Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Machine learning (ML) has gained much attention and has been incorporated into our daily lives. While there are numerous publicly available ML projects on open source platforms such as GitHub, there have been limited attempts in filtering those projects to curate ML projects of high quality. The limited availability of such high-quality dataset poses an obstacle to understanding ML projects. To help clear this obstacle, we present NICHE, a manually labelled dataset consisting of 572 ML projects. Based on evidences of good software engineering practices, we label 441 of these projects as engineered and 131 as non-engineered. In this repository we provide "NICHE.csv" file that contains the list of the project names along with their labels, descriptive information for every dimension, and several basic statistics, such as the number of stars and commits. This dataset can help researchers understand the practices that are followed in high-quality ML projects. It can also be used as a benchmark for classifiers designed to identify engineered ML projects.
GitHub page: https://github.com/soarsmu/NICHE
Facebook
TwitterHydrographic and Impairment Statistics (HIS) is a National Park Service (NPS) Water Resources Division (WRD) project established to track certain goals created in response to the Government Performance and Results Act of 1993 (GPRA). One water resources management goal established by the Department of the Interior under GRPA requires NPS to track the percent of its managed surface waters that are meeting Clean Water Act (CWA) water quality standards. This goal requires an accurate inventory that spatially quantifies the surface water hydrography that each bureau manages and a procedure to determine and track which waterbodies are or are not meeting water quality standards as outlined by Section 303(d) of the CWA. This project helps meet this DOI GRPA goal by inventorying and monitoring in a geographic information system for the NPS: (1) CWA 303(d) quality impaired waters and causes; and (2) hydrographic statistics based on the United States Geological Survey (USGS) National Hydrography Dataset (NHD). Hydrographic and 303(d) impairment statistics were evaluated based on a combination of 1:24,000 (NHD) and finer scale data (frequently provided by state GIS layers).
Facebook
TwitterOpen Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
This dataset was originally collected for a data science and machine learning project that aimed at investigating the potential correlation between the amount of time an individual spends on social media and the impact it has on their mental health.
The project involves conducting a survey to collect data, organizing the data, and using machine learning techniques to create a predictive model that can determine whether a person should seek professional help based on their answers to the survey questions.
This project was completed as part of a Statistics course at a university, and the team is currently in the process of writing a report and completing a paper that summarizes and discusses the findings in relation to other research on the topic.
The following is the Google Colab link to the project, done on Jupyter Notebook -
https://colab.research.google.com/drive/1p7P6lL1QUw1TtyUD1odNR4M6TVJK7IYN
The following is the GitHub Repository of the project -
https://github.com/daerkns/social-media-and-mental-health
Libraries used for the Project -
Pandas
Numpy
Matplotlib
Seaborn
Sci-kit Learn
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Gratis by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Gratis across both sexes and to determine which sex constitutes the majority.
Key observations
There is a slight majority of female population, with 50.0% of total population being female. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Gratis Population by Race & Ethnicity. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Related article: Bergroth, C., Järv, O., Tenkanen, H., Manninen, M., Toivonen, T., 2022. A 24-hour population distribution dataset based on mobile phone data from Helsinki Metropolitan Area, Finland. Scientific Data 9, 39.
In this dataset:
We present temporally dynamic population distribution data from the Helsinki Metropolitan Area, Finland, at the level of 250 m by 250 m statistical grid cells. Three hourly population distribution datasets are provided for regular workdays (Mon – Thu), Saturdays and Sundays. The data are based on aggregated mobile phone data collected by the biggest mobile network operator in Finland. Mobile phone data are assigned to statistical grid cells using an advanced dasymetric interpolation method based on ancillary data about land cover, buildings and a time use survey. The data were validated by comparing population register data from Statistics Finland for night-time hours and a daytime workplace registry. The resulting 24-hour population data can be used to reveal the temporal dynamics of the city and examine population variations relevant to for instance spatial accessibility analyses, crisis management and planning.
Please cite this dataset as:
Bergroth, C., Järv, O., Tenkanen, H., Manninen, M., Toivonen, T., 2022. A 24-hour population distribution dataset based on mobile phone data from Helsinki Metropolitan Area, Finland. Scientific Data 9, 39. https://doi.org/10.1038/s41597-021-01113-4
Organization of data
The dataset is packaged into a single Zipfile Helsinki_dynpop_matrix.zip which contains following files:
HMA_Dynamic_population_24H_workdays.csv represents the dynamic population for average workday in the study area.
HMA_Dynamic_population_24H_sat.csv represents the dynamic population for average saturday in the study area.
HMA_Dynamic_population_24H_sun.csv represents the dynamic population for average sunday in the study area.
target_zones_grid250m_EPSG3067.geojson represents the statistical grid in ETRS89/ETRS-TM35FIN projection that can be used to visualize the data on a map using e.g. QGIS.
Column names
YKR_ID : a unique identifier for each statistical grid cell (n=13,231). The identifier is compatible with the statistical YKR grid cell data by Statistics Finland and Finnish Environment Institute.
H0, H1 ... H23 : Each field represents the proportional distribution of the total population in the study area between grid cells during a one-hour period. In total, 24 fields are formatted as “Hx”, where x stands for the hour of the day (values ranging from 0-23). For example, H0 stands for the first hour of the day: 00:00 - 00:59. The sum of all cell values for each field equals to 100 (i.e. 100% of total population for each one-hour period)
In order to visualize the data on a map, the result tables can be joined with the target_zones_grid250m_EPSG3067.geojson data. The data can be joined by using the field YKR_ID as a common key between the datasets.
License Creative Commons Attribution 4.0 International.
Related datasets
Järv, Olle; Tenkanen, Henrikki & Toivonen, Tuuli. (2017). Multi-temporal function-based dasymetric interpolation tool for mobile phone data. Zenodo. https://doi.org/10.5281/zenodo.252612
Tenkanen, Henrikki, & Toivonen, Tuuli. (2019). Helsinki Region Travel Time Matrix [Data set]. Zenodo. http://doi.org/10.5281/zenodo.3247564
Facebook
TwitterThis dataset was created by Saleh Zeer
Facebook
Twitterhttps://www.nist.gov/open/licensehttps://www.nist.gov/open/license
The purpose of this project is to improve the accuracy of statistical software by providing reference datasets with certified computational results that enable the objective evaluation of statistical software. Currently datasets and certified values are provided for assessing the accuracy of software for univariate statistics, linear regression, nonlinear regression, and analysis of variance. The collection includes both generated and 'real-world' data of varying levels of difficulty. Generated datasets are designed to challenge specific computations. These include the classic Wampler datasets for testing linear regression algorithms and the Simon & Lesage datasets for testing analysis of variance algorithms. Real-world data include challenging datasets such as the Longley data for linear regression, and more benign datasets such as the Daniel & Wood data for nonlinear regression. Certified values are 'best-available' solutions. The certification procedure is described in the web pages for each statistical method. Datasets are ordered by level of difficulty (lower, average, and higher). Strictly speaking the level of difficulty of a dataset depends on the algorithm. These levels are merely provided as rough guidance for the user. Producing correct results on all datasets of higher difficulty does not imply that your software will pass all datasets of average or even lower difficulty. Similarly, producing correct results for all datasets in this collection does not imply that your software will do the same for your particular dataset. It will, however, provide some degree of assurance, in the sense that your package provides correct results for datasets known to yield incorrect results for some software. The Statistical Reference Datasets is also supported by the Standard Reference Data Program.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A common question for those new and familiar to computer science and software engineering is what is the most best and/or most popular programming language. It is very difficult to give a definitive answer, as there are a seemingly indefinite number of metrics that can define the 'best' or 'most popular' programming language.
One such metric that can be used to define a 'popular' programming language is the number of projects and files that are made using that programming language. As GitHub is the most popular public collaboration and file-sharing platform, analyzing the languages that are used for repositories, PRs, and issues on GitHub and be a good indicator for the popularity of a language.
This dataset contains statistics about the programming languages used for repositories, PRs, and issues on GitHub. The data is from 2011 to 2021.
This data was queried and aggregated from BigQuery's public github_repos and githubarchive datasets.
Only data for public GitHub repositories, and their corresponding PRs/issues, have their data available publicly. Thus, this dataset is only based on public repositories, which may not be fully representative of all repositories on GitHub.
Facebook
Twitterhttps://www.rioxx.net/licenses/all-rights-reservedhttps://www.rioxx.net/licenses/all-rights-reserved
Open datasets for the Exeter Cascade Project 1-25.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Two Polish-English publications of the Polish Central Statistical Office in the XLIFF format: 1. "Statistical Yearbook of the Republic of Poland 2015" is the main summary publication of the Central Statistical Office, including a comprehensive set of statistical data describing the condition of the natural environment, the socio-economic and demographic situation of Poland, and its position in Europe and in the world. 2. "Women in Poland" contains statistical information regarding women's place and participation in socio-economic life of the country including international comparisons. The texts were aligned at the level of translation segments (mostly sentences and short paragraphs) and manually verified.
This dataset has been created within the framework of the European Language Resource Coordination (ELRC) Connecting Europe Facility - Automated Translation (CEF.AT) actions SMART 2014/1074 and SMART 2015/1091. For further information on the project: http://lr-coordination.eu.
Facebook
TwitterThis table contains data on the percent of population age 25 and up with a four-year college degree or higher for California, its regions, counties, county subdivisions, cities, towns, and census tracts. Greater educational attainment has been associated with health-promoting behaviors including consumption of fruits and vegetables and other aspects of healthy eating, engaging in regular physical activity, and refraining from excessive consumption of alcohol and from smoking. Completion of formal education (e.g., high school) is a key pathway to employment and access to healthier and higher paying jobs that can provide food, housing, transportation, health insurance, and other basic necessities for a healthy life. Education is linked with social and psychological factors, including sense of control, social standing and social support. These factors can improve health through reducing stress, influencing health-related behaviors and providing practical and emotional support. More information on the data table and a data dictionary can be found in the Data and Resources section. The educational attainment table is part of a series of indicators in the Healthy Communities Data and Indicators Project (HCI) of the Office of Health Equity. The goal of HCI is to enhance public health by providing data, a standardized set of statistical measures, and tools that a broad array of sectors can use for planning healthy communities and evaluating the impact of plans, projects, policy, and environmental changes on community health. The creation of healthy social, economic, and physical environments that promote healthy behaviors and healthy outcomes requires coordination and collaboration across multiple sectors, including transportation, housing, education, agriculture and others. Statistical metrics, or indicators, are needed to help local, regional, and state public health and partner agencies assess community environments and plan for healthy communities that optimize public health. More information on HCI can be found here: https://www.cdph.ca.gov/Programs/OHE/CDPH%20Document%20Library/Accessible%202%20CDPH_Healthy_Community_Indicators1pager5-16-12.pdf The format of the educational attainment table is based on the standardized data format for all HCI indicators. As a result, this data table contains certain variables used in the HCI project (e.g., indicator ID, and indicator definition). Some of these variables may contain the same value for all observations.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This Website Statistics dataset has four resources showing usage of the Lincolnshire Open Data website. Web analytics terms used in each resource are defined in their accompanying Metadata file.
Website Usage Statistics: This document shows a statistical summary of usage of the Lincolnshire Open Data site for the latest calendar year.
Website Statistics Summary: This dataset shows a website statistics summary for the Lincolnshire Open Data site for the latest calendar year.
Webpage Statistics: This dataset shows statistics for individual Webpages on the Lincolnshire Open Data site by calendar year.
Dataset Statistics: This dataset shows cumulative totals for Datasets on the Lincolnshire Open Data site that have also been published on the national Open Data site Data.Gov.UK - see the Source link.
Note: Website and Webpage statistics (the first three resources above) show only UK users, and exclude API calls (automated requests for datasets). The Dataset Statistics are confined to users with javascript enabled, which excludes web crawlers and API calls.
These Website Statistics resources are updated annually in January by the Lincolnshire County Council Business Intelligence team. For any enquiries about the information contact opendata@lincolnshire.gov.uk.
Facebook
Twitterhttps://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
Contains data on Community Services Statistics for June 2025 and a provisional data file for July 2025 (note this is intended as an early view until providers submit a refresh of their data).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains data from the National Center for Education Statistics' Academic Library Survey, which was gathered every two years from 1996 - 2014, and annually in IPEDS starting in 2014 (this dataset has continued to only merge data every two years, following the original schedule). This data was merged, transformed, and used for research by Starr Hoffman and Samantha Godbey.This data was merged using R; R scripts for this merge can be made available upon request. Some variables changed names or definitions during this time; a view of these variables over time is provided in the related Figshare Project. Carnegie Classification changed several times during this period; all Carnegie classifications were crosswalked to the 2000 classification version; that information is also provided in the related Figshare Project. This data was used for research published in several articles, conference papers, and posters starting in 2018 (some of this research used an older version of the dataset which was deposited in the University of Nevada, Las Vegas's repository).SourcesAll data sources were downloaded from the National Center for Education Statistics website https://nces.ed.gov/. Individual datasets and years accessed are listed below.[dataset] U.S. Department of Education, National Center for Education Statistics, Academic Libraries component, Integrated Postsecondary Education Data System (IPEDS), (2020, 2018, 2016, 2014), https://nces.ed.gov/ipeds/datacenter/login.aspx?gotoReportId=7[dataset] U.S. Department of Education, National Center for Education Statistics, Academic Libraries Survey (ALS) Public Use Data File, Library Statistics Program, (2012, 2010, 2008, 2006, 2004, 2002, 2000, 1998, 1996), https://nces.ed.gov/surveys/libraries/aca_data.asp[dataset] U.S. Department of Education, National Center for Education Statistics, Institutional Characteristics component, Integrated Postsecondary Education Data System (IPEDS), (2020, 2018, 2016, 2014), https://nces.ed.gov/ipeds/datacenter/login.aspx?gotoReportId=7[dataset] U.S. Department of Education, National Center for Education Statistics, Fall Enrollment component, Integrated Postsecondary Education Data System (IPEDS), (2020, 2018, 2016, 2014, 2012, 2010, 2008, 2006, 2004, 2002, 2000, 1998, 1996), https://nces.ed.gov/ipeds/datacenter/login.aspx?gotoReportId=7[dataset] U.S. Department of Education, National Center for Education Statistics, Human Resources component, Integrated Postsecondary Education Data System (IPEDS), (2020, 2018, 2016, 2014, 2012, 2010, 2008, 2006), https://nces.ed.gov/ipeds/datacenter/login.aspx?gotoReportId=7[dataset] U.S. Department of Education, National Center for Education Statistics, Employees Assigned by Position component, Integrated Postsecondary Education Data System (IPEDS), (2004, 2002), https://nces.ed.gov/ipeds/datacenter/login.aspx?gotoReportId=7[dataset] U.S. Department of Education, National Center for Education Statistics, Fall Staff component, Integrated Postsecondary Education Data System (IPEDS), (1999, 1997, 1995), https://nces.ed.gov/ipeds/datacenter/login.aspx?gotoReportId=7
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The World Bank is an international financial institution that provides loans to countries of the world for capital projects. The World Bank's stated goal is the reduction of poverty. Source: https://en.wikipedia.org/wiki/World_Bank
This dataset combines key education statistics from a variety of sources to provide a look at global literacy, spending, and access.
For more information, see the World Bank website.
Fork this kernel to get started with this dataset.
https://bigquery.cloud.google.com/dataset/bigquery-public-data:world_bank_health_population
http://data.worldbank.org/data-catalog/ed-stats
https://cloud.google.com/bigquery/public-data/world-bank-education
Citation: The World Bank: Education Statistics
Dataset Source: World Bank. This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
Banner Photo by @till_indeman from Unplash.
Of total government spending, what percentage is spent on education?
Facebook
TwitterThese family food datasets contain more detailed information than the ‘Family Food’ report and mainly provide statistics from 2001 onwards. The UK household purchases and the UK household expenditure spreadsheets include statistics from 1974 onwards. These spreadsheets are updated annually when a new edition of the ‘Family Food’ report is published.
The ‘purchases’ spreadsheets give the average quantity of food and drink purchased per person per week for each food and drink category. The ‘nutrient intake’ spreadsheets give the average nutrient intake (e.g. energy, carbohydrates, protein, fat, fibre, minerals and vitamins) from food and drink per person per day. The ‘expenditure’ spreadsheets give the average amount spent in pence per person per week on each type of food and drink. Several different breakdowns are provided in addition to the UK averages including figures by region, income, household composition and characteristics of the household reference person.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This article contains consolidated proteomic data obtained from xylem sap collected from tomato plants grown in Fe- and Mn-sufficient control, as well as Fe-deficient and Mn-deficient conditions. Data presented here cover proteins identified and quantified by shotgun proteomics and Progenesis LC-MS analyses: proteins identified with at least two peptides and showing changes statistically significant (ANOVA; p ≤ 0.05) and above a biologically relevant selected threshold (fold ≥ 2) between treatments are listed. The comparison between Fe-deficient, Mn-deficient and control xylem sap samples using a multivariate statistical data analysis (Principal Component Analysis, PCA) is also included. Data included in this article are discussed in depth in "Effects of Fe and Mn deficiencies on the protein profiles of tomato (Solanum lycopersicum) xylem sap as revealed by shotgun analyses", Ceballos-Laita et al., J. Proteomics, 2018. This dataset is made available to support the cited study as well to extend analyses at a later stage. Resources in this dataset:Resource Title: ProteomeExchange submission PXD007517. Xylem sap shotgun proteomics from Fe- and Mn-deficient and Mn-toxic tomato plants. . File Name: Web Page, url: http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD007517 The MS proteomics data have been deposited to the ProteomeXchange Consortium via the Pride partner repository with the data set identifier PXD007517. Also includes FTP location. Files available at https://www.ebi.ac.uk/pride/archive/projects/PXD007517 via HTML, FTP, or Fast (Aspera) download : 1 SEARCH.xml file, 1 Peak file, 24 RAW files, 1 Mascot information.xlsx file. Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2018.01.034
Facebook
TwitterThe total amount of data created, captured, copied, and consumed globally is forecast to increase rapidly. While it was estimated at ***** zettabytes in 2025, the forecast for 2029 stands at ***** zettabytes. Thus, global data generation will triple between 2025 and 2029. Data creation has been expanding continuously over the past decade. In 2020, the growth was higher than previously expected, caused by the increased demand due to the coronavirus (COVID-19) pandemic, as more people worked and learned from home and used home entertainment options more often.
Facebook
TwitterThis dataset covers vocational qualifications starting 2012 to present for England.
The dataset is updated every quarter. Data for previous quarters may be revised to insert late data or to correct an error. Updates also reflect where qualifications were re-categorised to a different type, level, sector subject area or awarding organisation. Where a quarterly update includes revisions to data for previous quarters, a table of revisions is published in the vocational and other qualifications quarterly release
In the dataset, the number of certificates issued are rounded to the nearest 5 and values less than 5 appear as ‘Fewer than 5’ to preserve confidentiality (and a 0 represents no certificates).
Where a qualification has been owned by more than one awarding organisation at different points in time, a separate row is given for each organisation.
Background information and key headlines for every quarter are published in in the vocational and other qualifications quarterly release.
For any queries contact us at data.analytics@ofqual.gov.uk.
CSV, 20.5 MB
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Gate household income by age. The dataset can be utilized to understand the age-based income distribution of Gate income.
The dataset will have the following datasets when applicable
Please note: The 2020 1-Year ACS estimates data was not reported by the Census Bureau due to the impact on survey collection and analysis caused by COVID-19. Consequently, median household income data for 2020 is unavailable for large cities (population 65,000 and above).
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Explore our comprehensive data analysis and visual representations for a deeper understanding of Gate income distribution by age. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Machine learning (ML) has gained much attention and has been incorporated into our daily lives. While there are numerous publicly available ML projects on open source platforms such as GitHub, there have been limited attempts in filtering those projects to curate ML projects of high quality. The limited availability of such high-quality dataset poses an obstacle to understanding ML projects. To help clear this obstacle, we present NICHE, a manually labelled dataset consisting of 572 ML projects. Based on evidences of good software engineering practices, we label 441 of these projects as engineered and 131 as non-engineered. In this repository we provide "NICHE.csv" file that contains the list of the project names along with their labels, descriptive information for every dimension, and several basic statistics, such as the number of stars and commits. This dataset can help researchers understand the practices that are followed in high-quality ML projects. It can also be used as a benchmark for classifiers designed to identify engineered ML projects.
GitHub page: https://github.com/soarsmu/NICHE