100+ datasets found
  1. m

    Dataset of development of business during the COVID-19 crisis

    • data.mendeley.com
    • narcis.nl
    Updated Nov 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tatiana N. Litvinova (2020). Dataset of development of business during the COVID-19 crisis [Dataset]. http://doi.org/10.17632/9vvrd34f8t.1
    Explore at:
    Dataset updated
    Nov 9, 2020
    Authors
    Tatiana N. Litvinova
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    To create the dataset, the top 10 countries leading in the incidence of COVID-19 in the world were selected as of October 22, 2020 (on the eve of the second full of pandemics), which are presented in the Global 500 ranking for 2020: USA, India, Brazil, Russia, Spain, France and Mexico. For each of these countries, no more than 10 of the largest transnational corporations included in the Global 500 rating for 2020 and 2019 were selected separately. The arithmetic averages were calculated and the change (increase) in indicators such as profitability and profitability of enterprises, their ranking position (competitiveness), asset value and number of employees. The arithmetic mean values of these indicators for all countries of the sample were found, characterizing the situation in international entrepreneurship as a whole in the context of the COVID-19 crisis in 2020 on the eve of the second wave of the pandemic. The data is collected in a general Microsoft Excel table. Dataset is a unique database that combines COVID-19 statistics and entrepreneurship statistics. The dataset is flexible data that can be supplemented with data from other countries and newer statistics on the COVID-19 pandemic. Due to the fact that the data in the dataset are not ready-made numbers, but formulas, when adding and / or changing the values in the original table at the beginning of the dataset, most of the subsequent tables will be automatically recalculated and the graphs will be updated. This allows the dataset to be used not just as an array of data, but as an analytical tool for automating scientific research on the impact of the COVID-19 pandemic and crisis on international entrepreneurship. The dataset includes not only tabular data, but also charts that provide data visualization. The dataset contains not only actual, but also forecast data on morbidity and mortality from COVID-19 for the period of the second wave of the pandemic in 2020. The forecasts are presented in the form of a normal distribution of predicted values and the probability of their occurrence in practice. This allows for a broad scenario analysis of the impact of the COVID-19 pandemic and crisis on international entrepreneurship, substituting various predicted morbidity and mortality rates in risk assessment tables and obtaining automatically calculated consequences (changes) on the characteristics of international entrepreneurship. It is also possible to substitute the actual values identified in the process and following the results of the second wave of the pandemic to check the reliability of pre-made forecasts and conduct a plan-fact analysis. The dataset contains not only the numerical values of the initial and predicted values of the set of studied indicators, but also their qualitative interpretation, reflecting the presence and level of risks of a pandemic and COVID-19 crisis for international entrepreneurship.

  2. i

    Demographic and Health Survey 1998 - Ghana

    • catalog.ihsn.org
    • datacatalog.ihsn.org
    • +2more
    Updated Jul 6, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ghana Statistical Service (GSS) (2017). Demographic and Health Survey 1998 - Ghana [Dataset]. https://catalog.ihsn.org/catalog/50
    Explore at:
    Dataset updated
    Jul 6, 2017
    Dataset authored and provided by
    Ghana Statistical Service (GSS)
    Time period covered
    1998 - 1999
    Area covered
    Ghana
    Description

    Abstract

    The 1998 Ghana Demographic and Health Survey (GDHS) is the latest in a series of national-level population and health surveys conducted in Ghana and it is part of the worldwide MEASURE DHS+ Project, designed to collect data on fertility, family planning, and maternal and child health.

    The primary objective of the 1998 GDHS is to provide current and reliable data on fertility and family planning behaviour, child mortality, children’s nutritional status, and the utilisation of maternal and child health services in Ghana. Additional data on knowledge of HIV/AIDS are also provided. This information is essential for informed policy decisions, planning and monitoring and evaluation of programmes at both the national and local government levels.

    The long-term objectives of the survey include strengthening the technical capacity of the Ghana Statistical Service (GSS) to plan, conduct, process, and analyse the results of complex national sample surveys. Moreover, the 1998 GDHS provides comparable data for long-term trend analyses within Ghana, since it is the third in a series of demographic and health surveys implemented by the same organisation, using similar data collection procedures. The GDHS also contributes to the ever-growing international database on demographic and health-related variables.

    Geographic coverage

    National

    Analysis unit

    • Household
    • Children under five years
    • Women age 15-49
    • Men age 15-59

    Kind of data

    Sample survey data

    Sampling procedure

    The major focus of the 1998 GDHS was to provide updated estimates of important population and health indicators including fertility and mortality rates for the country as a whole and for urban and rural areas separately. In addition, the sample was designed to provide estimates of key variables for the ten regions in the country.

    The list of Enumeration Areas (EAs) with population and household information from the 1984 Population Census was used as the sampling frame for the survey. The 1998 GDHS is based on a two-stage stratified nationally representative sample of households. At the first stage of sampling, 400 EAs were selected using systematic sampling with probability proportional to size (PPS-Method). The selected EAs comprised 138 in the urban areas and 262 in the rural areas. A complete household listing operation was then carried out in all the selected EAs to provide a sampling frame for the second stage selection of households. At the second stage of sampling, a systematic sample of 15 households per EA was selected in all regions, except in the Northern, Upper West and Upper East Regions. In order to obtain adequate numbers of households to provide reliable estimates of key demographic and health variables in these three regions, the number of households in each selected EA in the Northern, Upper West and Upper East regions was increased to 20. The sample was weighted to adjust for over sampling in the three northern regions (Northern, Upper East and Upper West), in relation to the other regions. Sample weights were used to compensate for the unequal probability of selection between geographically defined strata.

    The survey was designed to obtain completed interviews of 4,500 women age 15-49. In addition, all males age 15-59 in every third selected household were interviewed, to obtain a target of 1,500 men. In order to take cognisance of non-response, a total of 6,375 households nation-wide were selected.

    Note: See detailed description of sample design in APPENDIX A of the survey report.

    Mode of data collection

    Face-to-face

    Research instrument

    Three types of questionnaires were used in the GDHS: the Household Questionnaire, the Women’s Questionnaire, and the Men’s Questionnaire. These questionnaires were based on model survey instruments developed for the international MEASURE DHS+ programme and were designed to provide information needed by health and family planning programme managers and policy makers. The questionnaires were adapted to the situation in Ghana and a number of questions pertaining to on-going health and family planning programmes were added. These questionnaires were developed in English and translated into five major local languages (Akan, Ga, Ewe, Hausa, and Dagbani).

    The Household Questionnaire was used to enumerate all usual members and visitors in a selected household and to collect information on the socio-economic status of the household. The first part of the Household Questionnaire collected information on the relationship to the household head, residence, sex, age, marital status, and education of each usual resident or visitor. This information was used to identify women and men who were eligible for the individual interview. For this purpose, all women age 15-49, and all men age 15-59 in every third household, whether usual residents of a selected household or visitors who slept in a selected household the night before the interview, were deemed eligible and interviewed. The Household Questionnaire also provides basic demographic data for Ghanaian households. The second part of the Household Questionnaire contained questions on the dwelling unit, such as the number of rooms, the flooring material, the source of water and the type of toilet facilities, and on the ownership of a variety of consumer goods.

    The Women’s Questionnaire was used to collect information on the following topics: respondent’s background characteristics, reproductive history, contraceptive knowledge and use, antenatal, delivery and postnatal care, infant feeding practices, child immunisation and health, marriage, fertility preferences and attitudes about family planning, husband’s background characteristics, women’s work, knowledge of HIV/AIDS and STDs, as well as anthropometric measurements of children and mothers.

    The Men’s Questionnaire collected information on respondent’s background characteristics, reproduction, contraceptive knowledge and use, marriage, fertility preferences and attitudes about family planning, as well as knowledge of HIV/AIDS and STDs.

    Response rate

    A total of 6,375 households were selected for the GDHS sample. Of these, 6,055 were occupied. Interviews were completed for 6,003 households, which represent 99 percent of the occupied households. A total of 4,970 eligible women from these households and 1,596 eligible men from every third household were identified for the individual interviews. Interviews were successfully completed for 4,843 women or 97 percent and 1,546 men or 97 percent. The principal reason for nonresponse among individual women and men was the failure of interviewers to find them at home despite repeated callbacks.

    Note: See summarized response rates by place of residence in Table 1.1 of the survey report.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors, and (2) sampling errors. Nonsampling errors are the results of shortfalls made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 1998 GDHS to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 1998 GDHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 1998 GDHS sample is the result of a two-stage stratified design, and, consequently, it was necessary to use more complex formulae. The computer software used to calculate sampling errors for the 1998 GDHS is the ISSA Sampling Error Module. This module uses the Taylor linearization method of variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.

    Data appraisal

    Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months

    Note: See detailed tables in APPENDIX C of the survey report.

  3. i

    Household Expenditure and Income Survey 2010, Economic Research Forum (ERF)...

    • catalog.ihsn.org
    • datacatalog.ihsn.org
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Hashemite Kingdom of Jordan Department of Statistics (DOS) (2019). Household Expenditure and Income Survey 2010, Economic Research Forum (ERF) Harmonization Data - Jordan [Dataset]. https://catalog.ihsn.org/index.php/catalog/7662
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    The Hashemite Kingdom of Jordan Department of Statistics (DOS)
    Time period covered
    2010 - 2011
    Area covered
    Jordan
    Description

    Abstract

    The main objective of the HEIS survey is to obtain detailed data on household expenditure and income, linked to various demographic and socio-economic variables, to enable computation of poverty indices and determine the characteristics of the poor and prepare poverty maps. Therefore, to achieve these goals, the sample had to be representative on the sub-district level. The raw survey data provided by the Statistical Office was cleaned and harmonized by the Economic Research Forum, in the context of a major research project to develop and expand knowledge on equity and inequality in the Arab region. The main focus of the project is to measure the magnitude and direction of change in inequality and to understand the complex contributing social, political and economic forces influencing its levels. However, the measurement and analysis of the magnitude and direction of change in this inequality cannot be consistently carried out without harmonized and comparable micro-level data on income and expenditures. Therefore, one important component of this research project is securing and harmonizing household surveys from as many countries in the region as possible, adhering to international statistics on household living standards distribution. Once the dataset has been compiled, the Economic Research Forum makes it available, subject to confidentiality agreements, to all researchers and institutions concerned with data collection and issues of inequality.

    Data collected through the survey helped in achieving the following objectives: 1. Provide data weights that reflect the relative importance of consumer expenditure items used in the preparation of the consumer price index 2. Study the consumer expenditure pattern prevailing in the society and the impact of demographic and socio-economic variables on those patterns 3. Calculate the average annual income of the household and the individual, and assess the relationship between income and different economic and social factors, such as profession and educational level of the head of the household and other indicators 4. Study the distribution of individuals and households by income and expenditure categories and analyze the factors associated with it 5. Provide the necessary data for the national accounts related to overall consumption and income of the household sector 6. Provide the necessary income data to serve in calculating poverty indices and identifying the poor characteristics as well as drawing poverty maps 7. Provide the data necessary for the formulation, follow-up and evaluation of economic and social development programs, including those addressed to eradicate poverty

    Geographic coverage

    National

    Analysis unit

    • Households
    • Individuals

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The Household Expenditure and Income survey sample for 2010, was designed to serve the basic objectives of the survey through providing a relatively large sample in each sub-district to enable drawing a poverty map in Jordan. The General Census of Population and Housing in 2004 provided a detailed framework for housing and households for different administrative levels in the country. Jordan is administratively divided into 12 governorates, each governorate is composed of a number of districts, each district (Liwa) includes one or more sub-district (Qada). In each sub-district, there are a number of communities (cities and villages). Each community was divided into a number of blocks. Where in each block, the number of houses ranged between 60 and 100 houses. Nomads, persons living in collective dwellings such as hotels, hospitals and prison were excluded from the survey framework.

    A two stage stratified cluster sampling technique was used. In the first stage, a cluster sample proportional to the size was uniformly selected, where the number of households in each cluster was considered the weight of the cluster. At the second stage, a sample of 8 households was selected from each cluster, in addition to another 4 households selected as a backup for the basic sample, using a systematic sampling technique. Those 4 households were sampled to be used during the first visit to the block in case the visit to the original household selected is not possible for any reason. For the purposes of this survey, each sub-district was considered a separate stratum to ensure the possibility of producing results on the sub-district level. In this respect, the survey framework adopted that provided by the General Census of Population and Housing Census in dividing the sample strata. To estimate the sample size, the coefficient of variation and the design effect of the expenditure variable provided in the Household Expenditure and Income Survey for the year 2008 was calculated for each sub-district. These results were used to estimate the sample size on the sub-district level so that the coefficient of variation for the expenditure variable in each sub-district is less than 10%, at a minimum, of the number of clusters in the same sub-district (6 clusters). This is to ensure adequate presentation of clusters in different administrative areas to enable drawing an indicative poverty map.

    It should be noted that in addition to the standard non response rate assumed, higher rates were expected in areas where poor households are concentrated in major cities. Therefore, those were taken into consideration during the sampling design phase, and a higher number of households were selected from those areas, aiming at well covering all regions where poverty spreads.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    • General form
    • Expenditure on food commodities form
    • Expenditure on non-food commodities form

    Cleaning operations

    Raw Data: - Organizing forms/questionnaires: A compatible archive system was used to classify the forms according to different rounds throughout the year. A registry was prepared to indicate different stages of the process of data checking, coding and entry till forms were back to the archive system. - Data office checking: This phase was achieved concurrently with the data collection phase in the field where questionnaires completed in the field were immediately sent to data office checking phase. - Data coding: A team was trained to work on the data coding phase, which in this survey is only limited to education specialization, profession and economic activity. In this respect, international classifications were used, while for the rest of the questions, coding was predefined during the design phase. - Data entry/validation: A team consisting of system analysts, programmers and data entry personnel were working on the data at this stage. System analysts and programmers started by identifying the survey framework and questionnaire fields to help build computerized data entry forms. A set of validation rules were added to the entry form to ensure accuracy of data entered. A team was then trained to complete the data entry process. Forms prepared for data entry were provided by the archive department to ensure forms are correctly extracted and put back in the archive system. A data validation process was run on the data to ensure the data entered is free of errors. - Results tabulation and dissemination: After the completion of all data processing operations, ORACLE was used to tabulate the survey final results. Those results were further checked using similar outputs from SPSS to ensure that tabulations produced were correct. A check was also run on each table to guarantee consistency of figures presented, together with required editing for tables' titles and report formatting.

    Harmonized Data: - The Statistical Package for Social Science (SPSS) was used to clean and harmonize the datasets. - The harmonization process started with cleaning all raw data files received from the Statistical Office. - Cleaned data files were then merged to produce one data file on the individual level containing all variables subject to harmonization. - A country-specific program was generated for each dataset to generate/compute/recode/rename/format/label harmonized variables. - A post-harmonization cleaning process was run on the data. - Harmonized data was saved on the household as well as the individual level, in SPSS and converted to STATA format.

  4. c

    Synthetic Unit and Area Level EU-Survey of Income and Living Conditions...

    • datacatalogue.cessda.eu
    • beta.ukdataservice.ac.uk
    Updated Mar 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tzavidis, N (2025). Synthetic Unit and Area Level EU-Survey of Income and Living Conditions Sample and Population Data, 2016-2019 [Dataset]. http://doi.org/10.5255/UKDA-SN-854788
    Explore at:
    Dataset updated
    Mar 25, 2025
    Dataset provided by
    University of Southampton
    Authors
    Tzavidis, N
    Time period covered
    Jan 1, 2016 - Mar 31, 2019
    Area covered
    Austria
    Variables measured
    Household
    Measurement technique
    The data are synthetically generated unit and area (district) level population and sample data. The use of synthetic data is for preventing disclosure issues with the real datasets. No survey or interviews are used in this case. Instead, data have been generated by repeated (Monte-Carlo) sampling of real EU-SILC (Survey of Income and Living Conditions) data in Austria to create a synthetic population of Austria. A sample is then selected from the population by using stratified simple random sampling within the Austrian districts.
    Description

    These are synthetically generated unit and area level population and sample data that can be used for testing model-based unit-level small area methods. To prevent disclosure issues the datasets have been generated by repeated (Monte-Carlo) sampling of real EU-SILC (Survey of Income and Living Conditions) data in Austria. The data include geographical identifies and can be used for fitting unit-level (Battese-Harter and Fuller type) models and area level models (Fay-Herriott- type) models. The datasets are part of the R package emdi. Examples of the use of the data can be found in the emdi manual available via https://cran.r-project.org/web/packages/emdi/emdi.pdf and in Kreutzmann et al. (2019)

    Kreutzmann, A. K., Pannier, S., Rojas-Perilla, N., Schmid, T., Templ, M., & Tzavidis, N. (2019). The R package emdi for the estimation and mapping of regional disaggregated indicators. Journal of Statistical Software, 91(7). https://doi.org/10.18637/jss.v091.i07

    Reliable statistics are crucial for policy relevant research. Small Area Estimation (SAE) methods generate robust reliable and consistent statistics at geographical scales for which survey data are either non-existent or too sparse to provide direct estimates of acceptable accuracy. The last decade has seen a rapid increase in the use of SAE. Statistical agencies and Governmental organisations are actively developing their own suites of estimates. In the UK the Office for National Statistics (ONS) has responded to user demands by producing estimates of average household income for wards and using SAE to answer queries from local authorities, policy advisers and government departments. The Welsh Assembly Government (WAG) is actively seeking to develop capacity for SAE. Public Health England produces SAEs of adolescent smoking and chronic kidney disease. Initial demands for small area statistics are now shifting to requirements for more complex statistics that extend beyond averages and proportions to encompass estimates of statistical distributions, multidimensional indicators (e.g. inequality and deprivation indicators) and methods for replacing the Census and adjusting Census results for undercount. These developing requirements pose significant methodological and applied real-world challenges. These challenges are deepened by different methodological approaches to SAE remaining largely unconnected, locked in disciplinary silos. The technical presentation of SAE also impedes more widespread uptake by social scientists and understanding by users. The proposed programme of work aims to (a) develop novel SAE methodologies to better serve the needs of users and producers of SAE (b) bridge different methodological approaches to SAE, (c) apply SAE for answering substantive questions in the social sciences and (d) 'Mainstream' SAE within the quantitative social sciences through the creation of methodologically comprehensive and accessible resources. The project comprises three work packages of methodological innovative research designed to deepen the understanding of SAE and achieve the aforementioned aims. The project will capitalise on a cross-disciplinary research team drawn together through an NCRM methodological network and reflecting a large part of the SAE expertise in the UK. Through long-standing collaborations with national and international agencies in the UK, Mexico and Brazil, which are placed at the centre of the project, we enjoy access to individual level secondary survey and Census data. Collaboration with key SAE users will ensure that the project remains relevant to user needs and that methodologies are used for expanding the set of small area statistics currently available. The involvement of international experts ensures the quality and relevance of the research. Substantive outputs will include SAEs of attributes of interest to users, including income, inequality, deprivation, health, ethnicity and a realistic pseudo-Census dataset for use by other researchers. The project will advance knowledge across disciplines in the social sciences including social statistics, applied economics, human geography and sociology. It will additionally impact on the production of official and Census statistics. The project is committed to adding value to NCRM's training and capacity building activities by developing new resources.

  5. Market survey 2019 rawdata

    • figshare.com
    txt
    Updated May 17, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Markus Niederer (2019). Market survey 2019 rawdata [Dataset]. http://doi.org/10.6084/m9.figshare.8143031.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    May 17, 2019
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Markus Niederer
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Raw data and descriptive statistic data of the market survey performed with the Add-In XLSTAT 2009.1.02 is provided as Excel-file (CSV). The data include file name, sample name, area, calculated N2O amounts, test result and statistical values.

  6. c

    Smart Energy Research Lab: Statistical Data, 2020-2023: Safeguarded Access

    • datacatalogue.cessda.eu
    Updated Nov 29, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Elam, S.; Few, J.; McKenna, E.; Hanmer, C.; Pullinger, M.; Zapata-Webborn, E.; Oreszczyn, T.; Anderson, B.; Department for Levelling Up; European Centre for Medium-Range Weather Forecasts; Royal Mail Group Limited (2024). Smart Energy Research Lab: Statistical Data, 2020-2023: Safeguarded Access [Dataset]. http://doi.org/10.5255/UKDA-SN-8963-2
    Explore at:
    Dataset updated
    Nov 29, 2024
    Dataset provided by
    UCL
    University of Southampton
    Housing and Communities
    Authors
    Elam, S.; Few, J.; McKenna, E.; Hanmer, C.; Pullinger, M.; Zapata-Webborn, E.; Oreszczyn, T.; Anderson, B.; Department for Levelling Up; European Centre for Medium-Range Weather Forecasts; Royal Mail Group Limited
    Time period covered
    Aug 1, 2019 - Dec 31, 2023
    Area covered
    Great Britain
    Variables measured
    Families/households, National
    Measurement technique
    Physical measurements and tests, Self-administered questionnaire
    Description

    Abstract copyright UK Data Service and data collection copyright owner.


    The Smart Energy Research Lab (SERL) Observatory facilitates a broad range of energy demand research and is a unique data resource for research where access to high resolution, large scale energy data linked to relevant contextual data is required. Further information about SERL can be found on the Smart Energy Research Lab website.

    This dataset of aggregated statistics is available under standard Safeguarded (End User Licence) access conditions. It contains over 2.5 million rows of data and describes domestic gas and electricity energy use in Great Britain 2020-2023 based on data from the Smart Energy Research Lab (SERL) Observatory, which consists of smart meter and contextual data from approximately 13,000 homes that are broadly representative of the GB population in terms of region and Index of Multiple Deprivation (IMD) quintile. This aggregated dataset can be used, for example, to show how residential energy use in GB varies over time (monthly over the year and half-hourly over the course of the day); and can be broken down by occupant characteristics (number of occupants, tenure), property characteristics (age, size, form, and Energy Performance Certificate (EPC)), by type of heating system, presence of solar panels and of electric vehicles, and by weather, region and IMD quintile.

    Secure Access data
    A more detailed set of SERL data, including smart meter data and additional contextual data, is available under restricted Secure access conditions under SN 8666: Smart Energy Research Lab Observatory Data: Secure Access. It is a longitudinal dataset containing records from August 2019, with updates provided to researchers on a (roughly) quarterly basis. Users should download this safeguarded access statistical study first to see whether it is suitable for their needs before considering an application for the Secure dataset.

    The second edition (May 2024) includes summaries of daily average energy use in a data file for 2020-2023, and summaries of half-hourly average energy use in four data files for 2020-2023, as well as an accompanying technical document.


    Main Topics:

    Energy (electricity and gas) consumption in households across Great Britain.

  7. Household Survey on Information and Communications Technology, 2014 - West...

    • pcbs.gov.ps
    Updated Jan 28, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Palestinian Central Bureau of statistics (2020). Household Survey on Information and Communications Technology, 2014 - West Bank and Gaza [Dataset]. https://www.pcbs.gov.ps/PCBS-Metadata-en-v5.2/index.php/catalog/465
    Explore at:
    Dataset updated
    Jan 28, 2020
    Dataset provided by
    Palestinian Central Bureau of Statisticshttp://pcbs.gov.ps/
    Authors
    Palestinian Central Bureau of statistics
    Time period covered
    2014
    Area covered
    Gaza Strip, Gaza, West Bank
    Description

    Abstract

    Within the frame of PCBS' efforts in providing official Palestinian statistics in the different life aspects of Palestinian society and because the wide spread of Computer, Internet and Mobile Phone among the Palestinian people, and the important role they may play in spreading knowledge and culture and contribution in formulating the public opinion, PCBS conducted the Household Survey on Information and Communications Technology, 2014.

    The main objective of this survey is to provide statistical data on Information and Communication Technology in the Palestine in addition to providing data on the following: -

    · Prevalence of computers and access to the Internet. · Study the penetration and purpose of Technology use.

    Geographic coverage

    Palestine (West Bank and Gaza Strip) , type of locality (Urban, Rural, Refugee Camps) and governorate

    Analysis unit

    Household. Person 10 years and over .

    Universe

    All Palestinian households and individuals whose usual place of residence in Palestine with focus on persons aged 10 years and over in year 2014.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Sampling Frame The sampling frame consists of a list of enumeration areas adopted in the Population, Housing and Establishments Census of 2007. Each enumeration area has an average size of about 124 households. These were used in the first phase as Preliminary Sampling Units in the process of selecting the survey sample.

    Sample Size The total sample size of the survey was 7,268 households, of which 6,000 responded.

    Sample Design The sample is a stratified clustered systematic random sample. The design comprised three phases:

    Phase I: Random sample of 240 enumeration areas. Phase II: Selection of 25 households from each enumeration area selected in phase one using systematic random selection. Phase III: Selection of an individual (10 years or more) in the field from the selected households; KISH TABLES were used to ensure indiscriminate selection.

    Sample Strata Distribution of the sample was stratified by: 1- Governorate (16 governorates, J1). 2- Type of locality (urban, rural and camps).

    Sampling deviation

    -

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The survey questionnaire consists of identification data, quality controls and three main sections: Section I: Data on household members that include identification fields, the characteristics of household members (demographic and social) such as the relationship of individuals to the head of household, sex, date of birth and age.

    Section II: Household data include information regarding computer processing, access to the Internet, and possession of various media and computer equipment. This section includes information on topics related to the use of computer and Internet, as well as supervision by households of their children (5-17 years old) while using the computer and Internet, and protective measures taken by the household in the home.

    Section III: Data on persons (aged 10 years and over) about computer use, access to the Internet and possession of a mobile phone.

    Cleaning operations

    Preparation of Data Entry Program: This stage included preparation of the data entry programs using an ACCESS package and defining data entry control rules to avoid errors, plus validation inquiries to examine the data after it had been captured electronically.

    Data Entry: The data entry process started on 8 May 2014 and ended on 23 June 2014. The data entry took place at the main PCBS office and in field offices using 28 data clerks.

    Editing and Cleaning procedures: Several measures were taken to avoid non-sampling errors. These included editing of questionnaires before data entry to check field errors, using a data entry application that does not allow mistakes during the process of data entry, and then examining the data by using frequency and cross tables. This ensured that data were error free; cleaning and inspection of the anomalous values were conducted to ensure harmony between the different questions on the questionnaire.

    Response rate

    Response Rates= 79%

    Sampling error estimates

    There are many aspects of the concept of data quality; this includes the initial planning of the survey to the dissemination of the results and how well users understand and use the data. There are three components to the quality of statistics: accuracy, comparability, and quality control procedures.

    Checks on data accuracy cover many aspects of the survey and include statistical errors due to the use of a sample, non-statistical errors resulting from field workers or survey tools, and response rates and their effect on estimations. This section includes:

    Statistical Errors Data of this survey may be affected by statistical errors due to the use of a sample and not a complete enumeration. Therefore, certain differences can be expected in comparison with the real values obtained through censuses. Variances were calculated for the most important indicators.

    Variance calculations revealed that there is no problem in disseminating results nationally or regionally (the West Bank, Gaza Strip), but some indicators show high variance by governorate, as noted in the tables of the main report.

    Non-Statistical Errors Non-statistical errors are possible at all stages of the project, during data collection or processing. These are referred to as non-response errors, response errors, interviewing errors and data entry errors. To avoid errors and reduce their effects, strenuous efforts were made to train the field workers intensively. They were trained on how to carry out the interview, what to discuss and what to avoid, and practical and theoretical training took place during the training course. Training manuals were provided for each section of the questionnaire, along with practical exercises in class and instructions on how to approach respondents to reduce refused cases. Data entry staff were trained on the data entry program, which was tested before starting the data entry process.

    Several measures were taken to avoid non-sampling errors. These included editing of questionnaires before data entry to check field errors, using a data entry application that does not allow mistakes during the process of data entry, and then examining the data by using frequency and cross tables. This ensured that data were error free; cleaning and inspection of the anomalous values were conducted to ensure harmony between the different questions on the questionnaire.

    The sources of non-statistical errors can be summarized as: 1. Some of the households were not at home and could not be interviewed, and some households refused to be interviewed. 2. In unique cases, errors occurred due to the way the questions were asked by interviewers and respondents misunderstood some of the questions.

  8. Amount of data created, consumed, and stored 2010-2023, with forecasts to...

    • statista.com
    Updated Nov 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Amount of data created, consumed, and stored 2010-2023, with forecasts to 2028 [Dataset]. https://www.statista.com/statistics/871513/worldwide-data-created/
    Explore at:
    Dataset updated
    Nov 21, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    May 2024
    Area covered
    Worldwide
    Description

    The total amount of data created, captured, copied, and consumed globally is forecast to increase rapidly, reaching 149 zettabytes in 2024. Over the next five years up to 2028, global data creation is projected to grow to more than 394 zettabytes. In 2020, the amount of data created and replicated reached a new high. The growth was higher than previously expected, caused by the increased demand due to the COVID-19 pandemic, as more people worked and learned from home and used home entertainment options more often. Storage capacity also growing Only a small percentage of this newly created data is kept though, as just two percent of the data produced and consumed in 2020 was saved and retained into 2021. In line with the strong growth of the data volume, the installed base of storage capacity is forecast to increase, growing at a compound annual growth rate of 19.2 percent over the forecast period from 2020 to 2025. In 2020, the installed base of storage capacity reached 6.7 zettabytes.

  9. f

    Data_Sheet_1_Raw Data Visualization for Common Factorial Designs Using SPSS:...

    • frontiersin.figshare.com
    zip
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florian Loffing (2023). Data_Sheet_1_Raw Data Visualization for Common Factorial Designs Using SPSS: A Syntax Collection and Tutorial.ZIP [Dataset]. http://doi.org/10.3389/fpsyg.2022.808469.s001
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    Frontiers
    Authors
    Florian Loffing
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Transparency in data visualization is an essential ingredient for scientific communication. The traditional approach of visualizing continuous quantitative data solely in the form of summary statistics (i.e., measures of central tendency and dispersion) has repeatedly been criticized for not revealing the underlying raw data distribution. Remarkably, however, systematic and easy-to-use solutions for raw data visualization using the most commonly reported statistical software package for data analysis, IBM SPSS Statistics, are missing. Here, a comprehensive collection of more than 100 SPSS syntax files and an SPSS dataset template is presented and made freely available that allow the creation of transparent graphs for one-sample designs, for one- and two-factorial between-subject designs, for selected one- and two-factorial within-subject designs as well as for selected two-factorial mixed designs and, with some creativity, even beyond (e.g., three-factorial mixed-designs). Depending on graph type (e.g., pure dot plot, box plot, and line plot), raw data can be displayed along with standard measures of central tendency (arithmetic mean and median) and dispersion (95% CI and SD). The free-to-use syntax can also be modified to match with individual needs. A variety of example applications of syntax are illustrated in a tutorial-like fashion along with fictitious datasets accompanying this contribution. The syntax collection is hoped to provide researchers, students, teachers, and others working with SPSS a valuable tool to move towards more transparency in data visualization.

  10. CSV file used in statistical analyses

    • data.csiro.au
    • researchdata.edu.au
    • +1more
    Updated Oct 13, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CSIRO (2014). CSV file used in statistical analyses [Dataset]. http://doi.org/10.4225/08/543B4B4CA92E6
    Explore at:
    Dataset updated
    Oct 13, 2014
    Dataset authored and provided by
    CSIROhttp://www.csiro.au/
    License

    https://research.csiro.au/dap/licences/csiro-data-licence/https://research.csiro.au/dap/licences/csiro-data-licence/

    Time period covered
    Mar 14, 2008 - Jun 9, 2009
    Dataset funded by
    CSIROhttp://www.csiro.au/
    Description

    A csv file containing the tidal frequencies used for statistical analyses in the paper "Estimating Freshwater Flows From Tidally-Affected Hydrographic Data" by Dan Pagendam and Don Percival.

  11. f

    Data from: Teaching and Learning Data Visualization: Ideas and Assignments

    • tandf.figshare.com
    • figshare.com
    txt
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Deborah Nolan; Jamis Perrett (2023). Teaching and Learning Data Visualization: Ideas and Assignments [Dataset]. http://doi.org/10.6084/m9.figshare.1627940.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    Taylor & Francis
    Authors
    Deborah Nolan; Jamis Perrett
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This article discusses how to make statistical graphics a more prominent element of the undergraduate statistics curricula. The focus is on several different types of assignments that exemplify how to incorporate graphics into a course in a pedagogically meaningful way. These assignments include having students deconstruct and reconstruct plots, copy masterful graphs, create one-minute visual revelations, convert tables into “pictures,” and develop interactive visualizations, for example, with the virtual earth as a plotting canvas. In addition to describing the goals and details of each assignment, we also discuss the broader topic of graphics and key concepts that we think warrant inclusion in the statistics curricula. We advocate that more attention needs to be paid to this fundamental field of statistics at all levels, from introductory undergraduate through graduate level courses. With the rapid rise of tools to visualize data, for example, Google trends, GapMinder, ManyEyes, and Tableau, and the increased use of graphics in the media, understanding the principles of good statistical graphics, and having the ability to create informative visualizations is an ever more important aspect of statistics education. Supplementary materials containing code and data for the assignments are available online.

  12. i

    Population and Family Health Survey 1997 - Jordan

    • catalog.ihsn.org
    • dev.ihsn.org
    • +2more
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Statistics (DOS) (2019). Population and Family Health Survey 1997 - Jordan [Dataset]. http://catalog.ihsn.org/catalog/182
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    Department of Statistics (DOS)
    Time period covered
    1997
    Area covered
    Jordan
    Description

    Abstract

    The 1997 Jordan Population and Family Health Survey (JPFHS) is a national sample survey carried out by the Department of Statistics (DOS) as part of its National Household Surveys Program (NHSP). The JPFHS was specifically aimed at providing information on fertility, family planning, and infant and child mortality. Information was also gathered on breastfeeding, on maternal and child health care and nutritional status, and on the characteristics of households and household members. The survey will provide policymakers and planners with important information for use in formulating informed programs and policies on reproductive behavior and health.

    Geographic coverage

    National

    Analysis unit

    • Household
    • Children under five years
    • Women age 15-49
    • Men

    Kind of data

    Sample survey data

    Sampling procedure

    SAMPLE DESIGN AND IMPLEMENTATION

    The 1997 JPFHS sample was designed to produce reliable estimates of major survey variables for the country as a whole, for urban and rural areas, for the three regions (each composed of a group of governorates), and for the three major governorates, Amman, Irbid, and Zarqa.

    The 1997 JPFHS sample is a subsample of the master sample that was designed using the frame obtained from the 1994 Population and Housing Census. A two-stage sampling procedure was employed. First, primary sampling units (PSUs) were selected with probability proportional to the number of housing units in the PSU. A total of 300 PSUs were selected at this stage. In the second stage, in each selected PSU, occupied housing units were selected with probability inversely proportional to the number of housing units in the PSU. This design maintains a self-weighted sampling fraction within each governorate.

    UPDATING OF SAMPLING FRAME

    Prior to the main fieldwork, mapping operations were carried out and the sample units/blocks were selected and then identified and located in the field. The selected blocks were delineated and the outer boundaries were demarcated with special signs. During this process, the numbers on buildings and housing units were updated, listed and documented, along with the name of the owner/tenant of the unit or household and the name of the household head. These activities took place between January 7 and February 28, 1997.

    Note: See detailed description of sample design in APPENDIX A of the survey report.

    Mode of data collection

    Face-to-face

    Research instrument

    The 1997 JPFHS used two questionnaires, one for the household interview and the other for eligible women. Both questionnaires were developed in English and then translated into Arabic. The household questionnaire was used to list all members of the sampled households, including usual residents as well as visitors. For each member of the household, basic demographic and social characteristics were recorded and women eligible for the individual interview were identified. The individual questionnaire was developed utilizing the experience gained from previous surveys, in particular the 1983 and 1990 Jordan Fertility and Family Health Surveys (JFFHS).

    The 1997 JPFHS individual questionnaire consists of 10 sections: - Respondent’s background - Marriage - Reproduction (birth history) - Contraception - Pregnancy, breastfeeding, health and immunization - Fertility preferences - Husband’s background, woman’s work and residence - Knowledge of AIDS - Maternal mortality - Height and weight of children and mothers.

    Cleaning operations

    Fieldwork and data processing activities overlapped. After a week of data collection, and after field editing of questionnaires for completeness and consistency, the questionnaires for each cluster were packaged together and sent to the central office in Amman where they were registered and stored. Special teams were formed to carry out office editing and coding.

    Data entry started after a week of office data processing. The process of data entry, editing, and cleaning was done by means of the ISSA (Integrated System for Survey Analysis) program DHS has developed especially for such surveys. The ISSA program allows data to be edited while being entered. Data entry was completed on November 14, 1997. A data processing specialist from Macro made a trip to Jordan in November and December 1997 to identify problems in data entry, editing, and cleaning, and to work on tabulations for both the preliminary and final report.

    Response rate

    A total of 7,924 occupied housing units were selected for the survey; from among those, 7,592 households were found. Of the occupied households, 7,335 (97 percent) were successfully interviewed. In those households, 5,765 eligible women were identified, and complete interviews were obtained with 5,548 of them (96 percent of all eligible women). Thus, the overall response rate of the 1997 JPFHS was 93 percent. The principal reason for nonresponse among the women was the failure of interviewers to find them at home despite repeated callbacks.

    Note: See summarized response rates by place of residence in Table 1.1 of the survey report.

    Sampling error estimates

    The estimates from a sample survey are subject to two types of errors: nonsampling errors and sampling errors. Nonsampling errors are the result of mistakes made in implementing data collection and data processing (such as failure to locate and interview the correct household, misunderstanding questions either by the interviewer or the respondent, and data entry errors). Although during the implementation of the 1997 JPFHS numerous efforts were made to minimize this type of error, nonsampling errors are not only impossible to avoid but also difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The respondents selected in the 1997 JPFHS constitute only one of many samples that could have been selected from the same population, given the same design and expected size. Each of those samples would have yielded results differing somewhat from the results of the sample actually selected. Sampling errors are a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, since the 1997 JDHS-II sample resulted from a multistage stratified design, formulae of higher complexity had to be used. The computer software used to calculate sampling errors for the 1997 JDHS-II was the ISSA Sampling Error Module, which uses the Taylor linearization method of variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics, such as fertility and mortality rates.

    Note: See detailed estimate of sampling error calculation in APPENDIX B of the survey report.

    Data appraisal

    Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months

    Note: See detailed tables in APPENDIX C of the survey report.

  13. i

    Demographic and Health Survey 1988 - Zimbabwe

    • catalog.ihsn.org
    • dev.ihsn.org
    • +2more
    Updated Jul 6, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central Statistical Office (2017). Demographic and Health Survey 1988 - Zimbabwe [Dataset]. https://catalog.ihsn.org/catalog/2478
    Explore at:
    Dataset updated
    Jul 6, 2017
    Dataset authored and provided by
    Central Statistical Office
    Time period covered
    1988 - 1989
    Area covered
    Zimbabwe
    Description

    Abstract

    The Zimbabwe Demographic and Health Survey (ZDHS) is one of a series of surveys carried out by the Central Statistical Office (CSO) as part of the Zimbabwe National Household Survey Capability Programme. Conducted immediately following the second round of the Intercensal Demographic survey in 1988, the objective of the ZDHS was to make available to policy-makers and planners current information on fertility and child mortality levels and trends, contraceptive knowledge, approval and use and basic indicators of maternal and child health. To obtain these data, a nationally representative sample of 4201 women 15-49 was interviewed in the survey between September 1988 and January 1989.

    The ZDHS is one of a series of surveys undertaken by the Central Statistical Office (CSO) as part of the Zimbabwe National Household Survey Capability Programme (ZNHSCP). The ZDHS was conducted immediately after the second round of the Intercensal Demographic Survey (ICDS) in 1988. The main objective of the ZDHS was to provide information on: - fertility levels, trends and preferences; - family planning awareness, approval and use; - maternal and child health, including infant and child mortality; - and other topics relating to family health.

    The survey was designed to obtain information on family planning use similar to that provided by the 1984 Zimbabwe Reproductive Health Survey (ZRHS) and data on fertility and mortality which would complement information collected in the two rounds of the Intercensal Demographic Survey (ICDS). In addition, participation in the worldwide Demographic and Health Survey project offered an opportunity to strengthen survey capability in Zimbabwe, as well as further comparative research by contributing to the international demographic and health database.

    Geographic coverage

    National

    Analysis unit

    • Household
    • Women age 15-49
    • Children under five years

    Universe

    The population covered by the 1988 ZDHS is defined as the universe of all women age 15-49 in Zimbabwe. Eligibility for the individual interview was determined on a de facto basis, i.e., a woman was eligible if she was 15 to 49 years of age and had spent the night prior to the household interview in the household, irrespective of whether she was a usual member of the household or not.

    Kind of data

    Sample survey data

    Sampling procedure

    To achieve this objective, a nationally representative, self-weighting sample of women 15- 49 was selected and interviewed in the survey. The ZDHS sample was drawn from the Zimbabwe Revised Master Sample (ZRMS). The ZRMS was based on the master sample constructed at the initiation of the Zimbabwe National Household Survey Capability Programme (ZNHSCP) and revised for the first round of the Intercensal Demographic Survey in 1987.

    The ZRMS can be considered as a two-stage sample, which is self-weighting at the household level. The sample is stratified by eight provinces and six sectors. The sectors, which are determined by land use include: (1) communal lands, (2) large-scale commercial farming areas, (3) small-scale commercial farming areas, (4) urban and semi-urban areas, (5) resettlement schemes, and (6) national parks, forest and other areas.

    A subsample of 167 enumeration areas (EAs) from the 273 EAs in the ZRMS was selected for the ZDHS, including 114 in rural areas and 53 in urban areas. The EAs were selected systematically with probability proportional to the number of households in the 1982 census. Household listings prepared prior to the 1987 ICDS were used in selecting the households to be included in the ZDHS from the selected EAs. All women 15-49 present in the households drawn for the ZDHS sample on the night before the interview were eligible for the survey.

    Mode of data collection

    Face-to-face

    Research instrument

    Two questionnaires were used for the ZDHS, a household and an individual woman's questionnaire. The questionnaires were adapted from the DHS Model "B" Questionnaire, intended for use in countries with low contraceptive prevalence. A pretest was conducted, and the questionnaires were modified, taking into account the pretest results. The household and individual questionnaires were administered in Shona, Ndebele, or English, with these major languages appearing on the same questionnaire.

    Information on the age and sex of all usual members and visitors in the selected households was recorded on the household questionnaire and used to identify women eligible for the individual questionnaire. Eligibility for the individual interview was determined on a de facto basis, i.e., a woman was eligible if she was 15 to 49 years of age and had spent the night prior to the household interview in the household, irrespective of whether she was a usual member of the household or not.

    The individual questionnaire was used to collect information on the following topics: - Respondent's background; - Reproduction; - Contraception; - Health and breastfeeding; - Marriage; - Fertility preferences; - Husband's background and women's work; - Height and weight of children 3-60 months.

    Cleaning operations

    Data entry and editing began in October 1988 and was completed in February 1989, two weeks after fieldwork ended. The initiation of data processing during the fieldwork allowed the errors that were detected to be communicated immediately to the field teams for corrective measures, thus improving the quality of the data. All data processing activities were carried out in Harare, by a team of five data capture operators under a data processing coordinator. The operators were responsible for office editing and coding, as well as for the entry of the questionnaires. The computer hardware consisted of three IBM-compatible micro-computers. The Integrated System for Survey Analysis (ISSA) software package, developed by IRD for the DHS programme, was used for all phases of the data entry, editing and tabulation. Range, skip and most consistency checks were performed during the data capture itself; only the more sophisticated consistency checks were done during secondary editing.

    Response rate

    Of the 4789 households selected for the ZDHS, 4337 were located in the field; of these, 4107 households were successfully interviewed. Within the households successfully interviewed, 4467 women were identified as eligible, and, among these eligible women, 4201 women were interviewed. The overall response rate, which is the product of the household (95 percent) and individual (94 percent) response rates was 89 percent.

    The overall response rate, which is the product of the household and individual response rate, was 89 percent for the whole sample. It was 90 percent or higher, except in Manicaland (89 percent), Mashonaland East (88 percent) and Harare/Chitungwiza (74 percent).

    Sampling error estimates

    Sampling error is a measure of the variability between all possible samples that could have been selected from the same population using the same design and size. For the entire population and for large subgroups, the ZDHS sample is sufficiently large so that the sampling error for most estimates is small. However, for small subgroups, sampling errors are larger and, thus, affect the reliability of the data. Sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, ratio, etc.), i.e., the square root of the variance. The standard error can be used also to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic as measured in 95 percent of all possible samples with the same design will fall within a range of plus or minus two times the standard error for that statistic.

    The computations required to provide sampling errors for survey estimates which are based on complex sample designs like those used for the ZDHS survey are more complicated than those based on simple random samples. The software package CLUSTERS was used to assist in computing the sampling errors with the proper statistical methodology. The CLUSTERS program treats any percentage or average as a ratio estimate, r=y/x, where y represents the total sample value for variable y and x represents the total number of cases in the group or subgroup under consideration.

    In addition to the standard errors, CLUSTERS computes the design effect (DEFT) for each estimate, which is defined as the ratio between the standard error using the given sample design and the standard error that would result if a simple random sample had been used. A DEFT value of 1,0 indicates that the sample design is as efficient as a simple random sample, while a value greater than 1,0 indicates the increase in the sampling error due to the use of a more complex and less statistically efficient design. CLUSTERS also computes the relative error and confidence limits for estimates.

    Sampling errors are presented below for selected variables considered to be of major interest. Results are presented in the Final Report for the whole country, urban and rural areas, three broad age groups and three educationaI levels. For each variable, the type of statistic (mean, proportion) and the base population are given in B.1 of the Final Report. For each variable, Tables B.2-B.5 present the value of the statistic, its standard error, the number of unweighted and weighted cases, the design effect, the relative standard errors, and the 95 percent confidence limits.

    The relative standard error for most

  14. f

    Data from: pmartR: Quality Control and Statistics for Mass...

    • acs.figshare.com
    • figshare.com
    xlsx
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kelly G. Stratton; Bobbie-Jo M. Webb-Robertson; Lee Ann McCue; Bryan Stanfill; Daniel Claborne; Iobani Godinez; Thomas Johansen; Allison M. Thompson; Kristin E. Burnum-Johnson; Katrina M. Waters; Lisa M. Bramer (2023). pmartR: Quality Control and Statistics for Mass Spectrometry-Based Biological Data [Dataset]. http://doi.org/10.1021/acs.jproteome.8b00760.s001
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    ACS Publications
    Authors
    Kelly G. Stratton; Bobbie-Jo M. Webb-Robertson; Lee Ann McCue; Bryan Stanfill; Daniel Claborne; Iobani Godinez; Thomas Johansen; Allison M. Thompson; Kristin E. Burnum-Johnson; Katrina M. Waters; Lisa M. Bramer
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    Prior to statistical analysis of mass spectrometry (MS) data, quality control (QC) of the identified biomolecule peak intensities is imperative for reducing process-based sources of variation and extreme biological outliers. Without this step, statistical results can be biased. Additionally, liquid chromatography–MS proteomics data present inherent challenges due to large amounts of missing data that require special consideration during statistical analysis. While a number of R packages exist to address these challenges individually, there is no single R package that addresses all of them. We present pmartR, an open-source R package, for QC (filtering and normalization), exploratory data analysis (EDA), visualization, and statistical analysis robust to missing data. Example analysis using proteomics data from a mouse study comparing smoke exposure to control demonstrates the core functionality of the package and highlights the capabilities for handling missing data. In particular, using a combined quantitative and qualitative statistical test, 19 proteins whose statistical significance would have been missed by a quantitative test alone were identified. The pmartR package provides a single software tool for QC, EDA, and statistical comparisons of MS data that is robust to missing data and includes numerous visualization capabilities.

  15. Z

    Data from: A 24-hour dynamic population distribution dataset based on mobile...

    • data.niaid.nih.gov
    • explore.openaire.eu
    • +1more
    Updated Feb 16, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    A 24-hour dynamic population distribution dataset based on mobile phone data from Helsinki Metropolitan Area, Finland [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_4724388
    Explore at:
    Dataset updated
    Feb 16, 2022
    Dataset provided by
    Matti Manninen
    Tuuli Toivonen
    Olle Järv
    Claudia Bergroth
    Henrikki Tenkanen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Helsinki Metropolitan Area, Finland
    Description

    Related article: Bergroth, C., Järv, O., Tenkanen, H., Manninen, M., Toivonen, T., 2022. A 24-hour population distribution dataset based on mobile phone data from Helsinki Metropolitan Area, Finland. Scientific Data 9, 39.

    In this dataset:

    We present temporally dynamic population distribution data from the Helsinki Metropolitan Area, Finland, at the level of 250 m by 250 m statistical grid cells. Three hourly population distribution datasets are provided for regular workdays (Mon – Thu), Saturdays and Sundays. The data are based on aggregated mobile phone data collected by the biggest mobile network operator in Finland. Mobile phone data are assigned to statistical grid cells using an advanced dasymetric interpolation method based on ancillary data about land cover, buildings and a time use survey. The data were validated by comparing population register data from Statistics Finland for night-time hours and a daytime workplace registry. The resulting 24-hour population data can be used to reveal the temporal dynamics of the city and examine population variations relevant to for instance spatial accessibility analyses, crisis management and planning.

    Please cite this dataset as:

    Bergroth, C., Järv, O., Tenkanen, H., Manninen, M., Toivonen, T., 2022. A 24-hour population distribution dataset based on mobile phone data from Helsinki Metropolitan Area, Finland. Scientific Data 9, 39. https://doi.org/10.1038/s41597-021-01113-4

    Organization of data

    The dataset is packaged into a single Zipfile Helsinki_dynpop_matrix.zip which contains following files:

    HMA_Dynamic_population_24H_workdays.csv represents the dynamic population for average workday in the study area.

    HMA_Dynamic_population_24H_sat.csv represents the dynamic population for average saturday in the study area.

    HMA_Dynamic_population_24H_sun.csv represents the dynamic population for average sunday in the study area.

    target_zones_grid250m_EPSG3067.geojson represents the statistical grid in ETRS89/ETRS-TM35FIN projection that can be used to visualize the data on a map using e.g. QGIS.

    Column names

    YKR_ID : a unique identifier for each statistical grid cell (n=13,231). The identifier is compatible with the statistical YKR grid cell data by Statistics Finland and Finnish Environment Institute.

    H0, H1 ... H23 : Each field represents the proportional distribution of the total population in the study area between grid cells during a one-hour period. In total, 24 fields are formatted as “Hx”, where x stands for the hour of the day (values ranging from 0-23). For example, H0 stands for the first hour of the day: 00:00 - 00:59. The sum of all cell values for each field equals to 100 (i.e. 100% of total population for each one-hour period)

    In order to visualize the data on a map, the result tables can be joined with the target_zones_grid250m_EPSG3067.geojson data. The data can be joined by using the field YKR_ID as a common key between the datasets.

    License Creative Commons Attribution 4.0 International.

    Related datasets

    Järv, Olle; Tenkanen, Henrikki & Toivonen, Tuuli. (2017). Multi-temporal function-based dasymetric interpolation tool for mobile phone data. Zenodo. https://doi.org/10.5281/zenodo.252612

    Tenkanen, Henrikki, & Toivonen, Tuuli. (2019). Helsinki Region Travel Time Matrix [Data set]. Zenodo. http://doi.org/10.5281/zenodo.3247564

  16. Big data and business analytics revenue worldwide 2015-2022

    • statista.com
    Updated Nov 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). Big data and business analytics revenue worldwide 2015-2022 [Dataset]. https://www.statista.com/statistics/551501/worldwide-big-data-business-analytics-revenue/
    Explore at:
    Dataset updated
    Nov 22, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    The global big data and business analytics (BDA) market was valued at 168.8 billion U.S. dollars in 2018 and is forecast to grow to 215.7 billion U.S. dollars by 2021. In 2021, more than half of BDA spending will go towards services. IT services is projected to make up around 85 billion U.S. dollars, and business services will account for the remainder. Big data High volume, high velocity and high variety: one or more of these characteristics is used to define big data, the kind of data sets that are too large or too complex for traditional data processing applications. Fast-growing mobile data traffic, cloud computing traffic, as well as the rapid development of technologies such as artificial intelligence (AI) and the Internet of Things (IoT) all contribute to the increasing volume and complexity of data sets. For example, connected IoT devices are projected to generate 79.4 ZBs of data in 2025. Business analytics Advanced analytics tools, such as predictive analytics and data mining, help to extract value from the data and generate business insights. The size of the business intelligence and analytics software application market is forecast to reach around 16.5 billion U.S. dollars in 2022. Growth in this market is driven by a focus on digital transformation, a demand for data visualization dashboards, and an increased adoption of cloud.

  17. H

    Replication Data for: A Practical Method to Reduce Privacy Loss when...

    • dataverse.harvard.edu
    • search.dataone.org
    Updated Feb 23, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Raj Chetty; John Friedman (2022). Replication Data for: A Practical Method to Reduce Privacy Loss when Disclosing Statistics Based on Small Samples [Dataset]. http://doi.org/10.7910/DVN/RCHDXX
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 23, 2022
    Dataset provided by
    Harvard Dataverse
    Authors
    Raj Chetty; John Friedman
    License

    https://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.7910/DVN/RCHDXXhttps://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.7910/DVN/RCHDXX

    Description

    This dataset contains replication files for "A Practical Method to Reduce Privacy Loss when Disclosing Statistics Based on Small Samples" by Raj Chetty and John Friedman. For more information, see https://opportunityinsights.org/paper/differential-privacy/. A summary of the related publication follows. Releasing statistics based on small samples – such as estimates of social mobility by Census tract, as in the Opportunity Atlas – is very valuable for policy but can potentially create privacy risks by unintentionally disclosing information about specific individuals. To mitigate such risks, we worked with researchers at the Harvard Privacy Tools Project and Census Bureau staff to develop practical methods of reducing the risks of privacy loss when releasing such data. This paper describes the methods that we developed, which can be applied to disclose any statistic of interest that is estimated using a sample with a small number of observations. We focus on the case where the dataset can be broken into many groups (“cells”) and one is interested in releasing statistics for one or more of these cells. Building on ideas from the differential privacy literature, we add noise to the statistic of interest in proportion to the statistic’s maximum observed sensitivity, defined as the maximum change in the statistic from adding or removing a single observation across all the cells in the data. Intuitively, our approach permits the release of statistics in arbitrarily small samples by adding sufficient noise to the estimates to protect privacy. Although our method does not offer a formal privacy guarantee, it generally outperforms widely used methods of disclosure limitation such as count-based cell suppression both in terms of privacy loss and statistical bias. We illustrate how the method can be implemented by discussing how it was used to release estimates of social mobility by Census tract in the Opportunity Atlas. We also provide a step-by-step guide and illustrative Stata code to implement our approach.

  18. Enterprise Survey 2009 - Czech Republic

    • dev.ihsn.org
    • catalog.ihsn.org
    • +1more
    Updated Apr 25, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank (2019). Enterprise Survey 2009 - Czech Republic [Dataset]. https://dev.ihsn.org/nada/catalog/study/CZE_2009_ES_v01_M_WB
    Explore at:
    Dataset updated
    Apr 25, 2019
    Dataset provided by
    World Bankhttp://worldbank.org/
    European Bank for Reconstruction and Development
    Time period covered
    2008 - 2009
    Area covered
    Czechia
    Description

    Abstract

    The objective of the survey is to obtain feedback from enterprises in client countries on the state of the private sector as well as to help in building a panel of enterprise data that will make it possible to track changes in the business environment over time, thus allowing, for example, impact assessments of reforms. Through interviews with firms in the manufacturing and services sectors, the survey assesses the constraints to private sector growth and creates statistically significant business environment indicators that are comparable across countries.

    The standard Enterprise Survey topics include firm characteristics, gender participation, access to finance, annual sales, costs of inputs/labor, workforce composition, bribery, licensing, infrastructure, trade, crime, competition, capacity utilization, land and permits, taxation, informality, business-government relations, innovation and technology, and performance measures. Over 90% of the questions objectively ascertain characteristics of a country’s business environment. The remaining questions assess the survey respondents’ opinions on what are the obstacles to firm growth and performance. The mode of data collection is face-to-face interviews.

    Geographic coverage

    National

    Analysis unit

    The primary sampling unit of the study is the establishment. An establishment is a physical location where business is carried out and where industrial operations take place or services are provided. A firm may be composed of one or more establishments. For example, a brewery may have several bottling plants and several establishments for distribution. For the purposes of this survey an establishment must make its own financial decisions and have its own financial statements separate from those of the firm. An establishment must also have its own management and control over its payroll.

    Universe

    The manufacturing and services sectors are the primary business sectors of interest. This corresponds to firms classified with International Standard Industrial Classification of All Economic Activities (ISIC) codes 15-37, 45, 50-52, 55, 60-64, and 72 (ISIC Rev.3.1). Formal (registered) companies with 5 or more employees are targeted for interview. Services firms include construction, retail, wholesale, hotels, restaurants, transport, storage, communications, and IT. Firms with 100% government/state ownership are not eligible to participate in an Enterprise Survey.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sample for Azerbaijan was selected using stratified random sampling. Three levels of stratification were used in this country: industry, establishment size, and oblast (region).

    Industry stratification was designed in the way that follows: the universe was stratified into 23 manufacturing industries, 2 services industries -retail and IT-, and one residual sector. Each sector had a target of 90 interviews.

    Size stratification was defined following the standardized definition for the rollout: small (5 to 19 employees), medium (20 to 99 employees), and large (more than 99 employees). For stratification purposes, the number of employees was defined on the basis of reported permanent full-time workers. This seems to be an appropriate definition of the labor force since seasonal/casual/part-time employment is not a common practice, except in the sectors of construction and agriculture.

    Regional stratification was defined in eight regions. These regions are Praha, Stredni Cechy, Jihozapad, Severozapad, Severovychod, Jihovychod, Stredni Morava, and Moravskoslezsko.

    Given the stratified design, sample frames containing a complete and updated list of establishments for the selected regions were required. Great efforts were made to obtain the best source for these listings. However, the quality of the sample frames was not optimal and, therefore, some adjustments were needed to correct for the presence of ineligible units. These adjustments are reflected in the weights computation.

    For most countries covered in BEEPS IV, two sample frames were used. The first was supplied by the World Bank and consisted of enterprises interviewed in BEEPS 2005. The World Bank required that attempts should be made to re-interview establishments responding to the BEEPS 2005 survey where they were within the selected geographical regions and met eligibility criteria. That sample is referred to as the Panel. The second frame for the Czech Republic was an official database known as Albertina data [Creditinfo Czech Republic], which is obtained from the complete Business Register [RES] of the Czech Statistical Office. An extract from that frame was sent to the TNS statistical team in London to select the establishments for interview.

    The quality of the frame was assessed at the onset of the project. The frame proved to be useful though it showed positive rates of non-eligibility, repetition, non-existent units, etc. These problems are typical of establishment surveys, but given the impact these inaccuracies may have on the results, adjustments were needed when computing the appropriate weights for individual observations. The percentage of confirmed non-eligible units as a proportion of the total number of contacts to complete the survey was 28% (572 out of 2041 establishments).

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The current survey instruments are available: - Core Questionnaire + Manufacturing Module [ISIC Rev.3.1: 15-37] - Core Questionnaire + Retail Module [ISIC Rev.3.1: 52] - Core Questionnaire [ISIC Rev.3.1: 45, 50, 51, 55, 60-64, 72] - Screener Questionnaire.

    The “Core Questionnaire” is the heart of the Enterprise Survey and contains the survey questions asked of all firms across the world. There are also two other survey instruments- the “Core Questionnaire + Manufacturing Module” and the “Core Questionnaire + Retail Module.” The survey is fielded via three instruments in order to not ask questions that are irrelevant to specific types of firms, e.g. a question that relates to production and nonproduction workers should not be asked of a retail firm. In addition to questions that are asked across countries, all surveys are customized and contain country-specific questions. An example of customization would be including tourism-related questions that are asked in certain countries when tourism is an existing or potential sector of economic growth.

    The standard Enterprise Survey topics include firm characteristics, gender participation, access to finance, annual sales, costs of inputs/labor, workforce composition, bribery, licensing, infrastructure, trade, crime, competition, capacity utilization, land and permits, taxation, informality, business-government relations, innovation and technology, and performance measures. Over 90% of the questions objectively ascertain characteristics of a country’s business environment. The remaining questions assess the survey respondents’ opinions on what are the obstacles to firm growth and performance.

    Cleaning operations

    Data entry and quality controls are implemented by the contractor and data is delivered to the World Bank in batches (typically 10%, 50% and 100%). These data deliveries are checked for logical consistency, out of range values, skip patterns, and duplicate entries. Problems are flagged by the World Bank and corrected by the implementing contractor through data checks, callbacks, and revisiting establishments.

    Response rate

    Complete information regarding the sampling methodology, sample frame, weights, response rates, and implementation can be found in the document "Description of Czech Republic Implementation 2009.pdf"

  19. B

    Data from: Using ANOVA for gene selection from microarray studies of the...

    • borealisdata.ca
    • open.library.ubc.ca
    Updated Mar 12, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Paul Pavlidis (2019). Using ANOVA for gene selection from microarray studies of the nervous system [Dataset]. http://doi.org/10.5683/SP2/QCLEIJ
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 12, 2019
    Dataset provided by
    Borealis
    Authors
    Paul Pavlidis
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Dataset funded by
    NIH
    Description

    Methods are presented for detecting differential expression using statistical hypothesis testing methods including analysis of variance (ANOVA). Practicalities of experimental design, power, and sample size are discussed. Methods for multiple testing correction and their application are described. Instructions for running typical analyses are given in the R programming environment. R code and the sample data set used to generate the examples are available at http://microarray.cpmc.columbia.edu/pavlidis/pub/aovmethods/.

  20. Expenditure and Consumption Survey, 2010 - West Bank and Gaza

    • catalog.ihsn.org
    • dev.ihsn.org
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Palestinian Central Bureau of Statistics (2019). Expenditure and Consumption Survey, 2010 - West Bank and Gaza [Dataset]. https://catalog.ihsn.org/catalog/3089
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    Palestinian Central Bureau of Statisticshttp://pcbs.gov.ps/
    Time period covered
    2010 - 2011
    Area covered
    Gaza Strip, Gaza, West Bank
    Description

    Abstract

    The basic goal of this survey is to provide the necessary database for formulating national policies at various levels. It represents the contribution of the household sector to the Gross National Product (GNP). Household Surveys help as well in determining the incidence of poverty, and providing weighted data which reflects the relative importance of the consumption items to be employed in determining the benchmark for rates and prices of items and services. Generally, the Household Expenditure and Consumption Survey is a fundamental cornerstone in the process of studying the nutritional status in the Palestinian territory.

    The raw survey data provided by the Statistical Office was cleaned and harmonized by the Economic Research Forum, in the context of a major research project to develop and expand knowledge on equity and inequality in the Arab region. The main focus of the project is to measure the magnitude and direction of change in inequality and to understand the complex contributing social, political and economic forces influencing its levels. However, the measurement and analysis of the magnitude and direction of change in this inequality cannot be consistently carried out without harmonized and comparable micro-level data on income and expenditures. Therefore, one important component of this research project is securing and harmonizing household surveys from as many countries in the region as possible, adhering to international statistics on household living standards distribution. Once the dataset has been compiled, the Economic Research Forum makes it available, subject to confidentiality agreements, to all researchers and institutions concerned with data collection and issues of inequality. Data is a public good, in the interest of the region, and it is consistent with the Economic Research Forum's mandate to make micro data available, aiding regional research on this important topic.

    Geographic coverage

    The survey data covers urban, rural and camp areas in West Bank and Gaza Strip.

    Analysis unit

    1- Household/families. 2- Individuals.

    Universe

    The survey covered all Palestinian households who are usually resident in the Palestinian Territory during 2010.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Sample and Frame:

    The sampling frame consists of all enumeration areas which were enumerated in 2007, each numeration area consists of buildings and housing units with average of about 120 households in it. These enumeration areas are used as primary sampling units PSUs in the first stage of the sampling selection.

    Sample Design:

    The sample is a stratified cluster systematic random sample with two stages: First stage: selection of a systematic random sample of 192 enumeration areas. Second stage: selection of a systematic random sample of 24 households from each enumeration area selected in the first stage.

    Note: in Jerusalem Governorate (J1), 13 enumeration areas were selected; then in the second phase, a group of households from each enumeration area were chosen using census-2007 method of delineation and enumeration. This method was adopted to ensure household response is to the maximum to comply with the percentage of non-response as set in the sample design.Enumeration areas were distributed to twelve months and the sample for each quarter covers sample strata (Governorate, locality type) Sample strata:

    The population was divided by:

    1- Governorate 2- Type of Locality (urban, rural, refugee camps)

    Sample Size:

    The calculated sample size for the Expenditure and Consumption Survey in 2010 is about 3,757 households, 2,574 households in West Bank and 1,183 households in Gaza Strip.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The questionnaire consists of two main parts:

    First: Survey's questionnaire

    Part of the questionnaire is to be filled in during the visit at the beginning of the month, while the other part is to be filled in at the end of the month. The questionnaire includes:

    Control sheet: Includes household’s identification data, date of visit, data on the fieldwork and data processing team, and summary of household’s members by gender.

    Household roster: Includes demographic, social, and economic characteristics of household’s members.

    Housing characteristics: Includes data like type of housing unit, number of rooms, value of rent, and connection of housing unit to basic services like water, electricity and sewage. In addition, data in this section includes source of energy used for cooking and heating, distance of housing unit from transportation, education, and health centers, and sources of income generation like ownership of farm land or animals.

    Food and Non-Food Items: includes food and non-food items, and household record her expenditure for one month.

    Durable Goods Schedule: Includes list of main goods like washing machine, refrigerator,TV.

    Assistances and Poverty: Includes data about cash and in kind assistances (assistance value,assistance source), also collecting data about household situation, and the procedures to cover expenses.

    Monthly and annual income: Data pertinent to household’s income from different sources is collected at the end of the registration period.

    Second: List of goods

    The classification of the list of goods is based on the recommendation of the United Nations for the SNA under the name Classification of Personal Consumption by purpose. The list includes 55 groups of expenditure and consumption where each is given a sequence number based on its importance to the household starting with food goods, clothing groups, housing, medical treatment, transportation and communication, and lastly durable goods. Each group consists of important goods. The total number of goods in all groups amounted to 667 items for goods and services. Groups from 1-21 includes goods pertinent to food, drinks and cigarettes. Group 22 includes goods that are home produced and consumed by the household. The groups 23-45 include all items except food, drinks and cigarettes. The groups 50-55 include durable goods. The data is collected based on different reference periods to represent expenditure during the whole year except for cars where data is collected for the last three years.

    Registration form

    The registration form includes instructions and examples on how to record consumption and expenditure items. The form includes columns: 1.Monetary: If the good is purchased, or in kind: if the item is self produced. 2.Title of the service of the good 3.Unit of measurement (kilogram, liter, number) 4. Quantity 5. Value

    The pages of the registration form are colored differently for the weeks of the month. The footer for each page includes remarks that encourage households to participate in the survey. The following are instructions that illustrate the nature of the items that should be recorded: 1. Monetary expenditures during purchases 2. Purchases based on debts 3.Monetary gifts once presented 4. Interest at pay 5. Self produced food and goods once consumed 6. Food and merchandise from commercial project once consumed 7. Merchandises once received as a wage or part of a wage from the employer.

    Cleaning operations

    Raw Data

    Data editing took place through a number of stages, including: 1. Office editing and coding 2. Data entry 3. Structure checking and completeness 4. Structural checking of SPSS data files

    Harmonized Data

    • The Statistical Package for Social Science (SPSS) is used to clean and harmonize the datasets.
    • The harmonization process starts with cleaning all raw data files received from the Statistical Office.
    • Cleaned data files are then all merged to produce one data file on the individual level containing all variables subject to harmonization.
    • A country-specific program is generated for each dataset to generate/compute/recode/rename/format/label harmonized variables.
    • A post-harmonization cleaning process is run on the data.
    • Harmonized data is saved on the household as well as the individual level, in SPSS and converted to STATA format.

    Response rate

    The survey sample consisted of 4,767 households, which includes 4,608 households of the original sample plus 159 households as an additional sample. A total of 3,757 households completed the interview: 2,574 households from the West Bank and 1,183 households in the Gaza Strip. Weights were modified to account for the non-response rate. The response rate in the Palestinian Territory 28.1% (82.4% in the West Bank was and 81.6% in Gaza Strip).

    Sampling error estimates

    The impact of errors on data quality was reduced to a minimum due to the high efficiency and outstanding selection, training, and performance of the fieldworkers. Procedures adopted during the fieldwork of the survey were considered a necessity to ensure the collection of accurate data, notably: 1) Develop schedules to conduct field visits to households during survey fieldwork. The objectives of the visits and the data collected on each visit were predetermined. 2) Fieldwork editing rules were applied during the data collection to ensure corrections were implemented before the end of fieldwork activities. 3) Fieldworkers were instructed to provide details in cases of extreme expenditure or consumption by the household. 4) Questions on income were postponed until the final visit at the end of the month. 5) Validation rules were embedded in the data processing systems, along with procedures to verify data entry and data edit.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Tatiana N. Litvinova (2020). Dataset of development of business during the COVID-19 crisis [Dataset]. http://doi.org/10.17632/9vvrd34f8t.1

Dataset of development of business during the COVID-19 crisis

Explore at:
Dataset updated
Nov 9, 2020
Authors
Tatiana N. Litvinova
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

To create the dataset, the top 10 countries leading in the incidence of COVID-19 in the world were selected as of October 22, 2020 (on the eve of the second full of pandemics), which are presented in the Global 500 ranking for 2020: USA, India, Brazil, Russia, Spain, France and Mexico. For each of these countries, no more than 10 of the largest transnational corporations included in the Global 500 rating for 2020 and 2019 were selected separately. The arithmetic averages were calculated and the change (increase) in indicators such as profitability and profitability of enterprises, their ranking position (competitiveness), asset value and number of employees. The arithmetic mean values of these indicators for all countries of the sample were found, characterizing the situation in international entrepreneurship as a whole in the context of the COVID-19 crisis in 2020 on the eve of the second wave of the pandemic. The data is collected in a general Microsoft Excel table. Dataset is a unique database that combines COVID-19 statistics and entrepreneurship statistics. The dataset is flexible data that can be supplemented with data from other countries and newer statistics on the COVID-19 pandemic. Due to the fact that the data in the dataset are not ready-made numbers, but formulas, when adding and / or changing the values in the original table at the beginning of the dataset, most of the subsequent tables will be automatically recalculated and the graphs will be updated. This allows the dataset to be used not just as an array of data, but as an analytical tool for automating scientific research on the impact of the COVID-19 pandemic and crisis on international entrepreneurship. The dataset includes not only tabular data, but also charts that provide data visualization. The dataset contains not only actual, but also forecast data on morbidity and mortality from COVID-19 for the period of the second wave of the pandemic in 2020. The forecasts are presented in the form of a normal distribution of predicted values and the probability of their occurrence in practice. This allows for a broad scenario analysis of the impact of the COVID-19 pandemic and crisis on international entrepreneurship, substituting various predicted morbidity and mortality rates in risk assessment tables and obtaining automatically calculated consequences (changes) on the characteristics of international entrepreneurship. It is also possible to substitute the actual values identified in the process and following the results of the second wave of the pandemic to check the reliability of pre-made forecasts and conduct a plan-fact analysis. The dataset contains not only the numerical values of the initial and predicted values of the set of studied indicators, but also their qualitative interpretation, reflecting the presence and level of risks of a pandemic and COVID-19 crisis for international entrepreneurship.

Search
Clear search
Close search
Google apps
Main menu