Facebook
TwitterMATLAB led the global advanced analytics and data science software industry in 2025 with a market share of ***** percent. First launched in 1984, MATLAB is developed by the U.S. firm MathWorks.
Facebook
Twitterhttps://www.myvisajobs.com/terms-of-service/https://www.myvisajobs.com/terms-of-service/
A dataset that explores Green Card sponsorship trends, salary data, and employer insights for statistical data science in the U.S.
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
Online Data Science Training Programs Market Size 2025-2029
The online data science training programs market size is forecast to increase by USD 8.67 billion, at a CAGR of 35.8% between 2024 and 2029.
The market is experiencing significant growth due to the increasing demand for data science professionals in various industries. The job market offers lucrative opportunities for individuals with data science skills, making online training programs an attractive option for those seeking to upskill or reskill. Another key driver in the market is the adoption of microlearning and gamification techniques in data science training. These approaches make learning more engaging and accessible, allowing individuals to acquire new skills at their own pace. Furthermore, the availability of open-source learning materials has democratized access to data science education, enabling a larger pool of learners to enter the field. However, the market also faces challenges, including the need for continuous updates to keep up with the rapidly evolving data science landscape and the lack of standardization in online training programs, which can make it difficult for employers to assess the quality of graduates. Companies seeking to capitalize on market opportunities should focus on offering up-to-date, high-quality training programs that incorporate microlearning and gamification techniques, while also addressing the challenges of continuous updates and standardization. By doing so, they can differentiate themselves in a competitive market and meet the evolving needs of learners and employers alike.
What will be the Size of the Online Data Science Training Programs Market during the forecast period?
Request Free SampleThe online data science training market continues to evolve, driven by the increasing demand for data-driven insights and innovations across various sectors. Data science applications, from computer vision and deep learning to natural language processing and predictive analytics, are revolutionizing industries and transforming business operations. Industry case studies showcase the impact of data science in action, with big data and machine learning driving advancements in healthcare, finance, and retail. Virtual labs enable learners to gain hands-on experience, while data scientist salaries remain competitive and attractive. Cloud computing and data science platforms facilitate interactive learning and collaborative research, fostering a vibrant data science community. Data privacy and security concerns are addressed through advanced data governance and ethical frameworks. Data science libraries, such as TensorFlow and Scikit-Learn, streamline the development process, while data storytelling tools help communicate complex insights effectively. Data mining and predictive analytics enable organizations to uncover hidden trends and patterns, driving innovation and growth. The future of data science is bright, with ongoing research and development in areas like data ethics, data governance, and artificial intelligence. Data science conferences and education programs provide opportunities for professionals to expand their knowledge and expertise, ensuring they remain at the forefront of this dynamic field.
How is this Online Data Science Training Programs Industry segmented?
The online data science training programs industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. TypeProfessional degree coursesCertification coursesApplicationStudentsWorking professionalsLanguageR programmingPythonBig MLSASOthersMethodLive streamingRecordedProgram TypeBootcampsCertificatesDegree ProgramsGeographyNorth AmericaUSMexicoEuropeFranceGermanyItalyUKMiddle East and AfricaUAEAPACAustraliaChinaIndiaJapanSouth KoreaSouth AmericaBrazilRest of World (ROW)
By Type Insights
The professional degree courses segment is estimated to witness significant growth during the forecast period.The market encompasses various segments catering to diverse learning needs. The professional degree course segment holds a significant position, offering comprehensive and in-depth training in data science. This segment's curriculum covers essential aspects such as statistical analysis, machine learning, data visualization, and data engineering. Delivered by industry professionals and academic experts, these courses ensure a high-quality education experience. Interactive learning environments, including live lectures, webinars, and group discussions, foster a collaborative and engaging experience. Data science applications, including deep learning, computer vision, and natural language processing, are integral to the market's growth. Data analysis, a crucial application, is gaining traction due to the increasing demand for data-driven decisio
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Riga Data Science Club is a non-profit organisation to share ideas, experience and build machine learning projects together. Data Science community should known own data, so this is a dataset about ourselves: our website analytics, social media activity, slack statistics and even meetup transcriptions!
Dataset is split up in several folders by the context: * linkedin - company page visitor, follower and post stats * slack - messaging and member activity * typeform - new member responses * website - website visitors by country, language, device, operating system, screen resolution * youtube - meetup transcriptions
Let's make Riga Data Science Club better! We expect this data to bring lots of insights on how to improve.
"Know your c̶u̶s̶t̶o̶m̶e̶r̶ member" - Explore member interests by analysing sign-up survey (typeform) responses - Explore messaging patterns in Slack to understand how members are retained and when they are lost
Social media intelligence * Define LinkedIn posting strategy based on historical engagement data * Define target user profile based on LinkedIn page attendance data
Website * Define website localisation strategy based on data about visitor countries and languages * Define website responsive design strategy based on data about visitor devices, operating systems and screen resolutions
Have some fun * NLP analysis of meetup transcriptions: word frequencies, question answering, something else?
Facebook
TwitterThe statistic displays the most wanted data science skills in the United States as of **********. As of the measured period, ***** percent of data scientist job openings on LinkedIn required a knowledge of the programming language Python.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This book is written for statisticians, data analysts, programmers, researchers, teachers, students, professionals, and general consumers on how to perform different types of statistical data analysis for research purposes using the R programming language. R is an open-source software and object-oriented programming language with a development environment (IDE) called RStudio for computing statistics and graphical displays through data manipulation, modelling, and calculation. R packages and supported libraries provides a wide range of functions for programming and analyzing of data. Unlike many of the existing statistical softwares, R has the added benefit of allowing the users to write more efficient codes by using command-line scripting and vectors. It has several built-in functions and libraries that are extensible and allows the users to define their own (customized) functions on how they expect the program to behave while handling the data, which can also be stored in the simple object system.For all intents and purposes, this book serves as both textbook and manual for R statistics particularly in academic research, data analytics, and computer programming targeted to help inform and guide the work of the R users or statisticians. It provides information about different types of statistical data analysis and methods, and the best scenarios for use of each case in R. It gives a hands-on step-by-step practical guide on how to identify and conduct the different parametric and non-parametric procedures. This includes a description of the different conditions or assumptions that are necessary for performing the various statistical methods or tests, and how to understand the results of the methods. The book also covers the different data formats and sources, and how to test for reliability and validity of the available datasets. Different research experiments, case scenarios and examples are explained in this book. It is the first book to provide a comprehensive description and step-by-step practical hands-on guide to carrying out the different types of statistical analysis in R particularly for research purposes with examples. Ranging from how to import and store datasets in R as Objects, how to code and call the methods or functions for manipulating the datasets or objects, factorization, and vectorization, to better reasoning, interpretation, and storage of the results for future use, and graphical visualizations and representations. Thus, congruence of Statistics and Computer programming for Research.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In recent years, data science agents powered by Large Language Models (LLMs), known as “data agents,” have shown significant potential to transform the traditional data analysis paradigm. This survey provides an overview of the evolution, capabilities, and applications of LLM-based data agents, highlighting their role in simplifying complex data tasks and lowering the entry barrier for users without related expertise. We explore current trends in the design of LLM-based frameworks, detailing essential features such as planning, reasoning, reflection, multi-agent collaboration, user interface, knowledge integration, and system design, which enable agents to address data-centric problems with minimal human intervention. Furthermore, we analyze several case studies to demonstrate the practical applications of various data agents in real-world scenarios. Finally, we identify key challenges and propose future research directions to advance the development of data agents into intelligent statistical analysis software.
Facebook
TwitterAcross industries, organizations are increasing their hiring efforts to build larger data science arsenals: from 2020 to 2021, the percentage of surveyed organizations that employed ** data scientists or more increased from ** percent to almost ** percent. On average, the number of data scientists employed in a organization grew from ** to **.
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
Data Science Platform Market Size 2025-2029
The data science platform market size is valued to increase USD 763.9 million, at a CAGR of 40.2% from 2024 to 2029. Integration of AI and ML technologies with data science platforms will drive the data science platform market.
Major Market Trends & Insights
North America dominated the market and accounted for a 48% growth during the forecast period.
By Deployment - On-premises segment was valued at USD 38.70 million in 2023
By Component - Platform segment accounted for the largest market revenue share in 2023
Market Size & Forecast
Market Opportunities: USD 1.00 million
Market Future Opportunities: USD 763.90 million
CAGR : 40.2%
North America: Largest market in 2023
Market Summary
The market represents a dynamic and continually evolving landscape, underpinned by advancements in core technologies and applications. Key technologies, such as machine learning and artificial intelligence, are increasingly integrated into data science platforms to enhance predictive analytics and automate data processing. Additionally, the emergence of containerization and microservices in data science platforms enables greater flexibility and scalability. However, the market also faces challenges, including data privacy and security risks, which necessitate robust compliance with regulations.
According to recent estimates, the market is expected to account for over 30% of the overall big data analytics market by 2025, underscoring its growing importance in the data-driven business landscape.
What will be the Size of the Data Science Platform Market during the forecast period?
Get Key Insights on Market Forecast (PDF) Request Free Sample
How is the Data Science Platform Market Segmented and what are the key trends of market segmentation?
The data science platform industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Deployment
On-premises
Cloud
Component
Platform
Services
End-user
BFSI
Retail and e-commerce
Manufacturing
Media and entertainment
Others
Sector
Large enterprises
SMEs
Application
Data Preparation
Data Visualization
Machine Learning
Predictive Analytics
Data Governance
Others
Geography
North America
US
Canada
Europe
France
Germany
UK
Middle East and Africa
UAE
APAC
China
India
Japan
South America
Brazil
Rest of World (ROW)
By Deployment Insights
The on-premises segment is estimated to witness significant growth during the forecast period.
In the dynamic and evolving the market, big data processing is a key focus, enabling advanced model accuracy metrics through various data mining methods. Distributed computing and algorithm optimization are integral components, ensuring efficient handling of large datasets. Data governance policies are crucial for managing data security protocols and ensuring data lineage tracking. Software development kits, model versioning, and anomaly detection systems facilitate seamless development, deployment, and monitoring of predictive modeling techniques, including machine learning algorithms, regression analysis, and statistical modeling. Real-time data streaming and parallelized algorithms enable real-time insights, while predictive modeling techniques and machine learning algorithms drive business intelligence and decision-making.
Cloud computing infrastructure, data visualization tools, high-performance computing, and database management systems support scalable data solutions and efficient data warehousing. ETL processes and data integration pipelines ensure data quality assessment and feature engineering techniques. Clustering techniques and natural language processing are essential for advanced data analysis. The market is witnessing significant growth, with adoption increasing by 18.7% in the past year, and industry experts anticipate a further expansion of 21.6% in the upcoming period. Companies across various sectors are recognizing the potential of data science platforms, leading to a surge in demand for scalable, secure, and efficient solutions.
API integration services and deep learning frameworks are gaining traction, offering advanced capabilities and seamless integration with existing systems. Data security protocols and model explainability methods are becoming increasingly important, ensuring transparency and trust in data-driven decision-making. The market is expected to continue unfolding, with ongoing advancements in technology and evolving business needs shaping its future trajectory.
Request Free Sample
The On-premises segment was valued at USD 38.70 million in 2019 and showed
Facebook
Twitterhttps://www.statsndata.org/how-to-orderhttps://www.statsndata.org/how-to-order
The Data Science Services market has emerged as a pivotal force, reshaping industries through the power of data-driven decision-making. As organizations increasingly recognize the value of harnessing vast amounts of data, the demand for data science services is experiencing significant growth. In 2023, the global ma
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Statistical analysis is error prone. A best practice for researchers using statistics would therefore be to share data among co-authors, allowing double-checking of executed tasks just as co-pilots do in aviation. To document the extent to which this ‘co-piloting’ currently occurs in psychology, we surveyed the authors of 697 articles published in six top psychology journals and asked them whether they had collaborated on four aspects of analyzing data and reporting results, and whether the described data had been shared between the authors. We acquired responses for 49.6% of the articles and found that co-piloting on statistical analysis and reporting results is quite uncommon among psychologists, while data sharing among co-authors seems reasonably but not completely standard. We then used an automated procedure to study the prevalence of statistical reporting errors in the articles in our sample and examined the relationship between reporting errors and co-piloting. Overall, 63% of the articles contained at least one p-value that was inconsistent with the reported test statistic and the accompanying degrees of freedom, and 20% of the articles contained at least one p-value that was inconsistent to such a degree that it may have affected decisions about statistical significance. Overall, the probability that a given p-value was inconsistent was over 10%. Co-piloting was not found to be associated with reporting errors.
Facebook
TwitterPresentation on data science education given at the 2019 BioQUEST & QUBES Summer Workshop
Facebook
Twitterhttps://paper.erudition.co.in/termshttps://paper.erudition.co.in/terms
Question Paper Solutions of chapter Exploratory Data Analytics and Descriptive Statistics of Data Analytics Skills for Managers, 5th Semester , Bachelor in Business Administration 2020 - 2021
Facebook
Twitterhttps://www.statsndata.org/how-to-orderhttps://www.statsndata.org/how-to-order
The Data Science Platform market is witnessing remarkable growth, emerging as a crucial component for businesses aiming to harness the power of data-driven decision-making. These platforms offer advanced tools and frameworks that facilitate data extraction, transformation, analysis, and visualization, enabling organ
Facebook
TwitterIn 2024, data scientists worldwide demonstrated varying levels of proficiency across different skills according to DevSkiller assessments. CSV handling emerged as the most proficient skill, reaching an advanced-level score of **. This high proficiency in CSV manipulation highlights the continued importance of working with structured data in various formats. Data analysis and data structures followed closely behind, with scores of ** and **, respectively, indicating strong foundational skills among data scientists. Nonetheless, several skills fell just above the intermediate threshold, including data selection, ETL fundamentals, and classification algorithms.
Facebook
Twitterhttps://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/
Statistical Analysis Software Market size was valued at USD 7,963.44 Million in 2023 and is projected to reach USD 13,023.63 Million by 2030, growing at a CAGR of 7.28% during the forecast period 2024-2030.
Global Statistical Analysis Software Market Drivers
The market drivers for the Statistical Analysis Software Market can be influenced by various factors. These may include:
Growing Data Complexity and Volume: The demand for sophisticated statistical analysis tools has been fueled by the exponential rise in data volume and complexity across a range of industries. Robust software solutions are necessary for organizations to evaluate and extract significant insights from huge datasets. Growing Adoption of Data-Driven Decision-Making: Businesses are adopting a data-driven approach to decision-making at a faster rate. Utilizing statistical analysis tools, companies can extract meaningful insights from data to improve operational effectiveness and strategic planning. Developments in Analytics and Machine Learning: As these fields continue to progress, statistical analysis software is now capable of more. These tools' increasing popularity can be attributed to features like sophisticated modeling and predictive analytics. A greater emphasis is being placed on business intelligence: Analytics and business intelligence are now essential components of corporate strategy. In order to provide business intelligence tools for studying trends, patterns, and performance measures, statistical analysis software is essential. Increasing Need in Life Sciences and Healthcare: Large volumes of data are produced by the life sciences and healthcare sectors, necessitating complex statistical analysis. The need for data-driven insights in clinical trials, medical research, and healthcare administration is driving the market for statistical analysis software. Growth of Retail and E-Commerce: The retail and e-commerce industries use statistical analytic tools for inventory optimization, demand forecasting, and customer behavior analysis. The need for analytics tools is fueled in part by the expansion of online retail and data-driven marketing techniques. Government Regulations and Initiatives: Statistical analysis is frequently required for regulatory reporting and compliance with government initiatives, particularly in the healthcare and finance sectors. In these regulated industries, statistical analysis software uptake is driven by this. Big Data Analytics's Emergence: As big data analytics has grown in popularity, there has been a demand for advanced tools that can handle and analyze enormous datasets effectively. Software for statistical analysis is essential for deriving valuable conclusions from large amounts of data. Demand for Real-Time Analytics: In order to make deft judgments fast, there is a growing need for real-time analytics. Many different businesses have a significant demand for statistical analysis software that provides real-time data processing and analysis capabilities. Growing Awareness and Education: As more people become aware of the advantages of using statistical analysis in decision-making, its use has expanded across a range of academic and research institutions. The market for statistical analysis software is influenced by the academic sector. Trends in Remote Work: As more people around the world work from home, they are depending more on digital tools and analytics to collaborate and make decisions. Software for statistical analysis makes it possible for distant teams to efficiently examine data and exchange findings.
Facebook
Twitterhttps://www.statsndata.org/how-to-orderhttps://www.statsndata.org/how-to-order
The Data Science Collaboration Platform market is rapidly evolving, becoming an essential hub for organizations seeking to leverage data-driven insights for strategic decision-making. With the increasing importance of data across industries, these platforms facilitate collaboration among data scientists, analysts, a
Facebook
TwitterThis short activity was an effort to launch a community conversation around the interface of data science principles and practices and undergraduate biology education. A variety of resources, communities, and projects are shared.
Facebook
Twitterhttps://scoop.market.us/privacy-policyhttps://scoop.market.us/privacy-policy
By leveraging them, you may remain competitive. Data can be used to discover what others are doing. It is always feasible to stay ahead of the competition. Using statistical data, you can prioritize your actions. To carry out a cross-marketing strategy, it is vital to compare the performance of various platforms.
When you have statistical support, it is easier to make effective decisions. Using digital marketing analytics can provide confidence in knowing what works. Reduce your time spent strategizing. With the time saved, it is able to accomplish other critical activities such as SEO or auditing.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Probabilistic models such as logistic regression, Bayesian classification, neural networks, and models for natural language processing, are increasingly more present in both undergraduate and graduate statistics and data science curricula due to their wide range of applications. In this article, we present a one-week course module for students in advanced undergraduate and applied graduate courses on variational inference, a popular optimization-based approach for approximate inference with probabilistic models. Our proposed module is guided by active learning principles: In addition to lecture materials on variational inference, we provide an accompanying class activity, an R shiny app, and guided labs based on real data applications of logistic regression and clustering documents using Latent Dirichlet Allocation with R code. The main goal of our module is to expose students to a method that facilitates statistical modeling and inference with large datasets. Using our proposed module as a foundation, instructors can adopt and adapt it to introduce more realistic case studies and applications in data science, Bayesian statistics, multivariate analysis, and statistical machine learning courses.
Facebook
TwitterMATLAB led the global advanced analytics and data science software industry in 2025 with a market share of ***** percent. First launched in 1984, MATLAB is developed by the U.S. firm MathWorks.