17 datasets found
  1. f

    Data from: Excel Templates: A Helpful Tool for Teaching Statistics

    • tandf.figshare.com
    zip
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alejandro Quintela-del-Río; Mario Francisco-Fernández (2023). Excel Templates: A Helpful Tool for Teaching Statistics [Dataset]. http://doi.org/10.6084/m9.figshare.3408052.v2
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Taylor & Francis
    Authors
    Alejandro Quintela-del-Río; Mario Francisco-Fernández
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This article describes a free, open-source collection of templates for the popular Excel (2013, and later versions) spreadsheet program. These templates are spreadsheet files that allow easy and intuitive learning and the implementation of practical examples concerning descriptive statistics, random variables, confidence intervals, and hypothesis testing. Although they are designed to be used with Excel, they can also be employed with other free spreadsheet programs (changing some particular formulas). Moreover, we exploit some possibilities of the ActiveX controls of the Excel Developer Menu to perform interactive Gaussian density charts. Finally, it is important to note that they can be often embedded in a web page, so it is not necessary to employ Excel software for their use. These templates have been designed as a useful tool to teach basic statistics and to carry out data analysis even when the students are not familiar with Excel. Additionally, they can be used as a complement to other analytical software packages. They aim to assist students in learning statistics, within an intuitive working environment. Supplementary materials with the Excel templates are available online.

  2. m

    Dataset of development of business during the COVID-19 crisis

    • data.mendeley.com
    • narcis.nl
    Updated Nov 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tatiana N. Litvinova (2020). Dataset of development of business during the COVID-19 crisis [Dataset]. http://doi.org/10.17632/9vvrd34f8t.1
    Explore at:
    Dataset updated
    Nov 9, 2020
    Authors
    Tatiana N. Litvinova
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    To create the dataset, the top 10 countries leading in the incidence of COVID-19 in the world were selected as of October 22, 2020 (on the eve of the second full of pandemics), which are presented in the Global 500 ranking for 2020: USA, India, Brazil, Russia, Spain, France and Mexico. For each of these countries, no more than 10 of the largest transnational corporations included in the Global 500 rating for 2020 and 2019 were selected separately. The arithmetic averages were calculated and the change (increase) in indicators such as profitability and profitability of enterprises, their ranking position (competitiveness), asset value and number of employees. The arithmetic mean values of these indicators for all countries of the sample were found, characterizing the situation in international entrepreneurship as a whole in the context of the COVID-19 crisis in 2020 on the eve of the second wave of the pandemic. The data is collected in a general Microsoft Excel table. Dataset is a unique database that combines COVID-19 statistics and entrepreneurship statistics. The dataset is flexible data that can be supplemented with data from other countries and newer statistics on the COVID-19 pandemic. Due to the fact that the data in the dataset are not ready-made numbers, but formulas, when adding and / or changing the values in the original table at the beginning of the dataset, most of the subsequent tables will be automatically recalculated and the graphs will be updated. This allows the dataset to be used not just as an array of data, but as an analytical tool for automating scientific research on the impact of the COVID-19 pandemic and crisis on international entrepreneurship. The dataset includes not only tabular data, but also charts that provide data visualization. The dataset contains not only actual, but also forecast data on morbidity and mortality from COVID-19 for the period of the second wave of the pandemic in 2020. The forecasts are presented in the form of a normal distribution of predicted values and the probability of their occurrence in practice. This allows for a broad scenario analysis of the impact of the COVID-19 pandemic and crisis on international entrepreneurship, substituting various predicted morbidity and mortality rates in risk assessment tables and obtaining automatically calculated consequences (changes) on the characteristics of international entrepreneurship. It is also possible to substitute the actual values identified in the process and following the results of the second wave of the pandemic to check the reliability of pre-made forecasts and conduct a plan-fact analysis. The dataset contains not only the numerical values of the initial and predicted values of the set of studied indicators, but also their qualitative interpretation, reflecting the presence and level of risks of a pandemic and COVID-19 crisis for international entrepreneurship.

  3. f

    Data from: Supplemental data

    • figshare.com
    xlsx
    Updated Mar 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    T Miyakoshi; Yoichi M. Ito (2024). Supplemental data [Dataset]. http://doi.org/10.6084/m9.figshare.24596058.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Mar 15, 2024
    Dataset provided by
    figshare
    Authors
    T Miyakoshi; Yoichi M. Ito
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The dataset for the article "The current utilization status of wearable devices in clinical research".Analyses were performed by utilizing the JMP Pro 16.10, Microsoft Excel for Mac version 16 (Microsoft).The file extension "jrp" is a file of the statistical analysis software JMP, which contains both the analysis code and the data set.In case JMP is not available, a "csv" file as a data set and JMP script, the analysis code, are prepared in "rtf" format.The "xlsx" file is a Microsoft Excel file that contains the data set and the data plotted or tabulated using Microsoft Excel functions.Supplementary Figure 1. NCT number duplication frequencyIncludes Excel file used to create the figure (Supplemental Figure 1).・Sfig1_NCT number duplication frequency.xlsxSupplementary Figure 2-5 Simple and annual time series aggregationIncludes Excel file, JMP repo file, csv dataset of JMP repo file and JMP scripts used to create the figure (Supplementary Figures 2-5).・Sfig2-5 Annual time series aggregation.xlsx・Sfig2 Study Type.jrp・Sfig4device type.jrp・Sfig3 Interventions Type.jrp・Sfig5Conditions type.jrp・Sfig2, 3 ,5_database.csv・Sfig2_JMP script_Study type.rtf・Sfig3_JMP script Interventions type.rtf・Sfig5_JMP script Conditions type.rtf・Sfig4_dataset.csv・Sfig4_JMP script_device type.rtfSupplementary Figures 6-11 Mosaic diagram of intervention by conditionSupplementary tables 4-9 Analysis of contingency table for intervention by condition JMP repot files used to create the figures(Supplementary Figures 6-11 ) and tables(Supplementary Tablea 4-9) , including the csv dataset of JMP repot files and JMP scripts.・Sfig6-11 Stable4-9 Intervention devicetype_conditions.jrp・Sfig6-11_Stable4-9_dataset.csv・Sfig6-11_Stable4-9_JMP script.rtfSupplementary Figure 12. Distribution of enrollmentIncludes Excel file, JMP repo file, csv dataset of JMP repo file and JMP scripts used to create the figure (Supplementary Figures 12).・Sfig12_Distribution of enrollment.jrp・Sfig12_Distribution of enrollment.csv・Sfig12_JMP script.rtf

  4. 2011 skills for life survey: small area estimation data

    • gov.uk
    Updated Dec 12, 2012
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department for Business, Innovation & Skills (2012). 2011 skills for life survey: small area estimation data [Dataset]. https://www.gov.uk/government/statistical-data-sets/2011-skills-for-life-survey-small-area-estimation-data
    Explore at:
    Dataset updated
    Dec 12, 2012
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Department for Business, Innovation & Skills
    Description

    Small area estimation modelling methods have been applied to the 2011 Skills for Life survey data in order to generate local level area estimates of the number and proportion of adults (aged 16-64 years old) in England living in households with defined skill levels in:

    • literacy
    • numeracy
    • information and communication technology (ICT); including emailing, word processing, spreadsheet use and a multiple-choice assessment of ICT awareness

    The number and proportion of adults in households who do not speak English as a first language are also included.

    Two sets of small area estimates are provided for 7 geographies; middle layer super output areas (MSOAs), standard table wards, 2005 statistical wards, 2011 council wards, 2011 parliamentary constituencies, local authorities, and local enterprise partnership areas.

    Regional estimates have also been provided, however, unlike the other geographies, these estimates are based on direct survey estimates and not modelled estimates.

    The files are available as both Excel and csv files – the user guide explains the estimates and modelling approach in more detail.

    How to use the small area estimation files, an example

    To find the estimate for the proportion of adults with entry level 1 or below literacy in the Manchester Central parliamentary constituency, you need to:

    1. select the link to the ‘parliamentary-constituencies-2009-all’ Excel file in the table above
    2. select the ‘literacy proportions’ page of the Excel spreadsheet
    3. use the ‘find’ function to locate ‘Manchester Central’
    4. note the proportion listed for Entry Level and below

    It is estimated that 8.1% of adults aged 16-64 in Manchester Central have entry level or below literacy. The Credible Intervals for this estimate are 7.0 and 9.3% at the 95 per cent level. This means that while the estimate is 8.1%, there is a 95% likelihood that the actual value lies between 7.0 and 9.3%.

    https://assets.publishing.service.gov.uk/media/5a79d91240f0b670a8025dd8/middle-layer-super-output-areas-2001-all_1_.xlsx">Middle layer super output areas: 2001 all skill level estimates

     <p class="gem-c-attachment_metadata"><span class="gem-c-attachment_attribute">MS Excel Spreadsheet</span>, <span class="gem-c-attachment_attribute">14.5 MB</span></p>
    
    
    
    
     <p class="gem-c-attachment_metadata">This file may not be suitable for users of assistive technology.</p>
     <details data-module="ga4-event-tracker" data-ga4-event='{"event_name":"select_content","type":"detail","text":"Request an accessible format.","section":"Request an accessible format.","index_section":1}' class="gem-c-details govuk-details govuk-!-margin-bottom-0" title="Request an accessible format.">
    

    Request an accessible format.

      If you use assistive technology (such as a screen reader) and need a version of this document in a more accessible format, please email <a href="mailto:enquiries@beis.gov.uk" target="_blank" class="govuk-link">enquiries@beis.gov.uk</a>. Please tell us what format you need. It will help us if you say what assistive technology you use.
    

    <div class="gem-c-attachmen

  5. Extended 1.0 Dataset of "Concentration and Geospatial Modelling of Health...

    • zenodo.org
    bin, csv, pdf
    Updated Sep 23, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Peter Domjan; Peter Domjan; Viola Angyal; Viola Angyal; Istvan Vingender; Istvan Vingender (2024). Extended 1.0 Dataset of "Concentration and Geospatial Modelling of Health Development Offices' Accessibility for the Total and Elderly Populations in Hungary" [Dataset]. http://doi.org/10.5281/zenodo.13826993
    Explore at:
    bin, pdf, csvAvailable download formats
    Dataset updated
    Sep 23, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Peter Domjan; Peter Domjan; Viola Angyal; Viola Angyal; Istvan Vingender; Istvan Vingender
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Sep 23, 2024
    Area covered
    Hungary
    Description

    Introduction

    We are enclosing the database used in our research titled "Concentration and Geospatial Modelling of Health Development Offices' Accessibility for the Total and Elderly Populations in Hungary", along with our statistical calculations. For the sake of reproducibility, further information can be found in the file Short_Description_of_Data_Analysis.pdf and Statistical_formulas.pdf

    The sharing of data is part of our aim to strengthen the base of our scientific research. As of March 7, 2024, the detailed submission and analysis of our research findings to a scientific journal has not yet been completed.

    The dataset was expanded on 23rd September 2024 to include SPSS statistical analysis data, a heatmap, and buffer zone analysis around the Health Development Offices (HDOs) created in QGIS software.

    Short Description of Data Analysis and Attached Files (datasets):

    Our research utilised data from 2022, serving as the basis for statistical standardisation. The 2022 Hungarian census provided an objective basis for our analysis, with age group data available at the county level from the Hungarian Central Statistical Office (KSH) website. The 2022 demographic data provided an accurate picture compared to the data available from the 2023 microcensus. The used calculation is based on our standardisation of the 2022 data. For xlsx files, we used MS Excel 2019 (version: 1808, build: 10406.20006) with the SOLVER add-in.

    Hungarian Central Statistical Office served as the data source for population by age group, county, and regions: https://www.ksh.hu/stadat_files/nep/hu/nep0035.html, (accessed 04 Jan. 2024.) with data recorded in MS Excel in the Data_of_demography.xlsx file.

    In 2022, 108 Health Development Offices (HDOs) were operational, and it's noteworthy that no developments have occurred in this area since 2022. The availability of these offices and the demographic data from the Central Statistical Office in Hungary are considered public interest data, freely usable for research purposes without requiring permission.

    The contact details for the Health Development Offices were sourced from the following page (Hungarian National Population Centre (NNK)): https://www.nnk.gov.hu/index.php/efi (n=107). The Semmelweis University Health Development Centre was not listed by NNK, hence it was separately recorded as the 108th HDO. More information about the office can be found here: https://semmelweis.hu/egeszsegfejlesztes/en/ (n=1). (accessed 05 Dec. 2023.)

    Geocoordinates were determined using Google Maps (N=108): https://www.google.com/maps. (accessed 02 Jan. 2024.) Recording of geocoordinates (latitude and longitude according to WGS 84 standard), address data (postal code, town name, street, and house number), and the name of each HDO was carried out in the: Geo_coordinates_and_names_of_Hungarian_Health_Development_Offices.csv file.

    The foundational software for geospatial modelling and display (QGIS 3.34), an open-source software, can be downloaded from:

    https://qgis.org/en/site/forusers/download.html. (accessed 04 Jan. 2024.)

    The HDOs_GeoCoordinates.gpkg QGIS project file contains Hungary's administrative map and the recorded addresses of the HDOs from the

    Geo_coordinates_and_names_of_Hungarian_Health_Development_Offices.csv file,

    imported via .csv file.

    The OpenStreetMap tileset is directly accessible from www.openstreetmap.org in QGIS. (accessed 04 Jan. 2024.)

    The Hungarian county administrative boundaries were downloaded from the following website: https://data2.openstreetmap.hu/hatarok/index.php?admin=6 (accessed 04 Jan. 2024.)

    HDO_Buffers.gpkg is a QGIS project file that includes the administrative map of Hungary, the county boundaries, as well as the HDO offices and their corresponding buffer zones with a radius of 7.5 km.

    Heatmap.gpkg is a QGIS project file that includes the administrative map of Hungary, the county boundaries, as well as the HDO offices and their corresponding heatmap (Kernel Density Estimation).

    A brief description of the statistical formulas applied is included in the Statistical_formulas.pdf.

    Recording of our base data for statistical concentration and diversification measurement was done using MS Excel 2019 (version: 1808, build: 10406.20006) in .xlsx format.

    • Aggregated number of HDOs by county: Number_of_HDOs.xlsx
    • Standardised data (Number of HDOs per 100,000 residents): Standardized_data.xlsx
    • Calculation of the Lorenz curve: Lorenz_curve.xlsx
    • Calculation of the Gini index: Gini_Index.xlsx
    • Calculation of the LQ index: LQ_Index.xlsx
    • Calculation of the Herfindahl-Hirschman Index: Herfindahl_Hirschman_Index.xlsx
    • Calculation of the Entropy index: Entropy_Index.xlsx
    • Regression and correlation analysis calculation: Regression_correlation.xlsx

    Using the SPSS 29.0.1.0 program, we performed the following statistical calculations with the databases Data_HDOs_population_without_outliers.sav and Data_HDOs_population.sav:

    • Regression curve estimation with elderly population and number of HDOs, excluding outlier values (Types of analyzed equations: Linear, Logarithmic, Inverse, Quadratic, Cubic, Compound, Power, S, Growth, Exponential, Logistic, with summary and ANOVA analysis table): Curve_estimation_elderly_without_outlier.spv
    • Pearson correlation table between the total population, elderly population, and number of HDOs per county, excluding outlier values such as Budapest and Pest County: Pearson_Correlation_populations_HDOs_number_without_outliers.spv.
    • Dot diagram including total population and number of HDOs per county, excluding outlier values such as Budapest and Pest Counties: Dot_HDO_total_population_without_outliers.spv.
    • Dot diagram including elderly (64<) population and number of HDOs per county, excluding outlier values such as Budapest and Pest Counties: Dot_HDO_elderly_population_without_outliers.spv
    • Regression curve estimation with total population and number of HDOs, excluding outlier values (Types of analyzed equations: Linear, Logarithmic, Inverse, Quadratic, Cubic, Compound, Power, S, Growth, Exponential, Logistic, with summary and ANOVA analysis table): Curve_estimation_without_outlier.spv
    • Dot diagram including elderly (64<) population and number of HDOs per county: Dot_HDO_elderly_population.spv
    • Dot diagram including total population and number of HDOs per county: Dot_HDO_total_population.spv
    • Pearson correlation table between the total population, elderly population, and number of HDOs per county: Pearson_Correlation_populations_HDOs_number.spv
    • Regression curve estimation with total population and number of HDOs, (Types of analyzed equations: Linear, Logarithmic, Inverse, Quadratic, Cubic, Compound, Power, S, Growth, Exponential, Logistic, with summary and ANOVA analysis table): Curve_estimation_total_population.spv

    For easier readability, the files have been provided in both SPV and PDF formats.

    The translation of these supplementary files into English was completed on 23rd Sept. 2024.

    If you have any further questions regarding the dataset, please contact the corresponding author: domjan.peter@phd.semmelweis.hu

  6. m

    Graphical and statistical analysis

    • data.mendeley.com
    Updated May 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ashwathi Prakash (2023). Graphical and statistical analysis [Dataset]. http://doi.org/10.17632/49kc5g6z25.1
    Explore at:
    Dataset updated
    May 22, 2023
    Authors
    Ashwathi Prakash
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Graphical analysis of the toxicity testing and the potency of millet extracts in reversing the tachycardic and bradycardic conditions. The results show significant changes and it is effectively supported by the statistical data (correlation analysis) performed using the basic functions of Microsoft Excel.

  7. Hive Annotation Job Results - Cleaned and Audited

    • kaggle.com
    Updated Apr 28, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Brendan Kelley (2021). Hive Annotation Job Results - Cleaned and Audited [Dataset]. https://www.kaggle.com/brendankelley/hive-annotation-job-results-cleaned-and-audited/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 28, 2021
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Brendan Kelley
    Description

    Context

    This notebook serves to showcase my problem solving ability, knowledge of the data analysis process, proficiency with Excel and its various tools and functions, as well as my strategic mindset and statistical prowess. This project consist of an auditing prompt provided by Hive Data, a raw Excel data set, a cleaned and audited version of the raw Excel data set, and my description of my thought process and knowledge used during completion of the project. The prompt can be found below:

    Hive Data Audit Prompt

    The raw data that accompanies the prompt can be found below:

    Hive Annotation Job Results - Raw Data

    ^ These are the tools I was given to complete my task. The rest of the work is entirely my own.

    To summarize broadly, my task was to audit the dataset and summarize my process and results. Specifically, I was to create a method for identifying which "jobs" - explained in the prompt above - needed to be rerun based on a set of "background facts," or criteria. The description of my extensive thought process and results can be found below in the Content section.

    Content

    Brendan Kelley April 23, 2021

    Hive Data Audit Prompt Results

    This paper explains the auditing process of the “Hive Annotation Job Results” data. It includes the preparation, analysis, visualization, and summary of the data. It is accompanied by the results of the audit in the excel file “Hive Annotation Job Results – Audited”.

    Observation

    The “Hive Annotation Job Results” data comes in the form of a single excel sheet. It contains 7 columns and 5,001 rows, including column headers. The data includes “file”, “object id”, and the pseudonym for five questions that each client was instructed to answer about their respective table: “tabular”, “semantic”, “definition list”, “header row”, and “header column”. The “file” column includes non-unique (that is, there are multiple instances of the same value in the column) numbers separated by a dash. The “object id” column includes non-unique numbers ranging from 5 to 487539. The columns containing the answers to the five questions include Boolean values - TRUE or FALSE – which depend upon the yes/no worker judgement.

    Use of the COUNTIF() function reveals that there are no values other than TRUE or FALSE in any of the five question columns. The VLOOKUP() function reveals that the data does not include any missing values in any of the cells.

    Assumptions

    Based on the clean state of the data and the guidelines of the Hive Data Audit Prompt, the assumption is that duplicate values in the “file” column are acceptable and should not be removed. Similarly, duplicated values in the “object id” column are acceptable and should not be removed. The data is therefore clean and is ready for analysis/auditing.

    Preparation

    The purpose of the audit is to analyze the accuracy of the yes/no worker judgement of each question according to the guidelines of the background facts. The background facts are as follows:

    • A table that is a definition list should automatically be tabular and also semantic • Semantic tables should automatically be tabular • If a table is NOT tabular, then it is definitely not semantic nor a definition list • A tabular table that has a header row OR header column should definitely be semantic

    These background facts serve as instructions for how the answers to the five questions should interact with one another. These facts can be re-written to establish criteria for each question:

    For tabular column: - If the table is a definition list, it is also tabular - If the table is semantic, it is also tabular

    For semantic column: - If the table is a definition list, it is also semantic - If the table is not tabular, it is not semantic - If the table is tabular and has either a header row or a header column...

  8. Introducing the new RPIJ measure of Consumer Price Inflation

    • data.wu.ac.at
    • cloud.csiss.gmu.edu
    • +1more
    html
    Updated Apr 26, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2014). Introducing the new RPIJ measure of Consumer Price Inflation [Dataset]. https://data.wu.ac.at/schema/data_gov_uk/YmYyM2EzZTQtMWRmYS00NmM5LTkzZjYtNGE3ZDg0MTFmYzZi
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Apr 26, 2014
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    This article describes the new RPIJ measure of Consumer Price Inflation. RPIJ is a Retail Prices Index (RPI) based measure that will use a geometric (Jevons) formula in place of one type of arithmetic formula (Carli). It is being launched in response to the National Statistician's conclusion that the RPI does not meet international standards due to the use of the Carli formula in its calculation. The accompanying Excel file includes a back series for RPIJ from 1997 to 2012.

    Source agency: Office for National Statistics

    Designation: National Statistics

    Language: English

    Alternative title: New RPIJ measure of Consumer Price Inflation

  9. f

    Microsoft Excel sheet with QC data from [69] used in Figs 5 and C in S1...

    • plos.figshare.com
    xlsx
    Updated May 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zahra Vahdat; Oliver Gambrell; Jonas Fisch; Eckhard Friauf; Abhyudai Singh (2025). Microsoft Excel sheet with QC data from [69] used in Figs 5 and C in S1 File. [Dataset]. http://doi.org/10.1371/journal.pcbi.1013067.s002
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    May 23, 2025
    Dataset provided by
    PLOS Computational Biology
    Authors
    Zahra Vahdat; Oliver Gambrell; Jonas Fisch; Eckhard Friauf; Abhyudai Singh
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Microsoft Excel sheet with QC data from [69] used in Figs 5 and C in S1 File.

  10. Data from: Variation in quality of women's health topic information from...

    • zenodo.org
    Updated Jul 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Benjamin Duval; Benjamin Duval (2025). Variation in quality of women's health topic information from systematic internet searches [Dataset]. http://doi.org/10.5281/zenodo.15839790
    Explore at:
    Dataset updated
    Jul 8, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Benjamin Duval; Benjamin Duval
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    METHODS

    Topic determination

    The project was developed as a team science exercise during a course on Nutrient Biology (New Mexico Institute of Mining and Technology, New Mexico, USA; BIOL 4089/5089). Students were all women pursuing degrees in Biology and Earth Science, with extensive internet search acumen developed from coursework and personal experience. We (students and professor) devoted ~5 hours to discussing women’s health topics prior to searching, defining search criteria, and developing a scoring system. These discussions led to a list of 12, non-cancer health topics particular to women’s health associated with human cis-gender female biology. Considerations of transgender health were discussed, with the consensus decision that those issues are scientifically relevant but deserving of a separate analysis not included here.

    Search protocol

    After agreeing on search terms, we experimented with settings in the Advanced Search feature in Google (www.google.com), and collectively agreed to the following settings: Language (English); search terms appearing in the “text” of the page; ANY of the terms “woman”, “women” ,“female”; ALL terms when using a single topic from list above with the addition of the word “nutrient”. Figure 1 shows a screenshot for how a search was conducted for endometriosis as an example. To standardize data collection among investigators, all results from the first 5 pages of results were collected. Search result URLs were followed, where a suite of data were gathered (variables in Table 2) and entered into a shared database (Appendix 1). Definitions for each variable (Table 2) were articulated following a 1-week trial period and further group discussion. Variables were defined to minimize subjectivity across investigators, clarify the reporting of results, and standardize data collection.

    Scoring metric

    The scoring metric was developed to allow for mean and variation (standard deviation, SD; standard error, SE) to be calculated from each topic, and compare among topics, and answer how much variation in quality is likely to be encountered across categories of women’s health issues. We report both variation metrics as SD encompasses the variation of the data set, while SE scales for sample size variation among categorical variables. When searching topics using the same criteria:

    1. Are some topics more likely to result in results for pages with scientifically verifiable information?

    1. Does the variation of quality vary between topics?

    Peer-reviewed journal articles were included in the database if encountered in the searches but were removed before statistical analysis. The justification for removing those sources was that it is possible the Google algorithm included those sources disproportionately for our group of college students and a professor who regularly searches for academic articles. We also assume those sources are consulted less frequently by lay audiences searching for health information.

    Scores were based on six binary (presence/absence) attributes of each web page evaluated. These were: Author (name present/absent), author credentials given, reviewer, reviewer credentials, sources listed, peer-reviewed sources listed. A score of 1 was given if the attribute was present, and 0 if absent. The total number of references cited on a webpage, as well as the number of those that were peer-reviewed (Table 2) were recorded, but for scoring purposes, a 1 or 0 was assigned if there were or were not references and peer-reviewed references, respectively. Potential scores thus ranged from 0 to 6.

    We performed a simple validation experiment via anonymous surveys sent to students at our institution (New Mexico Tech), a predominantly STEM-focused public university. Using the final scores from the search result webpages, a single website from each score was selected at random using the RAND() function in Microsoft Excel to assign a random variable as an identifier to each URL, then sorting by that variable and selecting the first article in a given score category. Webpages with scores of 0 or 6 were excluded from the validation experiment. Following institutional review, a survey was sent to the “all student” email list, and recipients were directed to a web survey that asked participants to give a score of 1-5 to each of the 5 random (but previously scored) web pages, without repeating a score. Participants were given minimal information about the project and had no indication the pages had already been assigned scores. Survey results were collected anonymously by having responses routed to a spreadsheet, and no personally identifiable data were collected from participants.

    Statistical analysis

    Differences in mean scores within each health topic and the mean number of sources per evaluated webpage were evaluated by calculating Bayes Factors; response variables (mean score, number of sources) for each topic were compared to a null model of no difference across topics (y ~ category + error). Equal prior weight was given to each potential model. Variance inequality was tested via Levene’s test, and normality was assessed using quartile-quartile plots. Correlation analysis was used to test the strength of the association between individual scores per website and the number of sources cited per website. Because only the presence or absence of sources was considered in the score calculation, the number of sources is independent of score, and justifies correlation analysis. Statistical analyses were conducted in the open-source software package JASP version 0.19.2 (JASP, 2024).

  11. f

    Excel spreadsheet containing the numerical data and details of statistical...

    • figshare.com
    bin
    Updated Aug 29, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Francesca Mattedi; Ethlyn Lloyd-Morris; Frank Hirth; Alessio Vagnoni (2023). Excel spreadsheet containing the numerical data and details of statistical analysis for Figs 1D, 1E, 1F, 1G, 2C, 2D, 2F, 2G, 2H, 3B–3D, 3F, 3G, 4B, 4C, 4D, 4E, 4G, 4H, 5C, 5D, 5E, 5F, 6C, 6D–6F, 7A, 7C, 7D, 7E, 7F, 7G, 7H, 7I, 7J, 7K, S1C, S1D, S1F, S1G, S2B, S2C, S2G, S2H, S2I, S2J, S2K, S3A, S3C, S3D, S3F, S3G, S3I, S4B, S5C, S5D, S5E, S5F, S5G and S5H. [Dataset]. http://doi.org/10.1371/journal.pbio.3002273.s002
    Explore at:
    binAvailable download formats
    Dataset updated
    Aug 29, 2023
    Dataset provided by
    PLOS Biology
    Authors
    Francesca Mattedi; Ethlyn Lloyd-Morris; Frank Hirth; Alessio Vagnoni
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Excel spreadsheet containing the numerical data and details of statistical analysis for Figs 1D, 1E, 1F, 1G, 2C, 2D, 2F, 2G, 2H, 3B–3D, 3F, 3G, 4B, 4C, 4D, 4E, 4G, 4H, 5C, 5D, 5E, 5F, 6C, 6D–6F, 7A, 7C, 7D, 7E, 7F, 7G, 7H, 7I, 7J, 7K, S1C, S1D, S1F, S1G, S2B, S2C, S2G, S2H, S2I, S2J, S2K, S3A, S3C, S3D, S3F, S3G, S3I, S4B, S5C, S5D, S5E, S5F, S5G and S5H.

  12. f

    Excel file containing compiled primary experimental data subjected to...

    • plos.figshare.com
    xlsx
    Updated Sep 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jordan Jennings; Harrison Bracey; Jun Hong; Danny T. Nguyen; Rishav Dasgupta; Alondra Vázquez Rivera; Nicolas Sluis-Cremer; Jiong Shi; Christopher Aiken (2024). Excel file containing compiled primary experimental data subjected to statistical analyses. [Dataset]. http://doi.org/10.1371/journal.ppat.1011810.s002
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Sep 13, 2024
    Dataset provided by
    PLOS Pathogens
    Authors
    Jordan Jennings; Harrison Bracey; Jun Hong; Danny T. Nguyen; Rishav Dasgupta; Alondra Vázquez Rivera; Nicolas Sluis-Cremer; Jiong Shi; Christopher Aiken
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Excel file containing compiled primary experimental data subjected to statistical analyses.

  13. f

    Excel spreadsheet containing the numerical values used for graphs and...

    • plos.figshare.com
    xlsx
    Updated Sep 8, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Elias Myrvoll Lorentzen; Stian Henriksen; Christine Hanssen Rinaldo (2023). Excel spreadsheet containing the numerical values used for graphs and statistical analysis for figure panels 1D, 1E, 1F, 3A, 3B, 3D, 3E, 4A, 4B, 5B, 5C, 6B, 6C, 8C, 8D, 8E, S1E, S3A, S3B, S3C, S3D and S3E. [Dataset]. http://doi.org/10.1371/journal.ppat.1011622.s001
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Sep 8, 2023
    Dataset provided by
    PLOS Pathogens
    Authors
    Elias Myrvoll Lorentzen; Stian Henriksen; Christine Hanssen Rinaldo
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Excel spreadsheet containing the numerical values used for graphs and statistical analysis for figure panels 1D, 1E, 1F, 3A, 3B, 3D, 3E, 4A, 4B, 5B, 5C, 6B, 6C, 8C, 8D, 8E, S1E, S3A, S3B, S3C, S3D and S3E.

  14. f

    Excel spreadsheet containing, in separate sheets, the underlying numerical...

    • plos.figshare.com
    xlsx
    Updated Nov 13, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Misato Shimoyama; Kumiko Nakada-Tsukui; Tomoyoshi Nozaki (2024). Excel spreadsheet containing, in separate sheets, the underlying numerical data and statistical analysis for Figs 1B, 2A, 2B, 3B, 4C, 5, 8, 9A, 9B and S2, S3A, S3B, S3C, S3D, S4, S5A, S5B, S8B, S10, S12, S14A and S14B. [Dataset]. http://doi.org/10.1371/journal.ppat.1012364.s030
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Nov 13, 2024
    Dataset provided by
    PLOS Pathogens
    Authors
    Misato Shimoyama; Kumiko Nakada-Tsukui; Tomoyoshi Nozaki
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Excel spreadsheet containing, in separate sheets, the underlying numerical data and statistical analysis for Figs 1B, 2A, 2B, 3B, 4C, 5, 8, 9A, 9B and S2, S3A, S3B, S3C, S3D, S4, S5A, S5B, S8B, S10, S12, S14A and S14B.

  15. f

    Microsoft Excel workbook provided source data matrices and associated...

    • plos.figshare.com
    xlsx
    Updated Apr 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mengmeng Yu; Li Zhang; Ying Wang; Suyan Wang; Yongzhen Liu; Peng Liu; Yuntong Chen; Ru Guo; Lingzhai Meng; Tao Zhang; Wenrui Fan; Xiaole Qi; Yulu Duan; Yanping Zhang; Hongyu Cui; Yulong Gao (2025). Microsoft Excel workbook provided source data matrices and associated statistical computations used to generate the graphical representations in Figures. [Dataset]. http://doi.org/10.1371/journal.ppat.1013064.s003
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Apr 30, 2025
    Dataset provided by
    PLOS Pathogens
    Authors
    Mengmeng Yu; Li Zhang; Ying Wang; Suyan Wang; Yongzhen Liu; Peng Liu; Yuntong Chen; Ru Guo; Lingzhai Meng; Tao Zhang; Wenrui Fan; Xiaole Qi; Yulu Duan; Yanping Zhang; Hongyu Cui; Yulong Gao
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Microsoft Excel workbook provided source data matrices and associated statistical computations used to generate the graphical representations in Figures.

  16. f

    Excel spreadsheet with individual numerical data underlying plots and...

    • plos.figshare.com
    xlsx
    Updated Mar 21, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Maxime C. van Zwam; Anubhav Dhar; Willem Bosman; Wendy van Straaten; Suzanne Weijers; Emiel Seta; Ben Joosten; Jeffrey van Haren; Saravanan Palani; Koen van den Dries (2024). Excel spreadsheet with individual numerical data underlying plots and statistical analyses. [Dataset]. http://doi.org/10.1371/journal.pbio.3002551.s032
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Mar 21, 2024
    Dataset provided by
    PLOS Biology
    Authors
    Maxime C. van Zwam; Anubhav Dhar; Willem Bosman; Wendy van Straaten; Suzanne Weijers; Emiel Seta; Ben Joosten; Jeffrey van Haren; Saravanan Palani; Koen van den Dries
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The data are organized into separate sheets corresponding to the following figure panels: 1C, 1G, 2B, 2D, 2F, 2H, 4C, 4D, 4F, 5B, 5C, S3B, S5C, S5E, S7B, S8B, S10B, S12A, S12B, and S21B. (XLSX)

  17. f

    Excel spreadsheet with numerical data and statistics for Figs 4, 6A, 6B and...

    • plos.figshare.com
    xlsx
    Updated Jul 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alexandra D. Powell-Pierce; Charles E. Booth; Payton G. Smith; Brittany L. Shapiro; Shannon S. Allen; Brandon L. Garcia; Jon T. Skare (2025). Excel spreadsheet with numerical data and statistics for Figs 4, 6A, 6B and S5. [Dataset]. http://doi.org/10.1371/journal.ppat.1013361.s007
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jul 24, 2025
    Dataset provided by
    PLOS Pathogens
    Authors
    Alexandra D. Powell-Pierce; Charles E. Booth; Payton G. Smith; Brittany L. Shapiro; Shannon S. Allen; Brandon L. Garcia; Jon T. Skare
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data for each figure is shown in individual tabs. (XLSX)

  18. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Alejandro Quintela-del-Río; Mario Francisco-Fernández (2023). Excel Templates: A Helpful Tool for Teaching Statistics [Dataset]. http://doi.org/10.6084/m9.figshare.3408052.v2

Data from: Excel Templates: A Helpful Tool for Teaching Statistics

Related Article
Explore at:
zipAvailable download formats
Dataset updated
May 30, 2023
Dataset provided by
Taylor & Francis
Authors
Alejandro Quintela-del-Río; Mario Francisco-Fernández
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

This article describes a free, open-source collection of templates for the popular Excel (2013, and later versions) spreadsheet program. These templates are spreadsheet files that allow easy and intuitive learning and the implementation of practical examples concerning descriptive statistics, random variables, confidence intervals, and hypothesis testing. Although they are designed to be used with Excel, they can also be employed with other free spreadsheet programs (changing some particular formulas). Moreover, we exploit some possibilities of the ActiveX controls of the Excel Developer Menu to perform interactive Gaussian density charts. Finally, it is important to note that they can be often embedded in a web page, so it is not necessary to employ Excel software for their use. These templates have been designed as a useful tool to teach basic statistics and to carry out data analysis even when the students are not familiar with Excel. Additionally, they can be used as a complement to other analytical software packages. They aim to assist students in learning statistics, within an intuitive working environment. Supplementary materials with the Excel templates are available online.

Search
Clear search
Close search
Google apps
Main menu