysing the data or disseminating the results. When statistics are considered as an integral part of the research process, from start to finish, several problematic practices can be mitigated. Further, proper practices in disseminating the results of a study can greatly improve the quality of the literature. Within this review, we have included a number of reminders and statistical questions researchers should answer throughout the scientific process. Rather than treat statistics as a strict rule following procedure we hope that readers will use this review to stimulate a discussion around their current practices and attempt to improve them. The code to reproduce all analyses and figures within the manuscript can be found at https://doi.org/10.17605/OSF.IO/BQGDH.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
DATABIRD: BASIC MATH
Overview
This data set, curated by ThePrint, encompasses a broad spectrum of mathematical concepts, from basic arithmetic operations such as addition and subtraction to more advanced topics like percentages, introductory calculus, graph interpretation, and statistical analysis. It is designed for educational purposes, providing a comprehensive resource for understanding various numerical methodologies.
Key Features
Format: JSON Contents:… See the full description on the dataset page: https://huggingface.co/datasets/theprint/databird-basic-math.
Facebook
Twitterhttps://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global market size for statistical analysis software was estimated at USD 11.3 billion in 2023 and is projected to reach USD 21.6 billion by 2032, growing at a compound annual growth rate (CAGR) of 7.5% during the forecast period. This substantial growth can be attributed to the increasing complexity of data in various industries and the rising need for advanced analytical tools to derive actionable insights.
One of the primary growth factors for this market is the increasing demand for data-driven decision-making across various sectors. Organizations are increasingly recognizing the value of data analytics in enhancing operational efficiency, reducing costs, and identifying new business opportunities. The proliferation of big data and the advent of technologies such as artificial intelligence and machine learning are further fueling the demand for sophisticated statistical analysis software. Additionally, the growing adoption of cloud computing has significantly reduced the cost and complexity of deploying advanced analytics solutions, making them more accessible to organizations of all sizes.
Another critical driver for the market is the increasing emphasis on regulatory compliance and risk management. Industries such as finance, healthcare, and manufacturing are subject to stringent regulatory requirements, necessitating the use of advanced analytics tools to ensure compliance and mitigate risks. For instance, in the healthcare sector, statistical analysis software is used for clinical trials, patient data management, and predictive analytics to enhance patient outcomes and ensure regulatory compliance. Similarly, in the financial sector, these tools are used for fraud detection, credit scoring, and risk assessment, thereby driving the demand for statistical analysis software.
The rising trend of digital transformation across industries is also contributing to market growth. As organizations increasingly adopt digital technologies, the volume of data generated is growing exponentially. This data, when analyzed effectively, can provide valuable insights into customer behavior, market trends, and operational efficiencies. Consequently, there is a growing need for advanced statistical analysis software to analyze this data and derive actionable insights. Furthermore, the increasing integration of statistical analysis tools with other business intelligence and data visualization tools is enhancing their capabilities and driving their adoption across various sectors.
From a regional perspective, North America currently holds the largest market share, driven by the presence of major technology companies and a high level of adoption of advanced analytics solutions. However, the Asia Pacific region is expected to witness the highest growth rate during the forecast period, owing to the increasing adoption of digital technologies and the growing emphasis on data-driven decision-making in countries such as China and India. The region's rapidly expanding IT infrastructure and increasing investments in advanced analytics solutions are further contributing to this growth.
The statistical analysis software market can be segmented by component into software and services. The software segment encompasses the core statistical analysis tools and platforms used by organizations to analyze data and derive insights. This segment is expected to hold the largest market share, driven by the increasing adoption of data analytics solutions across various industries. The availability of a wide range of software solutions, from basic statistical tools to advanced analytics platforms, is catering to the diverse needs of organizations, further driving the growth of this segment.
The services segment includes consulting, implementation, training, and support services provided by vendors to help organizations effectively deploy and utilize statistical analysis software. This segment is expected to witness significant growth during the forecast period, driven by the increasing complexity of data analytics projects and the need for specialized expertise. As organizations seek to maximize the value of their data analytics investments, the demand for professional services to support the implementation and optimization of statistical analysis solutions is growing. Furthermore, the increasing trend of outsourcing data analytics functions to third-party service providers is contributing to the growth of the services segment.
Within the software segment, the market can be further categori
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
As high-throughput methods become more common, training undergraduates to analyze data must include having them generate informative summaries of large datasets. This flexible case study provides an opportunity for undergraduate students to become familiar with the capabilities of R programming in the context of high-throughput evolutionary data collected using macroarrays. The story line introduces a recent graduate hired at a biotech firm and tasked with analysis and visualization of changes in gene expression from 20,000 generations of the Lenski Lab’s Long-Term Evolution Experiment (LTEE). Our main character is not familiar with R and is guided by a coworker to learn about this platform. Initially this involves a step-by-step analysis of the small Iris dataset built into R which includes sepal and petal length of three species of irises. Practice calculating summary statistics and correlations, and making histograms and scatter plots, prepares the protagonist to perform similar analyses with the LTEE dataset. In the LTEE module, students analyze gene expression data from the long-term evolutionary experiments, developing their skills in manipulating and interpreting large scientific datasets through visualizations and statistical analysis. Prerequisite knowledge is basic statistics, the Central Dogma, and basic evolutionary principles. The Iris module provides hands-on experience using R programming to explore and visualize a simple dataset; it can be used independently as an introduction to R for biological data or skipped if students already have some experience with R. Both modules emphasize understanding the utility of R, rather than creation of original code. Pilot testing showed the case study was well-received by students and faculty, who described it as a clear introduction to R and appreciated the value of R for visualizing and analyzing large datasets.
Facebook
TwitterThe QoG Institute is an independent research institute within the Department of Political Science at the University of Gothenburg. Overall 30 researchers conduct and promote research on the causes, consequences and nature of Good Governance and the Quality of Government - that is, trustworthy, reliable, impartial, uncorrupted and competent government institutions.
The main objective of our research is to address the theoretical and empirical problem of how political institutions of high quality can be created and maintained. A second objective is to study the effects of Quality of Government on a number of policy areas, such as health, the environment, social policy, and poverty.
QoG Basic Dataset, which consists of approximately the 300 most used variables from QoG Standard Dataset, is a selection of variables that cover the most important concepts related to Quality of Government.
In the QoG Basic CS dataset, data from and around 2018 is included. Data from 2018 is prioritized, however, if no data is available for a country for 2018, data for 2019 is included. If no data exists for 2019, data for 2017 is included, and so on up to a maximum of +/- 3 years.
In the QoG Basic TS dataset, data from 1946 to 2021 is included and the unit of analysis is country-year (e.g., Sweden-1946, Sweden-1947, etc.).
Purpose:
The primary aim of QoG is to conduct and promote research on corruption. One aim of the QoG Institute is to make publicly available cross-national comparative data on QoG and its correlates.
In the QoG Basic TS dataset, data from 1946 to 2021 is included and the unit of analysis is country-year (e.g., Sweden-1946, Sweden-1947, etc.).
Historical countries are in most cases denoted with a do-date (e.g. Ethiopia (-1992) and a from-date (Ethiopia (1993-)).
Facebook
TwitterSeparate tables and separate word documents containing basic numerical data, statistical analysis and original pictures for Figs 1, 2B, 2C, 2D, 3A, 3B, 3E, 3F, 4B, 4C, 4D, 5A and 5B of this study.
Facebook
TwitterBuilding strong quantitative skills prepares undergraduate biology students for successful careers in science and medicine. While math and statistics anxiety can negatively impact student learning within biology classrooms, instructors may reduce this anxiety by steadily building student competency in quantitative reasoning through instructional scaffolding, application-based approaches, and simple computer program interfaces. However, few statistical programs exist that meet all needs of an inclusive, inquiry-based laboratory course. These needs include an open-source program, a simple interface, little required background knowledge in statistics for student users, and customizability to minimize cognitive load, align with course learning outcomes, and create desirable difficulty. To address these needs, we used the Shiny package in R to develop a custom statistical analysis application. Our “BioStats” app provides students with scaffolded learning experiences in applied statistics that promotes student agency and is customizable by the instructor. It introduces students to the strengths of the R interface, while eliminating the need for complex coding in the R programming language. It also prioritizes practical implementation of statistical analyses over learning statistical theory. To our knowledge, this is the first statistics teaching tool where students are presented basic statistics initially, more complex analyses as they advance, and includes an option to learn R statistical coding. The BioStats app interface yields a simplified introduction to applied statistics that is adaptable to many biology laboratory courses.
Primary Image: Singing Junco. A sketch of a junco singing on a pine tree branch, created by the lead author of this paper.