100+ datasets found
  1. f

    Data from: Excel Templates: A Helpful Tool for Teaching Statistics

    • tandf.figshare.com
    zip
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alejandro Quintela-del-Río; Mario Francisco-Fernández (2023). Excel Templates: A Helpful Tool for Teaching Statistics [Dataset]. http://doi.org/10.6084/m9.figshare.3408052.v2
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Taylor & Francis
    Authors
    Alejandro Quintela-del-Río; Mario Francisco-Fernández
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This article describes a free, open-source collection of templates for the popular Excel (2013, and later versions) spreadsheet program. These templates are spreadsheet files that allow easy and intuitive learning and the implementation of practical examples concerning descriptive statistics, random variables, confidence intervals, and hypothesis testing. Although they are designed to be used with Excel, they can also be employed with other free spreadsheet programs (changing some particular formulas). Moreover, we exploit some possibilities of the ActiveX controls of the Excel Developer Menu to perform interactive Gaussian density charts. Finally, it is important to note that they can be often embedded in a web page, so it is not necessary to employ Excel software for their use. These templates have been designed as a useful tool to teach basic statistics and to carry out data analysis even when the students are not familiar with Excel. Additionally, they can be used as a complement to other analytical software packages. They aim to assist students in learning statistics, within an intuitive working environment. Supplementary materials with the Excel templates are available online.

  2. w

    Dataset of books called Statistical analysis with Excel for dummies

    • workwithdata.com
    Updated Apr 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2025). Dataset of books called Statistical analysis with Excel for dummies [Dataset]. https://www.workwithdata.com/datasets/books?f=1&fcol0=book&fop0=%3D&fval0=Statistical+analysis+with+Excel+for+dummies
    Explore at:
    Dataset updated
    Apr 17, 2025
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is about books. It has 3 rows and is filtered where the book is Statistical analysis with Excel for dummies. It features 7 columns including author, publication date, language, and book publisher.

  3. e

    Data Analysis using MS-Excel

    • paper.erudition.co.in
    html
    Updated Jul 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Einetic (2025). Data Analysis using MS-Excel [Dataset]. https://paper.erudition.co.in/makaut/bachelor-in-business-administration-2020-2021/5/data-analytics-skills-for-managers
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Jul 3, 2025
    Dataset authored and provided by
    Einetic
    License

    https://paper.erudition.co.in/termshttps://paper.erudition.co.in/terms

    Description

    Question Paper Solutions of chapter Data Analysis using MS-Excel of Data Analytics Skills for Managers, 5th Semester , Bachelor in Business Administration 2020 - 2021

  4. m

    Raw data outputs 1-18

    • bridges.monash.edu
    • researchdata.edu.au
    xlsx
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abbas Salavaty Hosein Abadi; Sara Alaei; Mirana Ramialison; Peter Currie (2023). Raw data outputs 1-18 [Dataset]. http://doi.org/10.26180/21259491.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Monash University
    Authors
    Abbas Salavaty Hosein Abadi; Sara Alaei; Mirana Ramialison; Peter Currie
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Raw data outputs 1-18 Raw data output 1. Differentially expressed genes in AML CSCs compared with GTCs as well as in TCGA AML cancer samples compared with normal ones. This data was generated based on the results of AML microarray and TCGA data analysis. Raw data output 2. Commonly and uniquely differentially expressed genes in AML CSC/GTC microarray and TCGA bulk RNA-seq datasets. This data was generated based on the results of AML microarray and TCGA data analysis. Raw data output 3. Common differentially expressed genes between training and test set samples the microarray dataset. This data was generated based on the results of AML microarray data analysis. Raw data output 4. Detailed information on the samples of the breast cancer microarray dataset (GSE52327) used in this study. Raw data output 5. Differentially expressed genes in breast CSCs compared with GTCs as well as in TCGA BRCA cancer samples compared with normal ones. Raw data output 6. Commonly and uniquely differentially expressed genes in breast cancer CSC/GTC microarray and TCGA BRCA bulk RNA-seq datasets. This data was generated based on the results of breast cancer microarray and TCGA BRCA data analysis. CSC, and GTC are abbreviations of cancer stem cell, and general tumor cell, respectively. Raw data output 7. Differential and common co-expression and protein-protein interaction of genes between CSC and GTC samples. This data was generated based on the results of AML microarray and STRING database-based protein-protein interaction data analysis. CSC, and GTC are abbreviations of cancer stem cell, and general tumor cell, respectively. Raw data output 8. Differentially expressed genes between AML dormant and active CSCs. This data was generated based on the results of AML scRNA-seq data analysis. Raw data output 9. Uniquely expressed genes in dormant or active AML CSCs. This data was generated based on the results of AML scRNA-seq data analysis. Raw data output 10. Intersections between the targeting transcription factors of AML key CSC genes and differentially expressed genes between AML CSCs vs GTCs and between dormant and active AML CSCs or the uniquely expressed genes in either class of CSCs. Raw data output 11. Targeting desirableness score of AML key CSC genes and their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 12. CSC-specific targeting desirableness score of AML key CSC genes and their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 13. The protein-protein interactions between AML key CSC genes with themselves and their targeting transcription factors. This data was generated based on the results of AML microarray and STRING database-based protein-protein interaction data analysis. Raw data output 14. The previously confirmed associations of genes having the highest targeting desirableness and CSC-specific targeting desirableness scores with AML or other cancers’ (stem) cells as well as hematopoietic stem cells. These data were generated based on a PubMed database-based literature mining. Raw data output 15. Drug score of available drugs and bioactive small molecules targeting AML key CSC genes and/or their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 16. CSC-specific drug score of available drugs and bioactive small molecules targeting AML key CSC genes and/or their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 17. Candidate drugs for experimental validation. These drugs were selected based on their respective (CSC-specific) drug scores. CSC is the abbreviation of cancer stem cell. Raw data output 18. Detailed information on the samples of the AML microarray dataset GSE30375 used in this study.

  5. 18 excel spreadsheets by species and year giving reproduction and growth...

    • catalog.data.gov
    • data.wu.ac.at
    Updated Aug 17, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2024). 18 excel spreadsheets by species and year giving reproduction and growth data. One excel spreadsheet of herbicide treatment chemistry. [Dataset]. https://catalog.data.gov/dataset/18-excel-spreadsheets-by-species-and-year-giving-reproduction-and-growth-data-one-excel-sp
    Explore at:
    Dataset updated
    Aug 17, 2024
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    Excel spreadsheets by species (4 letter code is abbreviation for genus and species used in study, year 2010 or 2011 is year data collected, SH indicates data for Science Hub, date is date of file preparation). The data in a file are described in a read me file which is the first worksheet in each file. Each row in a species spreadsheet is for one plot (plant). The data themselves are in the data worksheet. One file includes a read me description of the column in the date set for chemical analysis. In this file one row is an herbicide treatment and sample for chemical analysis (if taken). This dataset is associated with the following publication: Olszyk , D., T. Pfleeger, T. Shiroyama, M. Blakely-Smith, E. Lee , and M. Plocher. Plant reproduction is altered by simulated herbicide drift toconstructed plant communities. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY. Society of Environmental Toxicology and Chemistry, Pensacola, FL, USA, 36(10): 2799-2813, (2017).

  6. m

    Multivariate statistical analyses of groundwater and surface water chemistry...

    • demo.dev.magda.io
    • researchdata.edu.au
    • +2more
    zip
    Updated Oct 8, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bioregional Assessment Program (2023). Multivariate statistical analyses of groundwater and surface water chemistry data for Isa GBA region [Dataset]. https://demo.dev.magda.io/dataset/ds-dga-34ca145f-a41b-4a4e-95d8-d9e5c54be2ef
    Explore at:
    zipAvailable download formats
    Dataset updated
    Oct 8, 2023
    Dataset provided by
    Bioregional Assessment Program
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Abstract This dataset is a combined Excel spreadsheet dataset that integrates all available groundwater and surface water chemistry historical records. It includes field quality parameters, methane …Show full descriptionAbstract This dataset is a combined Excel spreadsheet dataset that integrates all available groundwater and surface water chemistry historical records. It includes field quality parameters, methane concentrations and major and minor ion concentrations. It is based on the following data sources: GA compiled hydrochemistry datasets: Surface water data from the Queensland water monitoring information portal (https://water-monitoring.information.qld.gov.au/), accessed and downloaded in January 2019; Data from EHS Support (2014) Water baseline assessment (ATP1087) prepared for Armour Energy. Attribution Geological and Bioregional Assessment Program History A hierarchical cluster analysis was conducted on groundwater and surface water datasets from the Isa GBA region. For this purpose, nine variables (Ca, Mg, Na, K, HCO3, Cl, SO4, electrical conductivity and pH) which were measured across most hydrochemical records were selected. Prior to the multivariate statistical analysis, all variables except for pH were log-transformed to ensure that each variable more closely follows a normal distribution. The multivariate statistical technique is described in more details by Raiber et al. (2012) and Raiber et al. (2016).

  7. Ad-hoc statistical analysis: 2019/20 Quarter 1

    • gov.uk
    • s3.amazonaws.com
    Updated Aug 23, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department for Digital, Culture, Media & Sport (2022). Ad-hoc statistical analysis: 2019/20 Quarter 1 [Dataset]. https://www.gov.uk/government/statistical-data-sets/ad-hoc-statistical-analysis-201920-quarter-1
    Explore at:
    Dataset updated
    Aug 23, 2022
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Department for Digital, Culture, Media & Sport
    Description

    This page lists ad-hoc statistics released during the period April - June 2019. These are additional analyses not included in any of the Department for Digital, Culture, Media and Sport’s standard publications.

    If you would like any further information please contact evidence@culture.gov.uk.

    April 2019 - Engagement with cultural activities and mean wellbeing scores of adults (16+), 2017/18, England, Taking Part survey

    https://assets.publishing.service.gov.uk/media/5ff6f401e90e0763a6055356/Taking_Part_Survey_October_2017_to_September_2018_Provisional_tables_V2.xlsx">Engagement with cultural activities and mean wellbeing scores of adults (16+), 2017/18, England, Taking Part survey

    MS Excel Spreadsheet, 239 KB

    April 2019 - DCMS Sector Economic Estimates: Employment of UK residents in DCMS sectors where the workplace is outside the UK, 2017

    https://assets.publishing.service.gov.uk/media/5ff6f4018fa8f53b7881f3df/Overseas_employment_V2.xlsx">DCMS Sector Economic Estimates: Employment of UK residents in DCMS sectors where the workplace is outside the UK, 2017

    MS Excel Spreadsheet, 36.9 KB

  8. d

    Protected Areas Database of the United States (PAD-US) 3.0 Vector Analysis...

    • catalog.data.gov
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Protected Areas Database of the United States (PAD-US) 3.0 Vector Analysis and Summary Statistics [Dataset]. https://catalog.data.gov/dataset/protected-areas-database-of-the-united-states-pad-us-3-0-vector-analysis-and-summary-stati
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    United States
    Description

    Spatial analysis and statistical summaries of the Protected Areas Database of the United States (PAD-US) provide land managers and decision makers with a general assessment of management intent for biodiversity protection, natural resource management, and recreation access across the nation. The PAD-US 3.0 Combined Fee, Designation, Easement feature class (with Military Lands and Tribal Areas from the Proclamation and Other Planning Boundaries feature class) was modified to remove overlaps, avoiding overestimation in protected area statistics and to support user needs. A Python scripted process ("PADUS3_0_CreateVectorAnalysisFileScript.zip") associated with this data release prioritized overlapping designations (e.g. Wilderness within a National Forest) based upon their relative biodiversity conservation status (e.g. GAP Status Code 1 over 2), public access values (in the order of Closed, Restricted, Open, Unknown), and geodatabase load order (records are deliberately organized in the PAD-US full inventory with fee owned lands loaded before overlapping management designations, and easements). The Vector Analysis File ("PADUS3_0VectorAnalysisFile_ClipCensus.zip") associated item of PAD-US 3.0 Spatial Analysis and Statistics ( https://doi.org/10.5066/P9KLBB5D ) was clipped to the Census state boundary file to define the extent and serve as a common denominator for statistical summaries. Boundaries of interest to stakeholders (State, Department of the Interior Region, Congressional District, County, EcoRegions I-IV, Urban Areas, Landscape Conservation Cooperative) were incorporated into separate geodatabase feature classes to support various data summaries ("PADUS3_0VectorAnalysisFileOtherExtents_Clip_Census.zip") and Comma-separated Value (CSV) tables ("PADUS3_0SummaryStatistics_TabularData_CSV.zip") summarizing "PADUS3_0VectorAnalysisFileOtherExtents_Clip_Census.zip" are provided as an alternative format and enable users to explore and download summary statistics of interest (Comma-separated Table [CSV], Microsoft Excel Workbook [.XLSX], Portable Document Format [.PDF] Report) from the PAD-US Lands and Inland Water Statistics Dashboard ( https://www.usgs.gov/programs/gap-analysis-project/science/pad-us-statistics ). In addition, a "flattened" version of the PAD-US 3.0 combined file without other extent boundaries ("PADUS3_0VectorAnalysisFile_ClipCensus.zip") allow for other applications that require a representation of overall protection status without overlapping designation boundaries. The "PADUS3_0VectorAnalysis_State_Clip_CENSUS2020" feature class ("PADUS3_0VectorAnalysisFileOtherExtents_Clip_Census.gdb") is the source of the PAD-US 3.0 raster files (associated item of PAD-US 3.0 Spatial Analysis and Statistics, https://doi.org/10.5066/P9KLBB5D ). Note, the PAD-US inventory is now considered functionally complete with the vast majority of land protection types represented in some manner, while work continues to maintain updates and improve data quality (see inventory completeness estimates at: http://www.protectedlands.net/data-stewards/ ). In addition, changes in protected area status between versions of the PAD-US may be attributed to improving the completeness and accuracy of the spatial data more than actual management actions or new acquisitions. USGS provides no legal warranty for the use of this data. While PAD-US is the official aggregation of protected areas ( https://www.fgdc.gov/ngda-reports/NGDA_Datasets.html ), agencies are the best source of their lands data.

  9. Statistical grainsize distribution data

    • figshare.com
    xlsx
    Updated Oct 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David Tanner; Christian Brandes; Jutta Winsemann (2022). Statistical grainsize distribution data [Dataset]. http://doi.org/10.6084/m9.figshare.20764990.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Oct 12, 2022
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    David Tanner; Christian Brandes; Jutta Winsemann
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    An excel table with grainsize distribution data and statistics, in micrometres and phi. 13 samples. Data measured with laser diffraction.

  10. m

    Dataset of development of business during the COVID-19 crisis

    • data.mendeley.com
    • narcis.nl
    Updated Nov 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tatiana N. Litvinova (2020). Dataset of development of business during the COVID-19 crisis [Dataset]. http://doi.org/10.17632/9vvrd34f8t.1
    Explore at:
    Dataset updated
    Nov 9, 2020
    Authors
    Tatiana N. Litvinova
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    To create the dataset, the top 10 countries leading in the incidence of COVID-19 in the world were selected as of October 22, 2020 (on the eve of the second full of pandemics), which are presented in the Global 500 ranking for 2020: USA, India, Brazil, Russia, Spain, France and Mexico. For each of these countries, no more than 10 of the largest transnational corporations included in the Global 500 rating for 2020 and 2019 were selected separately. The arithmetic averages were calculated and the change (increase) in indicators such as profitability and profitability of enterprises, their ranking position (competitiveness), asset value and number of employees. The arithmetic mean values of these indicators for all countries of the sample were found, characterizing the situation in international entrepreneurship as a whole in the context of the COVID-19 crisis in 2020 on the eve of the second wave of the pandemic. The data is collected in a general Microsoft Excel table. Dataset is a unique database that combines COVID-19 statistics and entrepreneurship statistics. The dataset is flexible data that can be supplemented with data from other countries and newer statistics on the COVID-19 pandemic. Due to the fact that the data in the dataset are not ready-made numbers, but formulas, when adding and / or changing the values in the original table at the beginning of the dataset, most of the subsequent tables will be automatically recalculated and the graphs will be updated. This allows the dataset to be used not just as an array of data, but as an analytical tool for automating scientific research on the impact of the COVID-19 pandemic and crisis on international entrepreneurship. The dataset includes not only tabular data, but also charts that provide data visualization. The dataset contains not only actual, but also forecast data on morbidity and mortality from COVID-19 for the period of the second wave of the pandemic in 2020. The forecasts are presented in the form of a normal distribution of predicted values and the probability of their occurrence in practice. This allows for a broad scenario analysis of the impact of the COVID-19 pandemic and crisis on international entrepreneurship, substituting various predicted morbidity and mortality rates in risk assessment tables and obtaining automatically calculated consequences (changes) on the characteristics of international entrepreneurship. It is also possible to substitute the actual values identified in the process and following the results of the second wave of the pandemic to check the reliability of pre-made forecasts and conduct a plan-fact analysis. The dataset contains not only the numerical values of the initial and predicted values of the set of studied indicators, but also their qualitative interpretation, reflecting the presence and level of risks of a pandemic and COVID-19 crisis for international entrepreneurship.

  11. f

    Supplemental data

    • figshare.com
    xlsx
    Updated Mar 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    T Miyakoshi; Yoichi M. Ito (2024). Supplemental data [Dataset]. http://doi.org/10.6084/m9.figshare.24596058.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Mar 15, 2024
    Dataset provided by
    figshare
    Authors
    T Miyakoshi; Yoichi M. Ito
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The dataset for the article "The current utilization status of wearable devices in clinical research".Analyses were performed by utilizing the JMP Pro 16.10, Microsoft Excel for Mac version 16 (Microsoft).The file extension "jrp" is a file of the statistical analysis software JMP, which contains both the analysis code and the data set.In case JMP is not available, a "csv" file as a data set and JMP script, the analysis code, are prepared in "rtf" format.The "xlsx" file is a Microsoft Excel file that contains the data set and the data plotted or tabulated using Microsoft Excel functions.Supplementary Figure 1. NCT number duplication frequencyIncludes Excel file used to create the figure (Supplemental Figure 1).・Sfig1_NCT number duplication frequency.xlsxSupplementary Figure 2-5 Simple and annual time series aggregationIncludes Excel file, JMP repo file, csv dataset of JMP repo file and JMP scripts used to create the figure (Supplementary Figures 2-5).・Sfig2-5 Annual time series aggregation.xlsx・Sfig2 Study Type.jrp・Sfig4device type.jrp・Sfig3 Interventions Type.jrp・Sfig5Conditions type.jrp・Sfig2, 3 ,5_database.csv・Sfig2_JMP script_Study type.rtf・Sfig3_JMP script Interventions type.rtf・Sfig5_JMP script Conditions type.rtf・Sfig4_dataset.csv・Sfig4_JMP script_device type.rtfSupplementary Figures 6-11 Mosaic diagram of intervention by conditionSupplementary tables 4-9 Analysis of contingency table for intervention by condition JMP repot files used to create the figures(Supplementary Figures 6-11 ) and tables(Supplementary Tablea 4-9) , including the csv dataset of JMP repot files and JMP scripts.・Sfig6-11 Stable4-9 Intervention devicetype_conditions.jrp・Sfig6-11_Stable4-9_dataset.csv・Sfig6-11_Stable4-9_JMP script.rtfSupplementary Figure 12. Distribution of enrollmentIncludes Excel file, JMP repo file, csv dataset of JMP repo file and JMP scripts used to create the figure (Supplementary Figures 12).・Sfig12_Distribution of enrollment.jrp・Sfig12_Distribution of enrollment.csv・Sfig12_JMP script.rtf

  12. Ad-hoc statistical analysis: October 2019

    • gov.uk
    Updated Oct 28, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department for Digital, Culture, Media & Sport (2019). Ad-hoc statistical analysis: October 2019 [Dataset]. https://www.gov.uk/government/statistical-data-sets/ad-hoc-statistical-analysis-october-2019
    Explore at:
    Dataset updated
    Oct 28, 2019
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Department for Digital, Culture, Media & Sport
    Description

    This page lists ad-hoc statistics released October 2019. These are additional analyses not included in any of the Department for Digital, Culture, Media and Sport’s standard publications.

    If you would like any further information please contact evidence@culture.gov.uk.

    October 2019 - Percentage of adults (16+) who have engaged with, or participated in, arts or cultural activity at least three times in the last year (2018/19)

    https://assets.publishing.service.gov.uk/media/600ea5a88fa8f5654da17c00/Percentage_adults_engaged_culture_3_or_more_V2.xlsx">Percentage of adults (16+) who have engaged with, or participated in, arts or cultural activity at least three times in the last year (2018/19)

    MS Excel Spreadsheet, 50.8 KB

    October 2019 - Percentage of adults (16+), youths (11-15) and children (5-10) who have participated in the historic environment in England, 2005/06 to 2018/19

    https://assets.publishing.service.gov.uk/media/600ea5b5d3bf7f05c527c0c7/Taking_Part_-_Indicator_Data_2019_DCMS_V2.xlsx">Percentage of adults (16+), youths (11-15) and children (5-10) who have participated in the historic environment in England, 2005/06 to 2018/19

    MS Excel Spreadsheet, 71.4 KB

  13. Ad-hoc statistical analysis: 2018/19 Quarter 4

    • gov.uk
    Updated Mar 1, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department for Digital, Culture, Media & Sport (2019). Ad-hoc statistical analysis: 2018/19 Quarter 4 [Dataset]. https://www.gov.uk/government/statistical-data-sets/ad-hoc-statistical-analysis-201819-quarter-4
    Explore at:
    Dataset updated
    Mar 1, 2019
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Department for Digital, Culture, Media & Sport
    Description

    This page lists ad-hoc statistics released during the period January - March 2019. These are additional analyses not included in any of the Department for Digital, Culture, Media and Sport’s standard publications.

    If you would like any further information please contact evidence@culture.gov.uk.

    February 2019 - Adult (aged 16+) participation and engagement in the arts, heritage, libraries, museums and galleries and volunteering for the South West region and Swindon Local Authority, 2009/10 - 2017/18, England, Taking Part survey

    https://assets.publishing.service.gov.uk/media/5ff449338fa8f53b74173839/Adult_sector_headline_figures_for_Swindon_and_the_South_West_region_England_2009-2018_Taking_Part_Survey_V2.xlsx">Adult (aged 16+) engagement for the South West region and Swindon Local Authority, 2009/10 - 2017/18, England

    MS Excel Spreadsheet, 51.5 KB

    February 2019 - Child (aged 5-15) participation and engagement in the arts, heritage, libraries, and museums and galleries by region, 2014/15 - 2017/18, England, Taking Part survey

  14. f

    Descriptive statistics and reliability tests.

    • plos.figshare.com
    xls
    Updated Jan 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Charanjit Kaur; Pei P. Tan; Nurjannah Nurjannah; Ririn Yuniasih (2025). Descriptive statistics and reliability tests. [Dataset]. http://doi.org/10.1371/journal.pone.0312306.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jan 3, 2025
    Dataset provided by
    PLOS ONE
    Authors
    Charanjit Kaur; Pei P. Tan; Nurjannah Nurjannah; Ririn Yuniasih
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data is becoming increasingly ubiquitous today, and data literacy has emerged an essential skill in the workplace. Therefore, it is necessary to equip high school students with data literacy skills in order to prepare them for further learning and future employment. In Indonesia, there is a growing shift towards integrating data literacy in the high school curriculum. As part of a pilot intervention project, academics from two leading Universities organised data literacy boot camps for high school students across various cities in Indonesia. The boot camps aimed at increasing participants’ awareness of the power of analytical and exploration skills, which in turn, would contribute to creating independent and data-literate students. This paper explores student participants’ self-perception of their data literacy as a result of the skills acquired from the boot camps. Qualitative and quantitative data were collected through student surveys and a focus group discussion, and were used to analyse student perception post-intervention. The findings indicate that students became more aware of the usefulness of data literacy and its application in future studies and work after participating in the boot camp. Of the materials delivered at the boot camps, students found the greatest benefit in learning basic statistical concepts and applying them through the use of Microsoft Excel as a tool for basic data analysis. These findings provide valuable policy recommendations that educators and policymakers can use as guidelines for effective data literacy teaching in high schools.

  15. Ad-hoc statistical analysis: 2017/18 Quarter 3

    • gov.uk
    Updated Nov 29, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department for Digital, Culture, Media & Sport (2017). Ad-hoc statistical analysis: 2017/18 Quarter 3 [Dataset]. https://www.gov.uk/government/statistical-data-sets/ad-hoc-statistical-analysis-201718-quarter-3
    Explore at:
    Dataset updated
    Nov 29, 2017
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Department for Digital, Culture, Media & Sport
    Description

    This page lists ad-hoc statistics released during the period October - December 2017. These are additional analyses not included in any of the Department for Digital, Culture, Media and Sport’s standard publications.

    If you would like any further information please contact evidence@culture.gov.uk.

    October 2017 - Adult (16+) participation in selected free time activities, by age group, 2015/16

    https://assets.publishing.service.gov.uk/media/5a75030c40f0b6399b2aff5b/Free_time_table_final.xlsx">Taking Part - Adult (16+) participation in selected free time activities, by age group, 2015/16

     <p class="gem-c-attachment_metadata"><span class="gem-c-attachment_attribute">MS Excel Spreadsheet</span>, <span class="gem-c-attachment_attribute">46.3 KB</span></p>
    
    
    
    
     <p class="gem-c-attachment_metadata">This file may not be suitable for users of assistive technology.</p>
     <details data-module="ga4-event-tracker" data-ga4-event='{"event_name":"select_content","type":"detail","text":"Request an accessible format.","section":"Request an accessible format.","index_section":1}' class="gem-c-details govuk-details govuk-!-margin-bottom-0" title="Request an accessible format.">
    

    Request an accessible format.

      If you use assistive technology (such as a screen reader) and need a version of this document in a more accessible format, please email <a href="mailto:enquiries@dcms.gov.uk" target="_blank" class="govuk-link">enquiries@dcms.gov.uk</a>. Please tell us what format you need. It will help us if you say what assistive technology you use.
    

    November 2017 - Adult (16+) engagement with the arts 3 or more times in the last 12 months, by socio-economic group and region, 2016/17

    https://assets.publishing.service.gov.uk/media/5a74973bed915d0e8bf198ad/Arts_3_engagement_table_revised.xlsx">Arts engagement 3+ times in the last year, 2016/17

     <p class="gem-c-attachment_metadata"><span class="gem-c-attachment_attribute">MS Excel Spreadsheet</span>, <span class="gem-c-attachment_attribute">46.6 KB</span></p>
    
    
    
    
     <p class=
    
  16. E

    Data from: Facebook Data for Sentiment Analysis

    • live.european-language-grid.eu
    • lindat.mff.cuni.cz
    • +1more
    binary format
    Updated Jul 16, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2013). Facebook Data for Sentiment Analysis [Dataset]. https://live.european-language-grid.eu/catalogue/corpus/1057
    Explore at:
    binary formatAvailable download formats
    Dataset updated
    Jul 16, 2013
    License

    Attribution-ShareAlike 3.0 (CC BY-SA 3.0)https://creativecommons.org/licenses/by-sa/3.0/
    License information was derived automatically

    Description

    Corpus consisting of 10,000 Facebook posts manually annotated on sentiment (2,587 positive, 5,174 neutral, 1,991 negative and 248 bipolar posts). The archive contains data and statistics in an Excel file (FBData.xlsx) and gold data in two text files with posts (gold-posts.txt) and labels (gols-labels.txt) on corresponding lines.

  17. T

    Statistical Analysis Files

    • dataverse.tdl.org
    bin, xls, xlsx
    Updated Mar 4, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Logan Trujillo; Logan Trujillo (2021). Statistical Analysis Files [Dataset]. http://doi.org/10.18738/T8/K9WAH9
    Explore at:
    bin(22742), xlsx(61952), bin(22748), bin(32494), bin(22743), bin(32474), bin(22634), bin(16488), xlsx(108032), bin(32749), xls(359424), bin(32574), bin(22834), bin(32528), bin(32671), bin(22746), bin(22643), xlsx(73728), bin(22665), bin(22712), bin(22803), bin(22761), bin(32692), bin(22647), bin(22633)Available download formats
    Dataset updated
    Mar 4, 2021
    Dataset provided by
    Texas Data Repository
    Authors
    Logan Trujillo; Logan Trujillo
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Statistical analysis files, including summary data/stats in Excel spreadsheet format and SPSS 20 output files.

  18. Hospital Excel Dataset

    • kaggle.com
    Updated Apr 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Omolola Labiyi (2025). Hospital Excel Dataset [Dataset]. https://www.kaggle.com/datasets/t0ut0u/hospital-excel-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 17, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Omolola Labiyi
    License

    https://cdla.io/sharing-1-0/https://cdla.io/sharing-1-0/

    Description

    📌 Project Overview This project analyzes hospital admissions, patient stays, and cost trends using Excel. The dataset contains information on patient demographics, hospital names, insurance providers, and treatment costs. Key insights were derived using PivotTables, charts, and formulas.

    📊 Key Insights & Visualizations ✅ Top Hospitals by Admissions → Bar Chart ✅ Insurance Provider with Most Patients → Pie Chart ✅ Cost per Day Trends → Line Chart ✅ Average Length of Stay per Hospital → Bar Chart

    🛠 Excel Analysis Techniques Used PivotTables for summarizing patient data

    Conditional Formatting to highlight cost trends

    Bar, Pie, and Line Charts for visualization

    Statistical Analysis (Average length of stay, cost trends)

    📂 Files Included 📌 hospital_analysis.xlsx – The full Excel analysis file 📌 hospital_summary.pdf – Summary of key findings

    Healthcare #HospitalData #ExcelAnalysis #DataVisualization #PivotTables #DataCleaning #MedicalAnalytics #PatientTrends #CostAnalysis #AdmissionsAnalysis #InsuranceData #DataAnalysis #ExcelDashboards #HealthTech

  19. Excel projects

    • kaggle.com
    Updated Jul 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    BTaffetani (2024). Excel projects [Dataset]. https://www.kaggle.com/datasets/btaffetani/excel-projects
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 23, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    BTaffetani
    Description

    This is a collection of statistical projects where I used Microsoft Excel. The definition of each project was given by ProfessionAI, while the statistical analysis part was done by me. More specifically: - customer_complaints_assignment is an example of Introduction to Data Analytics where, given a dataset with complaints of customers of financial companies, tasks about filtering, counting and basic analytics were done; - trades_on_exchanges is a project for Advanced Data Analytics where statistical analysis about trading operations where done; - progetto_finale_inferenza is a project about Statistica Inference where, from a toy dataset about the population of a city, inference analysis was made.

  20. Group 7 Codebook

    • figshare.com
    xlsx
    Updated Aug 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ashleigh Prince (2023). Group 7 Codebook [Dataset]. http://doi.org/10.6084/m9.figshare.24011103.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Aug 22, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Ashleigh Prince
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The attached Excel spreadsheet is a codebook for our quantitative data analysis.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Alejandro Quintela-del-Río; Mario Francisco-Fernández (2023). Excel Templates: A Helpful Tool for Teaching Statistics [Dataset]. http://doi.org/10.6084/m9.figshare.3408052.v2

Data from: Excel Templates: A Helpful Tool for Teaching Statistics

Related Article
Explore at:
zipAvailable download formats
Dataset updated
May 30, 2023
Dataset provided by
Taylor & Francis
Authors
Alejandro Quintela-del-Río; Mario Francisco-Fernández
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

This article describes a free, open-source collection of templates for the popular Excel (2013, and later versions) spreadsheet program. These templates are spreadsheet files that allow easy and intuitive learning and the implementation of practical examples concerning descriptive statistics, random variables, confidence intervals, and hypothesis testing. Although they are designed to be used with Excel, they can also be employed with other free spreadsheet programs (changing some particular formulas). Moreover, we exploit some possibilities of the ActiveX controls of the Excel Developer Menu to perform interactive Gaussian density charts. Finally, it is important to note that they can be often embedded in a web page, so it is not necessary to employ Excel software for their use. These templates have been designed as a useful tool to teach basic statistics and to carry out data analysis even when the students are not familiar with Excel. Additionally, they can be used as a complement to other analytical software packages. They aim to assist students in learning statistics, within an intuitive working environment. Supplementary materials with the Excel templates are available online.

Search
Clear search
Close search
Google apps
Main menu