77 datasets found
  1. f

    Data from: A Case Study of an Evaluation of Pen-and-Paper Homework and...

    • tandf.figshare.com
    pdf
    Updated May 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristin Lilly; Basil M. Conway (2025). A Case Study of an Evaluation of Pen-and-Paper Homework and Project-Based Learning of Statistical Literacy in an Introductory Statistics Course [Dataset]. http://doi.org/10.6084/m9.figshare.28351452.v1
    Explore at:
    pdfAvailable download formats
    Dataset updated
    May 12, 2025
    Dataset provided by
    Taylor & Francis
    Authors
    Kristin Lilly; Basil M. Conway
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Pen-and-paper homework and project-based learning are both commonly used instructional methods in introductory statistics courses. However, there have been few studies comparing these two methods exclusively. In this case study, each was used in two different sections of the same introductory statistics course at a regional state university. Students’ statistical literacy was measured by exam scores across the course, including the final. The comparison of the two instructional methods includes using descriptive statistics and two-sample t-tests, as well authors’ reflections on the instructional methods. Results indicated that there is no statistically discernible difference between the two instructional methods in the introductory statistics course.

  2. f

    Project for Statistics on Living Standards and Development 1993 - South...

    • microdata.fao.org
    • catalog.ihsn.org
    • +2more
    Updated Oct 20, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Southern Africa Labour and Development Research Unit (2020). Project for Statistics on Living Standards and Development 1993 - South Africa [Dataset]. https://microdata.fao.org/index.php/catalog/1527
    Explore at:
    Dataset updated
    Oct 20, 2020
    Dataset authored and provided by
    Southern Africa Labour and Development Research Unit
    Time period covered
    1993
    Area covered
    South Africa
    Description

    Abstract

    The Project for Statistics on Living standards and Development was a countrywide World Bank Living Standards Measurement Survey. It covered approximately 9000 households, drawn from a representative sample of South African households. The fieldwork was undertaken during the nine months leading up to the country's first democratic elections at the end of April 1994. The purpose of the survey was to collect statistical information about the conditions under which South Africans live in order to provide policymakers with the data necessary for planning strategies. This data would aid the implementation of goals such as those outlined in the Government of National Unity's Reconstruction and Development Programme.

    Geographic coverage

    National

    Analysis unit

    Households

    Universe

    All Household members. Individuals in hospitals, old age homes, hotels and hostels of educational institutions were not included in the sample. Migrant labour hostels were included. In addition to those that turned up in the selected ESDs, a sample of three hostels was chosen from a national list provided by the Human Sciences Research Council and within each of these hostels a representative sample was drawn on a similar basis as described above for the households in ESDs.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    (a) SAMPLING DESIGN

    Sample size is 9,000 households. The sample design adopted for the study was a two-stage self-weighting design in which the first stage units were Census Enumerator Subdistricts (ESDs, or their equivalent) and the second stage were households. The advantage of using such a design is that it provides a representative sample that need not be based on accurate census population distribution in the case of South Africa, the sample will automatically include many poor people, without the need to go beyond this and oversample the poor. Proportionate sampling as in such a self-weighting sample design offers the simplest possible data files for further analysis, as weights do not have to be added. However, in the end this advantage could not be retained, and weights had to be added.

    (b) SAMPLE FRAME

    The sampling frame was drawn up on the basis of small, clearly demarcated area units, each with a population estimate. The nature of the self-weighting procedure adopted ensured that this population estimate was not important for determining the final sample, however. For most of the country, census ESDs were used. Where some ESDs comprised relatively large populations as for instance in some black townships such as Soweto, aerial photographs were used to divide the areas into blocks of approximately equal population size. In other instances, particularly in some of the former homelands, the area units were not ESDs but villages or village groups. In the sample design chosen, the area stage units (generally ESDs) were selected with probability proportional to size, based on the census population. Systematic sampling was used throughout that is, sampling at fixed interval in a list of ESDs, starting at a randomly selected starting point. Given that sampling was self-weighting, the impact of stratification was expected to be modest. The main objective was to ensure that the racial and geographic breakdown approximated the national population distribution. This was done by listing the area stage units (ESDs) by statistical region and then within the statistical region by urban or rural. Within these sub-statistical regions, the ESDs were then listed in order of percentage African. The sampling interval for the selection of the ESDs was obtained by dividing the 1991 census population of 38,120,853 by the 300 clusters to be selected. This yielded 105,800. Starting at a randomly selected point, every 105,800th person down the cluster list was selected. This ensured both geographic and racial diversity (ESDs were ordered by statistical sub-region and proportion of the population African). In three or four instances, the ESD chosen was judged inaccessible and replaced with a similar one. In the second sampling stage the unit of analysis was the household. In each selected ESD a listing or enumeration of households was carried out by means of a field operation. From the households listed in an ESD a sample of households was selected by systematic sampling. Even though the ultimate enumeration unit was the household, in most cases "stands" were used as enumeration units. However, when a stand was chosen as the enumeration unit all households on that stand had to be interviewed.

    Mode of data collection

    Face-to-face [f2f]

    Cleaning operations

    All the questionnaires were checked when received. Where information was incomplete or appeared contradictory, the questionnaire was sent back to the relevant survey organization. As soon as the data was available, it was captured using local development platform ADE. This was completed in February 1994. Following this, a series of exploratory programs were written to highlight inconsistencies and outlier. For example, all person level files were linked together to ensure that the same person code reported in different sections of the questionnaire corresponded to the same person. The error reports from these programs were compared to the questionnaires and the necessary alterations made. This was a lengthy process, as several files were checked more than once, and completed at the beginning of August 1994. In some cases, questionnaires would contain missing values, or comments that the respondent did not know, or refused to answer a question.

    These responses are coded in the data files with the following values: VALUE MEANING -1 : The data was not available on the questionnaire or form -2 : The field is not applicable -3 : Respondent refused to answer -4 : Respondent did not know answer to question

    Data appraisal

    The data collected in clusters 217 and 218 should be viewed as highly unreliable and therefore removed from the data set. The data currently available on the web site has been revised to remove the data from these clusters. Researchers who have downloaded the data in the past should revise their data sets. For information on the data in those clusters, contact SALDRU http://www.saldru.uct.ac.za/.

  3. f

    Quantitative Research Methods and Data Analysis Workshop 2020

    • unisa.figshare.com
    pdf
    Updated Jun 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tracy Probert; Maxine Schaefer; Anneke Carien Wilsenach (2025). Quantitative Research Methods and Data Analysis Workshop 2020 [Dataset]. http://doi.org/10.25399/UnisaData.12581483.v1
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 12, 2025
    Dataset provided by
    University of South Africa
    Authors
    Tracy Probert; Maxine Schaefer; Anneke Carien Wilsenach
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    We include the course syllabus used to teach quantitative research design and analysis methods to graduate Linguistics students using a blended teaching and learning approach. The blended course took place over two weeks and builds on a face to face course presented over two days in 2019. Students worked through the topics in preparation for a live interactive video session each Friday to go through the activities. Additional communication took place on Slack for two hours each week. A survey was conducted at the start and end of the course to ascertain participants' perceptions of the usefulness of the course. The links to online elements and the evaluations have been removed from the uploaded course guide.Participants who complete this workshop will be able to:- outline the steps and decisions involved in quantitative data analysis of linguistic data- explain common statistical terminology (sample, mean, standard deviation, correlation, nominal, ordinal and scale data)- perform common statistical tests using jamovi (e.g. t-test, correlation, anova, regression)- interpret and report common statistical tests- describe and choose from the various graphing options used to display data- use jamovi to perform common statistical tests and graph resultsEvaluationParticipants who complete the course will use these skills and knowledge to complete the following activities for evaluation:- analyse the data for a project and/or assignment (in part or in whole)- plan the results section of an Honours research project (where applicable)Feedback and suggestions can be directed to M Schaefer schaemn@unisa.ac.za

  4. Cloud-based Project Portfolio Management Market by End-user and Geography -...

    • technavio.com
    pdf
    Updated Jul 27, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2021). Cloud-based Project Portfolio Management Market by End-user and Geography - Forecast and Analysis 2021-2025 [Dataset]. https://www.technavio.com/report/cloud-based-project-portfolio-management-market-industry-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jul 27, 2021
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Description

    Snapshot img

    The cloud-based project portfolio management market share is expected to increase by USD 4.83 billion from 2020 to 2025, and the market’s growth momentum will accelerate at a CAGR of 18.26%.

    This cloud-based project portfolio management market research report provides valuable insights on the post COVID-19 impact on the market, which will help companies evaluate their business approaches. Furthermore, this report extensively covers cloud-based project portfolio management market segmentations by end user (manufacturing, ICT, healthcare, BFSI, and others) and geography (North America, Europe, APAC, MEA, and South America). The cloud-based project portfolio management market report also offers information on several market vendors, including Atlassian Corp. Plc, Broadcom Inc., Mavenlink Inc., Micro Focus International Plc, Microsoft Corp., Oracle Corp., Planview Inc., SAP SE, ServiceNow Inc., and Upland Software, Inc. among others.

    What will the Cloud-based Project Portfolio Management Market Size be During the Forecast Period?

    Download the Free Report Sample to Unlock the Cloud-based Project Portfolio Management Market Size for the Forecast Period and Other Important Statistics

    Cloud-based Project Portfolio Management Market: Key Drivers, Trends, and Challenges

    The increasing requirements for large-scale project portfolio management is notably driving the cloud-based project portfolio management market growth, although factors such as challenges from open-source platforms may impede market growth. Our research analysts have studied the historical data and deduced the key market drivers and the COVID-19 pandemic impact on the cloud-based project portfolio management industry. The holistic analysis of the drivers will help in deducing end goals and refining marketing strategies to gain a competitive edge.

    Key Cloud-based Project Portfolio Management Market Driver

    The increasing requirements for large-scale project portfolio management is a major factor driving the global cloud-based project portfolio management market share growth. Currently, organizations are focusing on cultivating and managing the resources necessary for efficient product outputs, which increases the requirements for efficient solutions for large-scale project portfolio management. The primary purpose of the cloud-based project portfolio management software is to automate processes to ensure maximum outputs by managing resources and maintaining a regular follow-up. The main benefit of employing cloud-based project portfolio management software in large-scale project portfolio management is that automated services increase the connectivity so that organizations can handle the project-related inquiries easily and effectively. Also, automation decreases the response time and increases productivity, which ensures efficient process management. Additionally, by using cloud-based project portfolio management software, revenue possibilities can be rapidly increased by calculating conversion ratios and running reports to track the metrics detailed as per the customer demand. These features decrease the operating time. Due to such reasons, the demand for the market will grow significantly during the forecast period.

    Key Cloud-based Project Portfolio Management Market Trend

    The interlinking of software with project portfolio management is another factor supporting the global cloud- based project portfolio management market share growth. Since the demand for project portfolio management software is rising in the market, the stakeholders in several businesses are demanding new features in the software to increase their productivity. One of the main trends identified in the global cloud-based project portfolio management market is the interlinking of multiple software to match the requirements of the business. Currently, cloud-based project portfolio management software is deployed by several enterprises to give people access to documents, data, and reports from multiple devices at multiple locations. With all the data accessible centrally by numerous users, the accountability of the system will increase, which will provide enterprises with an instant overview of what everyone is working on. Additionally, interlinked project portfolio management software will enable the users to update data in real-time and will end the complication of sending endless email attachments of the same document. Moreover, the implementation of cloud-based project portfolio management will enhance the company's assurance for up-to-date data. Therefore, all such factor will contribute to the growth of the market.

    Key Cloud-based Project Portfolio Management Market Challenge

    The rising challenges from open-source platforms will be a major challenge for the global cloud-based project portfolio management market share growth during the forecast period. With the rising demand for digitalization in the current

  5. d

    Protected Areas Database of the United States (PAD-US) 3.0 Vector Analysis...

    • catalog.data.gov
    • res1catalogd-o-tdatad-o-tgov.vcapture.xyz
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Protected Areas Database of the United States (PAD-US) 3.0 Vector Analysis and Summary Statistics [Dataset]. https://catalog.data.gov/dataset/protected-areas-database-of-the-united-states-pad-us-3-0-vector-analysis-and-summary-stati
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    United States
    Description

    Spatial analysis and statistical summaries of the Protected Areas Database of the United States (PAD-US) provide land managers and decision makers with a general assessment of management intent for biodiversity protection, natural resource management, and recreation access across the nation. The PAD-US 3.0 Combined Fee, Designation, Easement feature class (with Military Lands and Tribal Areas from the Proclamation and Other Planning Boundaries feature class) was modified to remove overlaps, avoiding overestimation in protected area statistics and to support user needs. A Python scripted process ("PADUS3_0_CreateVectorAnalysisFileScript.zip") associated with this data release prioritized overlapping designations (e.g. Wilderness within a National Forest) based upon their relative biodiversity conservation status (e.g. GAP Status Code 1 over 2), public access values (in the order of Closed, Restricted, Open, Unknown), and geodatabase load order (records are deliberately organized in the PAD-US full inventory with fee owned lands loaded before overlapping management designations, and easements). The Vector Analysis File ("PADUS3_0VectorAnalysisFile_ClipCensus.zip") associated item of PAD-US 3.0 Spatial Analysis and Statistics ( https://doi.org/10.5066/P9KLBB5D ) was clipped to the Census state boundary file to define the extent and serve as a common denominator for statistical summaries. Boundaries of interest to stakeholders (State, Department of the Interior Region, Congressional District, County, EcoRegions I-IV, Urban Areas, Landscape Conservation Cooperative) were incorporated into separate geodatabase feature classes to support various data summaries ("PADUS3_0VectorAnalysisFileOtherExtents_Clip_Census.zip") and Comma-separated Value (CSV) tables ("PADUS3_0SummaryStatistics_TabularData_CSV.zip") summarizing "PADUS3_0VectorAnalysisFileOtherExtents_Clip_Census.zip" are provided as an alternative format and enable users to explore and download summary statistics of interest (Comma-separated Table [CSV], Microsoft Excel Workbook [.XLSX], Portable Document Format [.PDF] Report) from the PAD-US Lands and Inland Water Statistics Dashboard ( https://www.usgs.gov/programs/gap-analysis-project/science/pad-us-statistics ). In addition, a "flattened" version of the PAD-US 3.0 combined file without other extent boundaries ("PADUS3_0VectorAnalysisFile_ClipCensus.zip") allow for other applications that require a representation of overall protection status without overlapping designation boundaries. The "PADUS3_0VectorAnalysis_State_Clip_CENSUS2020" feature class ("PADUS3_0VectorAnalysisFileOtherExtents_Clip_Census.gdb") is the source of the PAD-US 3.0 raster files (associated item of PAD-US 3.0 Spatial Analysis and Statistics, https://doi.org/10.5066/P9KLBB5D ). Note, the PAD-US inventory is now considered functionally complete with the vast majority of land protection types represented in some manner, while work continues to maintain updates and improve data quality (see inventory completeness estimates at: http://www.protectedlands.net/data-stewards/ ). In addition, changes in protected area status between versions of the PAD-US may be attributed to improving the completeness and accuracy of the spatial data more than actual management actions or new acquisitions. USGS provides no legal warranty for the use of this data. While PAD-US is the official aggregation of protected areas ( https://www.fgdc.gov/ngda-reports/NGDA_Datasets.html ), agencies are the best source of their lands data.

  6. i

    Grant Giving Statistics for Metro Ideas Project

    • instrumentl.com
    Updated Jan 6, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Grant Giving Statistics for Metro Ideas Project [Dataset]. https://www.instrumentl.com/990-report/metro-ideas-project
    Explore at:
    Dataset updated
    Jan 6, 2022
    Variables measured
    Total Assets, Total Giving
    Description

    Financial overview and grant giving statistics of Metro Ideas Project

  7. f

    Methodological aspects in the development of research projects in Clinical...

    • scielo.figshare.com
    tiff
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Deyliane Aparecida De almeida Pereira; Sarah Aparecida Vieira; Aline Siqueira Fogal; Andréia Queiroz Ribeiro; Sylvia do Carmo Castro Franceschini (2023). Methodological aspects in the development of research projects in Clinical Nutrition [Dataset]. http://doi.org/10.6084/m9.figshare.20018318.v1
    Explore at:
    tiffAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    SciELO journals
    Authors
    Deyliane Aparecida De almeida Pereira; Sarah Aparecida Vieira; Aline Siqueira Fogal; Andréia Queiroz Ribeiro; Sylvia do Carmo Castro Franceschini
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This text aims to foster the reflection and criticism in the process of developing research projects in clinical nutrition. We present aspects regarding the evidence, validity, and reliability of results of studies in this field. Appropriate study planning is critical, from defining the design and type of experiment, going through the ethical aspects, population choice, and calculation of sample size, to the assessment of the feasibility of the risks involved in study execution. Once the information is collected, the next stages correspond to the description of the results, statistical analyses, verification of the consistency of these results, and ultimately their correct interpretation.

  8. Community Survey 2007 - South Africa

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +2more
    Updated May 28, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics South Africa (2019). Community Survey 2007 - South Africa [Dataset]. https://microdata.worldbank.org/index.php/catalog/918
    Explore at:
    Dataset updated
    May 28, 2019
    Dataset authored and provided by
    Statistics South Africahttp://www.statssa.gov.za/
    Time period covered
    2007
    Area covered
    South Africa
    Description

    Abstract

    The Community Survey (CS) is a nationally representative, large-scale household survey which was conducted from February to March 2007. The Community Survey is designed to provide information on the trends and levels of demographic and socio-economic data, such as population size and distribution; the extent of poor households; access to facilities and services, and the levels of employment/unemployment at national, provincial and municipality level. The data can be used to assist government and the private sector in the planning, evaluation and monitoring of programmes and policies. The information collected can also be used to assess the impact of socio-economic policies and provide an indication as to how far the country has gone in its strides to eradicate poverty.

    Censuses 1996 and 2001 are the only all-inclusive censuses that Statistics South Africa has thus far conducted under the new democratic dispensation. Demographic and socio-economic data were collected and the results have enabled government and all other users of this information to make informed decisions. When cabinet took a decision that Stats SA should not conduct a census in 2006, it created a gap in information or data between Census 2001 and the next Census scheduled to be carried out in 2011. A decision was therefore taken to carry out the Community Survey in 2007.

    The main objectives of the survey were: · To provide estimates at lower geographical levels than existing household surveys; · To build human, management and logistical capacities for Census 2011; and · To provide inputs into the preparation of the mid-year population projections.

    The wider project strategic theme is to provide relevant statistical information that meets user needs and aspirations. Some of the main topics that are covered by the survey include demography, migration, disability and social grants, educational levels, employment and economic activities.

    Geographic coverage

    The survey covered the whole of South Africa, including all nine provinces as well as the four settlement types - urban-formal, urban-informal, rural-formal (commercial farms) and rural-informal (tribal areas).

    Analysis unit

    Households

    Universe

    The Community Survey covered all de jure household members (usual residents) in South Africa. The survey excluded collective living quarters (institutions) and some households in EAs classified as recreational areas or institutions. However, an approximation of the out-of-scope population was made from the 2001 Census and added to the final estimates of the CS 2007 results.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Sample Design

    The sampling procedure that was adopted for the CS was a two-stage stratified random sampling process. Stage one involved the selection of enumeration areas, and stage tow was the selection of dwelling units.

    Since the data are required for each local municipality, each municipality was considered as an explicit stratum. The stratification is done for those municipalities classified as category B municipalities (local municipalities) and category A municipalities (metropolitan areas) as proclaimed at the time of Census 2001. However, the newly proclaimed boundaries as well as any other higher level of geography such as province or district municipality, were considered as any other domain variable based on their link to the smallest geographic unit - the enumeration area.

    The Frame

    The Census 2001 enumeration areas were used because they give a full geographic coverage of the country without any overlap. Although changes in settlement type, growth or movement of people have occurred, the enumeration areas assisted in getting a spatial comparison over time. Out of 80 787 enumeration areas countrywide, 79 466 were considered in the frame. A total of 1 321 enumeration areas were excluded (919 covering institutions and 402 recreational areas).

    On the second level, the listing exercise yielded the dwelling frame which facilitated the selection of dwellings to be visited. The dwelling unit is a structure or part of a structure or group of structures occupied or meant to be occupied by one or more households. Some of these structures may be vacant and/or under construction, but can be lived in at the time of the survey. A dwelling unit may also be within collective living quarters where applicable (examples of each are a house, a group of huts, a flat, hostels, etc.).

    The Community Survey universe at the second-level frame is dependent on whether the different structures are classified as dwelling units (DUs) or not. Structures where people stay/live were listed and classified as dwelling units. However, there are special cases of collective living quarters that were also included in the CS frame. These are religious institutions such as convents or monasteries, and guesthouses where people stay for an extended period (more than a month). Student residences - based on how long people have stayed (more than a month) - and old-age homes not similar to hospitals (where people are living in a communal set-up) were treated the same as hostels, thereby listing either the bed or room. In addition, any other family staying in separate quarters within the premises of an institution (like wardens' quarters, military family quarters, teachers' quarters and medical staff quarters) were considered as part of the CS frame. The inclusion of such group quarters in the frame is based on the living circumstances within these structures. Members are independent of each other with the exception that they sleep under one roof.

    The remaining group quarters were excluded from the CS frame because they are difficult to access and have no stable composition. Excluded dwelling types were prisons, hotels, hospitals, military barracks, etc. This is in addition to the exclusion on first level of the enumeration areas (EAs) classified as institutions (military bases) or recreational areas (national parks).

    The Selection of Enumeration Areas (EAs)

    The EAs within each municipality were ordered by geographic type and EA type. The selection was done by using systematic random sampling. The criteria used were as follows: In municipalities with fewer than 30 EAs, all EAs were automatically selected. In municipalities with 30 or more EAs, the sample selection used a fixed proportion of 19% of all sampled EAs. However, if the selected EAs in a municipality were less than 30 EAs, the sample in the municipality was increased to 30 EAs.

    The Selection of Dwelling Units

    The second level of the frame required a full re-listing of dwelling units. The listing exercise was undertaken before the selection of DUs. The adopted listing methodology ensured that the listing route was determined by the lister. Thisapproach facilitated the serpentine selection of dwelling units. The listing exercise provided a complete list of dwelling units in the selected EAs. Only those structures that were classified as dwelling units were considered for selection, whether vacant or occupied. This exercise yielded a total of 2 511 314 dwelling units.

    The selection of the dwelling units was also based on a fixed proportion of 10% of the total listed dwellings in an EA. A constraint was imposed on small-size EAs where, if the listed dwelling units were less than 10 dwellings, the selection was increased to 10 dwelling units. All households within the selected dwelling units were covered. There was no replacement of refusals, vacant dwellings or non-contacts owing to their impact on the probability of selection.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Consultation on Questionnaire Design Ten stakeholder workshops were held across the country during August and September 2004. Approximately 367 stakeholders, predominantly from national, provincial and local government departments, as well as from research and educational institutions, attended. The workshops aimed to achieve two objectives, namely to better understand the type of information stakeholders need to meet their objectives, and to consider the proposed data items to be included in future household surveys. The output from this process was a set of data items relating to a specific, defined focus area and outcomes that culminated with the data collection instrument (see Annexure B for all the data items).

    Questionnaire Design The design of the CS questionnaire was household-based and intended to collect information on 10 people. It was developed in line with the household-based survey questionnaires conducted by Stats SA. The questions were based on the data items generated out of the consultation process described above. Both the design and questionnaire layout were pre-tested in October 2005 and adjustments were made for the pilot in February 2006. Further adjustments were done after the pilot results had been finalised.

    Cleaning operations

    Editing The automated cleaning was implemented based on an editing rules specification defined with reference to the approved questionnaire. Most of the editing rules were categorised into structural edits looking into the relationship between different record type, the minimum processability rules that removed false positive readings or noise, the logical editing that determine the inconsistency between fields of the same statistical unit, and the inferential editing that search similarities across the domain. The edit specifications document for the structural, population, mortality and housing edits was developed by a team of Stats SA subject-matter specialists, demographers, and programmers. The process was successfully

  9. The Stanford Federal Statistical Research Data Center (FSRDC)

    • redivis.com
    application/jsonl +7
    Updated Apr 24, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stanford Center for Population Health Sciences (2019). The Stanford Federal Statistical Research Data Center (FSRDC) [Dataset]. http://doi.org/10.57761/2t1v-fx03
    Explore at:
    arrow, csv, application/jsonl, avro, spss, parquet, stata, sasAvailable download formats
    Dataset updated
    Apr 24, 2019
    Dataset provided by
    Redivis Inc.
    Authors
    Stanford Center for Population Health Sciences
    Description

    Abstract

    FSRDC allows qualified researchers to securely use restricted-access data from the U.S. Census Bureau, the National Center for Health Statistics (NCHS), the Agency for Healthcare Research and Quality (AHRQ), and the Bureau of Labor Statistics. These data are extraordinarily rich and virtually the only source for many important questions in health and social sciences. The Stanford Federal Statistical Research Data Center (FSRDC) allows qualified researchers to securely use restricted-access data from the U.S. Census Bureau, the National Center for Health Statistics (NCHS), the Agency for Healthcare Research and Quality (AHRQ), and the Bureau of Labor Statistics. For example, researchers can access detailed geographic indicators that are not publicly available in data such as the National Health Interview Survey (NHIS) and National Health and Nutrition Examination Survey (NHANES).

    PHS does not host FSRDC data. If you wish to use FSRDC data for a health related project, please reach out to the Stanford FSRDC: https://iriss.stanford.edu/fsrdc

    Before Manuscript Submission

    All manuscripts (and other items you'd like to publish) must be submitted to

    phsdatacore@stanford.edu for approval prior to journal submission.

    We will check your cell sizes and citations.

    For more information about how to cite PHS and PHS datasets, please visit:

    https:/phsdocs.developerhub.io/need-help/citing-phs-data-core

    Documentation

    Metadata access is required to view this section.

  10. i

    National Agricultural Sample Census Pilot (Private Farmer) Livestock and...

    • datacatalog.ihsn.org
    • microdata.fao.org
    • +2more
    Updated Oct 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Bureau of Statistics (2024). National Agricultural Sample Census Pilot (Private Farmer) Livestock and Poultry 2007 - Nigeria [Dataset]. https://datacatalog.ihsn.org/catalog/12594
    Explore at:
    Dataset updated
    Oct 30, 2024
    Dataset provided by
    National Bureau of Statistics, Nigeria
    Authors
    National Bureau of Statistics
    Time period covered
    2007
    Area covered
    Nigeria
    Description

    Abstract

    The programme for the World Census of Agriculture 2000 is the eighth in the series for promoting a global approach to agricultural census taking. The first and second programmes were sponsored by the International Institute for Agriculture (IITA) in 1930 and 1940. Subsequent ones up to 1990 were promoted by the Food and Agriculture Organization of the United Nations(FAO). FAO recommends that each country should conduct at least one agricultural census in each census programme decade and its programme for the World Census of Agriculture 2000 for instance corresponds to agricultural census to be undertaken during the decade 1996 to 2005. Many countries do not have sufficient resources for conducting an agricultural census. It therefore became an acceptable practice since 1960 to conduct agricultural census on sample basis for those countries lacking the resources required for a complete enumeration.

    In Nigeria's case, a combination of complete enumeration and sample enumeration is adopted whereby the rural (peasant) holdings are covered on sample basis while the modern holdings are covered on complete enumeration. The project named “National Agricultural Sample Census” derives from this practice. Nigeria through the National Agricultural Sample Census (NASC) participated in the 1970's, 1980's, 1990's programmes of the World Census of Agriculture. Nigeria failed to conduct the Agricultural Census in 2003/2004 because of lack of funding. The NBS regular annual agriculture surveys since 1996 had been epileptic and many years of backlog of data set are still unprocessed. The baseline agricultural data is yet to be updated while the annual regular surveys suffered set back. There is an urgent need by the governments (Federal, State, LGA), sector agencies, FAO and other International Organizations to come together to undertake the agricultural census exercise which is long overdue. The conduct of 2006/2008 National Agricultural Sample Census Survey is now on course with the pilot exercise carried out in the third quarter of 2007.

    The National Agricultural Sample Census (NASC) 2006/08 is imperative to the strengthening of the weak agricultural data in Nigeria. The project is phased into three sub-projects for ease of implementation; the Pilot Survey, Modern Agricultural Holding and the Main Census. It commenced in the third quarter of 2006 and to terminate in the first quarter of 2008. The pilot survey was implemented collaboratively by National Bureau of Statistics.

    The main objective of the pilot survey was to test the adequacy of the survey instruments, equipments and administration of questionnaires, data processing arrangement and report writing. The pilot survey conducted in July 2007 covered the two NBS survey system-the National Integrated Survey of Households (NISH) and National Integrated Survey of Establishment (NISE). The survey instruments were designed to be applied using the two survey systems while the use of Geographic Positioning System (GPS) was introduced as additional new tool for implementing the project.

    The Stakeholders workshop held at Kaduna on 21st-23rd May 2007 was one of the initial bench marks for the take off of the pilot survey. The pilot survey implementation started with the first level training (training of trainers) at the NBS headquarters between 13th - 15th June 2007. The second level training for all levels of field personnels was implemented at headquarters of the twelve (12) concerned states between 2nd - 6th July 2007. The field work of the pilot survey commenced on the 9th July and ended on the 13th of July 07. The IMPS and SPSS were the statistical packages used to develop the data entry programme.

    Geographic coverage

    State

    Analysis unit

    Households who are rearing livestock or kept poultry

    Universe

    Livestock or poultry household

    Kind of data

    Census/enumeration data [cen]

    Sampling procedure

    The survey was carried out in 12 states falling under 6 geo-political zones. 2 states were covered in each geo-political zone. 2 local government areas per selected state were studied. 2 Rural enumeration areas per local government area were covered and 3 Livestock/poultry farming housing units were systematically selected and canvassed.

    Sampling deviation

    No Deviation

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The NASC livestock and poultry questionnaire was divided into the following sections: - Identification/description of holdings - Funds, employment and earnings/wages - Livestock - Poultry - Fixed assets - Sales - Stock - Subsidy

    Cleaning operations

    The data processing and analysis plan involved five main stages: training of data processing staff; manual editing and coding; development of data entry programme; data entry and editing and tabulation. Census and Surveys Processing System (CSPro) software were used for data entry, Statistical Package for Social Sciences (SPSS) and CSPro for editing and a combination of SPSS, Statistical Analysis Software (SAS) and EXCEL for table generation. The subject-matter specialists and computer personnel from the NBS and CBN implemented the data processing work. Tabulation Plans were equally developed by these officers for their areas and topics covered in the three-survey system used for the exercise. The data editing is in 2 phases namely manual editing before the data entry were done. This involved using editors at the various zones to manually edit and ensure consistency in the information on the questionnaire. The second editing is the computer editing, this is the cleaning of the already enterd data. The completed questionnaires were collected and edited manually (a) Office editing and coding were done by the editor using visual control of the questionnaire before data entry (b) Cspro was used to design the data entry template provided as external resource (c) Ten operator plus two suppervissor and two progammer were used (d) Ten machines were used for data entry (e) After data entry data entry supervisor runs fequency on each section to see that all the questionnaire were enterd

    Response rate

    The response rate at EA level was 100 percent, while 99.3 percent was recorded at housing units level.

    Sampling error estimates

    No computation of sampling error

    Data appraisal

    The Quality Control measures were carried out during the survey, essentially to ensure quality of data. There were two levels of supervision involving the supervisors at the first level, NBS State Officers and Zonal Controllers at second level and finally the NBS Headquarters staff constituting the second level supervision.

  11. S

    Statistical Shape Model of the Tibia

    • simtk.org
    Updated Aug 9, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Meghan Keast; Aaron Fox (2022). Statistical Shape Model of the Tibia [Dataset]. https://simtk.org/frs/?group_id=2166
    Explore at:
    (0)Available download formats
    Dataset updated
    Aug 9, 2022
    Dataset provided by
    Deakin University
    Authors
    Meghan Keast; Aaron Fox
    Description

    This project provides a freely accessible three-dimensional statistical shape model (SSM) of the tibia, the MATLAB scripts for generating a SSM and the segmented surface models of the cortical and trabecular bone. Information on the use of code and data can be found in the read-me file contained within the download.

    Further, this dataset and associated statistical shape models can be used in several ways to assist with skeletal focused research of the tibia-fibula. We do not have the scope to highlight each and every potential application, however have provided a series of example cases of where and how the shape models may be used. Our hope is that these examples can be directly used, or assist in guiding other uses.

    Case 1: Generating Surface Samples — this example case demonstrates how to use the shape model data to reconstruct a randomly sampled 'population' of surfaces.

    Case 2: Predicting and Generating Trabecular Volumes — this example case demonstrates how to combine the tibia and trabecular shape models to predict and generate the trabecular volume from a tibial surface.

    Case 3: Generating Tibia-Fibula Surfaces from Landmarks — this example case demonstrates how to use the tibia-fibula shape model to estimate and reconstruct surfaces from palpable landmarks on the tibia and fibula.

    Please cite our work if you use this code or data.

    https://widgets.figshare.com/articles/20454462/embed?show_title=1



    This project includes the following software/data packages:

    • Statistical Shape Model Tibia : This file contains the main shape model code and data associated with the project, it also contains three example cases. For a complete description, view the read-me file contained within the archive.

  12. i

    Household Expenditure and Income Survey 2008, Economic Research Forum (ERF)...

    • catalog.ihsn.org
    Updated Jan 12, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Statistics (2022). Household Expenditure and Income Survey 2008, Economic Research Forum (ERF) Harmonization Data - Jordan [Dataset]. https://catalog.ihsn.org/index.php/catalog/7661
    Explore at:
    Dataset updated
    Jan 12, 2022
    Dataset authored and provided by
    Department of Statistics
    Time period covered
    2008 - 2009
    Area covered
    Jordan
    Description

    Abstract

    The main objective of the HEIS survey is to obtain detailed data on household expenditure and income, linked to various demographic and socio-economic variables, to enable computation of poverty indices and determine the characteristics of the poor and prepare poverty maps. Therefore, to achieve these goals, the sample had to be representative on the sub-district level. The raw survey data provided by the Statistical Office was cleaned and harmonized by the Economic Research Forum, in the context of a major research project to develop and expand knowledge on equity and inequality in the Arab region. The main focus of the project is to measure the magnitude and direction of change in inequality and to understand the complex contributing social, political and economic forces influencing its levels. However, the measurement and analysis of the magnitude and direction of change in this inequality cannot be consistently carried out without harmonized and comparable micro-level data on income and expenditures. Therefore, one important component of this research project is securing and harmonizing household surveys from as many countries in the region as possible, adhering to international statistics on household living standards distribution. Once the dataset has been compiled, the Economic Research Forum makes it available, subject to confidentiality agreements, to all researchers and institutions concerned with data collection and issues of inequality.

    Data collected through the survey helped in achieving the following objectives: 1. Provide data weights that reflect the relative importance of consumer expenditure items used in the preparation of the consumer price index 2. Study the consumer expenditure pattern prevailing in the society and the impact of demograohic and socio-economic variables on those patterns 3. Calculate the average annual income of the household and the individual, and assess the relationship between income and different economic and social factors, such as profession and educational level of the head of the household and other indicators 4. Study the distribution of individuals and households by income and expenditure categories and analyze the factors associated with it 5. Provide the necessary data for the national accounts related to overall consumption and income of the household sector 6. Provide the necessary income data to serve in calculating poverty indices and identifying the poor chracteristics as well as drawing poverty maps 7. Provide the data necessary for the formulation, follow-up and evaluation of economic and social development programs, including those addressed to eradicate poverty

    Geographic coverage

    National

    Analysis unit

    • Household/families
    • Individuals

    Universe

    The survey covered a national sample of households and all individuals permanently residing in surveyed households.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The 2008 Household Expenditure and Income Survey sample was designed using two-stage cluster stratified sampling method. In the first stage, the primary sampling units (PSUs), the blocks, were drawn using probability proportionate to the size, through considering the number of households in each block to be the block size. The second stage included drawing the household sample (8 households from each PSU) using the systematic sampling method. Fourth substitute households from each PSU were drawn, using the systematic sampling method, to be used on the first visit to the block in case that any of the main sample households was not visited for any reason.

    To estimate the sample size, the coefficient of variation and design effect in each subdistrict were calculated for the expenditure variable from data of the 2006 Household Expenditure and Income Survey. This results was used to estimate the sample size at sub-district level, provided that the coefficient of variation of the expenditure variable at the sub-district level did not exceed 10%, with a minimum number of clusters that should not be less than 6 at the district level, that is to ensure good clusters representation in the administrative areas to enable drawing poverty pockets.

    It is worth mentioning that the expected non-response in addition to areas where poor families are concentrated in the major cities were taken into consideration in designing the sample. Therefore, a larger sample size was taken from these areas compared to other ones, in order to help in reaching the poverty pockets and covering them.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    List of survey questionnaires: (1) General Form (2) Expenditure on food commodities Form (3) Expenditure on non-food commodities Form

    Cleaning operations

    Raw Data The design and implementation of this survey procedures were: 1. Sample design and selection 2. Design of forms/questionnaires, guidelines to assist in filling out the questionnaires, and preparing instruction manuals 3. Design the tables template to be used for the dissemination of the survey results 4. Preparation of the fieldwork phase including printing forms/questionnaires, instruction manuals, data collection instructions, data checking instructions and codebooks 5. Selection and training of survey staff to collect data and run required data checkings 6. Preparation and implementation of the pretest phase for the survey designed to test and develop forms/questionnaires, instructions and software programs required for data processing and production of survey results 7. Data collection 8. Data checking and coding 9. Data entry 10. Data cleaning using data validation programs 11. Data accuracy and consistency checks 12. Data tabulation and preliminary results 13. Preparation of the final report and dissemination of final results

    Harmonized Data - The Statistical Package for Social Science (SPSS) was used to clean and harmonize the datasets - The harmonization process started with cleaning all raw data files received from the Statistical Office - Cleaned data files were then all merged to produce one data file on the individual level containing all variables subject to harmonization - A country-specific program was generated for each dataset to generate/compute/recode/rename/format/label harmonized variables - A post-harmonization cleaning process was run on the data - Harmonized data was saved on the household as well as the individual level, in SPSS and converted to STATA format

  13. f

    The relation between statistical power and inference in fMRI

    • plos.figshare.com
    qt
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Henk R. Cremers; Tor D. Wager; Tal Yarkoni (2023). The relation between statistical power and inference in fMRI [Dataset]. http://doi.org/10.1371/journal.pone.0184923
    Explore at:
    qtAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Henk R. Cremers; Tor D. Wager; Tal Yarkoni
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Statistically underpowered studies can result in experimental failure even when all other experimental considerations have been addressed impeccably. In fMRI the combination of a large number of dependent variables, a relatively small number of observations (subjects), and a need to correct for multiple comparisons can decrease statistical power dramatically. This problem has been clearly addressed yet remains controversial—especially in regards to the expected effect sizes in fMRI, and especially for between-subjects effects such as group comparisons and brain-behavior correlations. We aimed to clarify the power problem by considering and contrasting two simulated scenarios of such possible brain-behavior correlations: weak diffuse effects and strong localized effects. Sampling from these scenarios shows that, particularly in the weak diffuse scenario, common sample sizes (n = 20–30) display extremely low statistical power, poorly represent the actual effects in the full sample, and show large variation on subsequent replications. Empirical data from the Human Connectome Project resembles the weak diffuse scenario much more than the localized strong scenario, which underscores the extent of the power problem for many studies. Possible solutions to the power problem include increasing the sample size, using less stringent thresholds, or focusing on a region-of-interest. However, these approaches are not always feasible and some have major drawbacks. The most prominent solutions that may help address the power problem include model-based (multivariate) prediction methods and meta-analyses with related synthesis-oriented approaches.

  14. e

    Synthetic Administrative Data: Census 1991, 2023 - Dataset - B2FIND

    • b2find.eudat.eu
    Updated Oct 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Synthetic Administrative Data: Census 1991, 2023 - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/6f71c471-1b89-5932-b354-700afb58cb5c
    Explore at:
    Dataset updated
    Oct 11, 2024
    Description

    We create a synthetic administrative dataset to be used in the development of the R package for calculating quality indicators for administrative data (see: https://github.com/sook-tusk/qualadmin) that mimic the properties of a real administrative dataset according to specifications by the ONS. Taking over 1 million records from a synthetic 1991 UK census dataset, we deleted records, moved records to a different geography and duplicated records to a different geography according to pre-specified proportions for each broad ethnic group (White, Non-white) and gender (males, females). The final size of the synthetic administrative data was 1033664 individuals.National Statistical Institutes (NSIs) are directing resources into advancing the use of administrative data in official statistics systems. This is a top priority for the UK Office for National Statistics (ONS) as they are undergoing transformations in their statistical systems to make more use of administrative data for future censuses and population statistics. Administrative data are defined as secondary data sources since they are produced by other agencies as a result of an event or a transaction relating to administrative procedures of organisations, public administrations and government agencies. Nevertheless, they have the potential to become important data sources for the production of official statistics by significantly reducing the cost and burden of response and improving the efficiency of such systems. Embedding administrative data in statistical systems is not without costs and it is vital to understand where potential errors may arise. The Total Administrative Data Error Framework sets out all possible sources of error when using administrative data as statistical data, depending on whether it is a single data source or integrated with other data sources such as survey data. For a single administrative data, one of the main sources of error is coverage and representation to the target population of interest. This is particularly relevant when administrative data is delivered over time, such as tax data for maintaining the Business Register. For sub-project 1 of this research project, we develop quality indicators that allow the statistical agency to assess if the administrative data is representative to the target population and which sub-groups may be missing or over-covered. This is essential for producing unbiased estimates from administrative data. Another priority at statistical agencies is to produce a statistical register for population characteristic estimates, such as employment statistics, from multiple sources of administrative and survey data. Using administrative data to build a spine, survey data can be integrated using record linkage and statistical matching approaches on a set of common matching variables. This will be the topic for sub-project 2, which will be split into several topics of research. The first topic is whether adding statistical predictions and correlation structures improves the linkage and data integration. The second topic is to research a mass imputation framework for imputing missing target variables in the statistical register where the missing data may be due to multiple underlying mechanisms. Therefore, the third topic will aim to improve the mass imputation framework to mitigate against possible measurement errors, for example by adding benchmarks and other constraints into the approaches. On completion of a statistical register, estimates for key target variables at local areas can easily be aggregated. However, it is essential to also measure the precision of these estimates through mean square errors and this will be the fourth topic of the sub-project. Finally, this new way of producing official statistics is compared to the more common method of incorporating administrative data through survey weights and model-based estimation approaches. In other words, we evaluate whether it is better 'to weight' or 'to impute' for population characteristic estimates - a key question under investigation by survey statisticians in the last decade. This is a synthetic administrative dataset with only 6 variables to enable the calculation of quality indicators in the R package: https://github.com/sook-tusk/qualadmin See also the user manual. The dataset was created from a 1991 synthetic UK census dataset containing over 1 million records by deleting, moving and duplicating records across geographies according to pre-specified proportions within broad ethnic group and gender. The geography variable includes 6 local authorities but they are completely anonymized and labelled 1,2..6. Other variables are (number of categories in parentheses): sex (2), age groups (14), ethnic groups (5) and employment (3). The final size of the synthetic administrative data is 1033664 individuals. The description of the variables are in the data dictionary that is uploaded with the data.

  15. r

    Evaluation through follow-up - pupils born in 1967 (Student Panel 1)

    • researchdata.se
    Updated Aug 15, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ingemar Emanuelsson; Kerstin Ek; Astrid Pettersen; Åsa Murray (2024). Evaluation through follow-up - pupils born in 1967 (Student Panel 1) [Dataset]. https://researchdata.se/en/catalogue/dataset/snd0480-3
    Explore at:
    Dataset updated
    Aug 15, 2024
    Dataset provided by
    University of Gothenburg
    Authors
    Ingemar Emanuelsson; Kerstin Ek; Astrid Pettersen; Åsa Murray
    Time period covered
    1980 - 1984
    Area covered
    Sweden
    Description

    Since the beginning of the 1960s, Statistics Sweden, in collaboration with various research institutions, has carried out follow-up surveys in the school system. These surveys have taken place within the framework of the IS project (Individual Statistics Project) at the University of Gothenburg and the UGU project (Evaluation through follow-up of students) at the University of Teacher Education in Stockholm, which since 1990 have been merged into a research project called 'Evaluation through Follow-up'. The follow-up surveys are part of the central evaluation of the school and are based on large nationally representative samples from different cohorts of students.

    Evaluation through follow-up (UGU) is one of the country's largest research databases in the field of education. UGU is part of the central evaluation of the school and is based on large nationally representative samples from different cohorts of students. The longitudinal database contains information on nationally representative samples of school pupils from ten cohorts, born between 1948 and 2004. The sampling process was based on the student's birthday for the first two and on the school class for the other cohorts.

    For each cohort, data of mainly two types are collected. School administrative data is collected annually by Statistics Sweden during the time that pupils are in the general school system (primary and secondary school), for most cohorts starting in compulsory school year 3. This information is provided by the school offices and, among other things, includes characteristics of school, class, special support, study choices and grades. Information obtained has varied somewhat, e.g. due to changes in curricula. A more detailed description of this data collection can be found in reports published by Statistics Sweden and linked to datasets for each cohort.

    Survey data from the pupils is collected for the first time in compulsory school year 6 (for most cohorts). Questionnaire in survey in year 6 includes questions related to self-perception and interest in learning, attitudes to school, hobbies, school motivation and future plans. For some cohorts, questionnaire data are also collected in year 3 and year 9 in compulsory school and in upper secondary school.

    Furthermore, results from various intelligence tests and standartized knowledge tests are included in the data collection year 6. The intelligence tests have been identical for all cohorts (except cohort born in 1987 from which questionnaire data were first collected in year 9). The intelligence test consists of a verbal, a spatial and an inductive test, each containing 40 tasks and specially designed for the UGU project. The verbal test is a vocabulary test of the opposite type. The spatial test is a so-called ‘sheet metal folding test’ and the inductive test are made up of series of numbers. The reliability of the test, intercorrelations and connection with school grades are reported by Svensson (1971).

    For the first three cohorts (1948, 1953 and 1967), the standartized knowledge tests in year 6 consist of the standard tests in Swedish, mathematics and English that up to and including the beginning of the 1980s were offered to all pupils in compulsory school year 6. For the cohort 1972, specially prepared tests in reading and mathematics were used. The test in reading consists of 27 tasks and aimed to identify students with reading difficulties. The mathematics test, which was also offered for the fifth cohort, (1977) includes 19 assignments. After a changed version of the test, caused by the previously used test being judged to be somewhat too simple, has been used for the cohort born in 1982. Results on the mathematics test are not available for the 1987 cohort. The mathematics test was not offered to the students in the cohort in 1992, as the test did not seem to fully correspond with current curriculum intentions in mathematics. For further information, see the description of the dataset for each cohort.

    For several of the samples, questionnaires were also collected from the students 'parents and teachers in year 6. The teacher questionnaire contains questions about the teacher, class size and composition, the teacher's assessments of the class' knowledge level, etc., school resources, working methods and parental involvement and questions about the existence of evaluations. The questionnaire for the guardians includes questions about the child's upbringing conditions, ambitions and wishes regarding the child's education, views on the school's objectives and the parents' own educational and professional situation.

    The students are followed up even after they have left primary school. Among other things, data collection is done during the time they are in high school. Then school administrative data such as e.g. choice of upper secondary school line / program and grades after completing studies. For some of the cohorts, in addition to school administrative data, questionnaire data were also collected from the students.

    New sample design compared to previous cohorts. The selection was carried out in two steps. In the first, municipalities were chosen and in the second, school classes with pupils in year 6. A stratified sample was selected from 29 municipalities, after which the school classes were chosen with the help of the class registers in the municipalities in question. In the small municipalities all classes were included, while a random sample was made from the larger ones. The final sample consisted of approximately 9601 students divided into 437 classes in year 6 spring term 1980, and mainly born in 1967. This was at the end 9114 due to the refusal in various forms.

    The information obtained in 1980 for rides was:

    1. School administrative data (school form, class type, year and grades). This information was collected by Statistics Sweden for all in the sample. Tasks 2-5 were collected by the Department of Education at the Stockholm University of Education.

    2. Information about the parents' profession and education, housing, guardians, values ​​of school and education, etc. This information was collected mainly through a questionnaire to guardians, which was new compared to the two previous cohorts. Information is available for about 70%.

    3. Answers to questions that shed light on students' school attitudes, self-assessments and values, leisure activities and study and vocational plans, including motives for choosing alternative courses.

    4. Results on three aptitude tests, one verbal, one spatial and one inductive.

    The aptitude tests were completely identical, while the questionnaires were partially reworked compared to the two previous cohorts. This information is available to just over 90 percent of the students.

    1. Standard test results in reading, writing, mathematics and English, in the cases where they occurred in the municipality in question at the time of the examination. Standard test results are available for fewer individuals (approx. 5,600) mainly due to the fact that grading and the use of standard tests only occurred in approximately half of the municipalities included in the sample.
  16. w

    Multiple Indicator Cluster Survey 2000 - Viet Nam

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +2more
    Updated Oct 26, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    General Statistics Office (2023). Multiple Indicator Cluster Survey 2000 - Viet Nam [Dataset]. https://microdata.worldbank.org/index.php/catalog/722
    Explore at:
    Dataset updated
    Oct 26, 2023
    Dataset authored and provided by
    General Statistics Office
    Time period covered
    2000
    Area covered
    Vietnam
    Description

    Abstract

    The Viet Nam Multiple Indicator Cluster Survey (MICS) was carried by General Statistics Office of Viet Nam (GSO) in collaboration with Viet Nam Committee for Population, Family and Children (VCPFC). Financial and technical support by the United Nations Children's Fund (UNICEF).

    In the World Summit for children held in New York in 1990, the Government of Vietnam committed itself to the implementation of the World Declaration and Plan of Action for children.

    In implementation of directive 34/1999/CT-TTg on 27 December 1999 on promoting the implementation of the end-decade goals for children, reviewing the National Plan of Action for children, 1991-2000 and designing the National Plan of Action for children, 2001-2010, in the framework of the “Development of Social Indicators” project, the General Statistical Office (GSO) has chaired and coordinated with the Viet Nam Committee for the Protection and Care for Children (CPCC) to conduct the survey evaluating the end- decade goals for children, 1991-2000 (MICS). MICS has covered a sample size of 7628 households in 240 communes and wards representing the whole country, the urban area, the rural area and the 8 geographical areas in 61 towns/provinces. Field activities to collect data lasted 2 months, May- June/2000. The survey was technically supported by statisticians from EAPRO, UNICEF regional offices, UNICEF Hanoi on sample and questionnaire designing, data input software, not least the software analyzing and calculating the estimates generalizing the results of survey.

    Survey Objectives: The end-decade survey on children is aimed at. · Providing up-to-date and reliable data to analyse the situation of children and women in 2000. · Providing data to assess the implementation of the World summit goals for children and of the National Plan of Action for Vietnamese Children, 1991-2000. · Serving as a basis (with baseline data and information) for development of the National Plan of Action for Children, 2001-2010. · Building professional capacity in monitoring, managing and evaluating all the goals of child protection, care and education at all levels.

    Geographic coverage

    The 2000 MICS of Vietnam was a nationally representative sample survey.

    Analysis unit

    Households, Women, Child.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sample for the Viet Nam Multiple Indicator Cluster Survey (MICSII) was designed to provide reliable estimates on a large number of indicators on the situation of children and women at the national level, for urban and rural areas, and for 8 regions: Red River Delta, North West, North East, North Central Coast, South Central Coast, Central Highlands, South East, and Mekong River Delta. Regions were identified as the main sampling domains and the sample was selected in two stages: At the first stage, 240 EAs are sellected. After a household listing was carried out within the selected enumeration areas, a systematic sample of 1/3 of households in each EA was drawn. The survey managed to visit all of 240 selected EAs during the fieldwork period. The sample was stratified by region and is not self-weighting. For reporting national level results, sample weights are used.

    Sampling deviation

    No major deviations from the original sample design were made. All sample enumeration areas were accessed and successfully interviewed with good response rates.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The questionnaires for MICS in Vietnam are based on the New York UNICEF module questionnaires with some modifications and additions to fit in with Vietnam's context and to evaluate the goals set out in the National Plan of Action. The questionnaires have been arranged in such a way as to prevent the loss of questionnaire sheets and to facilitate the logic control between the items in the modules. Questionnaires include 3 sections. Section 1: general questions to be administered to families and family members. Section 2: questions for child bearing-age women (aged 15-49). Section 3: for children under 5.

    Section 1: Household questionnaire Part A: Household information panel Part B: Household listing form Part C: Education Part D: Child labour Part E: Maternal mortality Part F: Water and sanitation Part G: Salt iodization

    Section 2: Questionnaire for child bearing-age women Part A: Child mortality Part B: Tetanus toxoid (TT) Part C: Maternal and newborn health Part D: Contraceptive use Part E: HIV/AIDS

    Section 3: Questionnaire for children under five Part A:Birth registration and early learning Part B: Vitamin A Part C: Breastfeeding Part D: Care of illness Part E: Malaria Part F: Immunization Part G: Anthropometry

    Apart from the questionnaires to collect information at family level, questionnaires are also designed to gather information at community level supplementary to some indicators that can not have data collected at family level. The information garnered includes local population, socio-economic and physical conditions, education, health and progress of projects/plans of actions for children.

    Cleaning operations

    To minimize the errors made by data entry staff members, all the records were double- entered by two different members. Any error detected between the two entries was re-checked to find out which one is wrong. Data cleaning started in to early September. This process was closely observed to ensure the accuracy, quality and practicality of all the data collected.

    To minimize the errors due to wrong statements of respondents or wrong registration by interviewers, a cleaning programme was used to check the consistency and logic in the items of questionnaires and between the questionnaires. The cleaning programme printed out all the errors, then questionnaires were checked by qualified officials.

    Response rate

    8356 households were selected for the sample. Of these all were found to be occupied households and 8355 were successfully interviewed for a response rate of 100%. Within these households, 10063 eligible women aged 15-49 were identified for interview, of which 9473 were successfully interviewed (response rate 94.1%), and 2707 children aged 0-4 were identified for whom the mother or caretaker was successfully interviewed for 2680 children (response rate 99%).

    Sampling error estimates

    Estimates from a sample survey are affected by two types of errors: 1) non-sampling errors and 2) sampling errors. Non-sampling errors are the results of mistakes made in the implementation of data collection and data processing. Numerous efforts were made during implementation of the MICS - 3 to minimize this type of error, however, non-sampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors can be evaluated statistically. The sample of respondents to the MICS - 3 is only one of many possible samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that different somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability in the results of the survey between all possible samples, and, although, the degree of variability is not known exactly, it can be estimated from the survey results. The sampling errors are measured in terms of the standard error for a particular statistic (mean or percentage), which is the square root of the variance. Confidence intervals are calculated for each statistic within which the true value for the population can be assumed to fall. Plus or minus two standard errors of the statistic is used for key statistics presented in MICS, equivalent to a 95 percent confidence interval.

    If the sample of respondents had been a simple random sample, it would have been possible to use straightforward formulae for calculating sampling errors. However, the MICS - 3 sample is the result of a two-stage stratified design, and consequently needs to use more complex formulae. The SPSS complex samples module has been used to calculate sampling errors for the MICS - 3. This module uses the Taylor linearization method of variance estimation for survey estimates that are means or proportions. This method is documented in the SPSS file CSDescriptives.pdf found under the Help, Algorithms options in SPSS.

    Sampling errors have been calculated for a select set of statistics (all of which are proportions due to the limitations of the Taylor linearization method) for the national sample, urban and rural areas, and for each of the five regions. For each statistic, the estimate, its standard error, the coefficient of variation (or relative error -- the ratio between the standard error and the estimate), the design effect, and the square root design effect (DEFT -- the ratio between the standard error using the given sample design and the standard error that would result if a simple random sample had been used), as well as the 95 percent confidence intervals (+/-2 standard errors).

    Data appraisal

    A series of data quality tables and graphs are available to review the quality of the data and include the following:

    Age distribution of the household population Age distribution of eligible women and interviewed women Age distribution of eligible children and children for whom the mother or caretaker was interviewed Age distribution of children under age 5 by 3 month groups Age and period ratios at boundaries of eligibility Percent of observations with missing information on selected variables Presence of mother in

  17. f

    Living Standards Measurement Survey 2001 (Wave 1 Panel) - Bosnia and...

    • microdata.fao.org
    Updated Nov 8, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State Agency for Statistics (BHAS) (2022). Living Standards Measurement Survey 2001 (Wave 1 Panel) - Bosnia and Herzegovina [Dataset]. https://microdata.fao.org/index.php/catalog/1532
    Explore at:
    Dataset updated
    Nov 8, 2022
    Dataset provided by
    State Agency for Statistics (BHAS)
    Federation of BiH Institute of Statistics (FIS)
    Republika Srpska Institute of Statistics (RSIS)
    Time period covered
    2001
    Area covered
    Bosnia and Herzegovina
    Description

    Abstract

    In 1992, Bosnia-Herzegovina, one of the six republics in former Yugoslavia, became an independent nation. A civil war started soon thereafter, lasting until 1995 and causing widespread destruction and losses of lives. Following the Dayton accord, BosniaHerzegovina (BiH) emerged as an independent state comprised of two entities, namely, the Federation of Bosnia-Herzegovina (FBiH) and the Republika Srpska (RS), and the district of Brcko. In addition to the destruction caused to the physical infrastructure, there was considerable social disruption and decline in living standards for a large section of the population. Alongside these events, a period of economic transition to a market economy was occurring. The distributive impacts of this transition, both positive and negative, are unknown. In short, while it is clear that welfare levels have changed, there is very little information on poverty and social indicators on which to base policies and programs. In the post-war process of rebuilding the economic and social base of the country, the government has faced the problems created by having little relevant data at the household level. The three statistical organizations in the country (State Agency for Statistics for BiH -BHAS, the RS Institute of Statistics-RSIS, and the FBiH Institute of Statistics-FIS) have been active in working to improve the data available to policy makers: both at the macro and the household level. One facet of their activities is to design and implement a series of household series. The first of these surveys is the Living Standards Measurement Study survey (LSMS). Later surveys will include the Household Budget Survey (an Income and Expenditure Survey) and a Labour Force Survey. A subset of the LSMS households will be re-interviewed in the two years following the LSMS to create a panel data set.

    The three statistical organizations began work on the design of the Living Standards Measurement Study Survey (LSMS) in 1999. The purpose of the survey was to collect data needed for assessing the living standards of the population and for providing the key indicators needed for social and economic policy formulation. The survey was to provide data at the country and the entity level and to allow valid comparisons between entities to be made. The LSMS survey was carried out in the Fall of 2001 by the three statistical organizations with financial and technical support from the Department for International Development of the British Government (DfID), United Nations Development Program (UNDP), the Japanese Government, and the World Bank (WB). The creation of a Master Sample for the survey was supported by the Swedish Government through SIDA, the European Commission, the Department for International Development of the British Government and the World Bank. The overall management of the project was carried out by the Steering Board, comprised of the Directors of the RS and FBiH Statistical Institutes, the Management Board of the State Agency for Statistics and representatives from DfID, UNDP and the WB. The day-to-day project activities were carried out by the Survey Management Team, made up of two professionals from each of the three statistical organizations. The Living Standard Measurement Survey LSMS, in addition to collecting the information necessary to obtain a comprehensive as possible measure of the basic dimensions of household living standards, has three basic objectives, as follows: 1. To provide the public sector, government, the business community, scientific institutions, international donor organizations and social organizations with information on different indicators of the population's living conditions, as well as on available resources for satisfying basic needs. 2. To provide information for the evaluation of the results of different forms of government policy and programs developed with the aim to improve the population's living standard. The survey will enable the analysis of the relations between and among different aspects of living standards (housing, consumption, education, health, labour) at a given time, as well as within a household. 3. To provide key contributions for development of government's Poverty Reduction Strategy Paper, based on analysed data.

    Geographic coverage

    National coverage

    Analysis unit

    Households

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    (a) SAMPLE SIZE A total sample of 5,400 households was determined to be adequate for the needs of the survey: with 2,400 in the Republika Srpska and 3,000 in the Federation of BiH. The difficulty was in selecting a probability sample that would be representative of the country's population. The sample design for any survey depends upon the availability of information on the universe of households and individuals in the country. Usually this comes from a census or administrative records. In the case of BiH the most recent census was done in 1991. The data from this census were rendered obsolete due to both the simple passage of time but, more importantly, due to the massive population displacements that occurred during the war. At the initial stages of this project it was decided that a master sample should be constructed. Experts from Statistics Sweden developed the plan for the master sample and provided the procedures for its construction. From this master sample, the households for the LSMS were selected. Master Sample [This section is based on Peter Lynn's note "LSMS Sample Design and Weighting - Summary". April, 2002. Essex University, commissioned by DfID.] The master sample is based on a selection of municipalities and a full enumeration of the selected municipalities. Optimally, one would prefer smaller units (geographic or administrative) than municipalities. However, while it was considered that the population estimates of municipalities were reasonably accurate, this was not the case for smaller geographic or administrative areas. To avoid the error involved in sampling smaller areas with very uncertain population estimates, municipalities were used as the base unit for the master sample. The Statistics Sweden team proposed two options based on this same method, with the only difference being in the number of municipalities included and enumerated.

    (b) SAMPLE DESIGN For reasons of funding, the smaller option proposed by the team was used, or Option B. Stratification of Municipalities The first step in creating the Master Sample was to group the 146 municipalities in the country into three strata- Urban, Rural and Mixed - within each of the two entities. Urban municipalities are those where 65 percent or more of the households are considered to be urban, and rural municipalities are those where the proportion of urban households is below 35 percent. The remaining municipalities were classified as Mixed (Urban and Rural) Municipalities. Brcko was excluded from the sampling frame. Urban, Rural and Mixed Municipalities: It is worth noting that the urban-rural definitions used in BiH are unusual with such large administrative units as municipalities classified as if they were completely homogeneous. Their classification into urban, rural, mixed comes from the 1991 Census which used the predominant type of income of households in the municipality to define the municipality. This definition is imperfect in two ways. First, the distribution of income sources may have changed dramatically from the pre-war times: populations have shifted, large industries have closed, and much agricultural land remains unusable due to the presence of land mines. Second, the definition is not comparable to other countries' where villages, towns and cities are classified by population size into rural or urban or by types of services and infrastructure available. Clearly, the types of communities within a municipality vary substantially in terms of both population and infrastructure. However, these imperfections are not detrimental to the sample design (the urban/rural definition may not be very useful for analysis purposes, but that is a separate issue).

    Mode of data collection

    Face-to-face [f2f]

    Cleaning operations

    (a) DATA ENTRY

    An integrated approach to data entry and fieldwork was adopted in Bosnia and Herzegovina. Data entry proceeded side by side with data gathering to ensure verification and correction in the field. Data entry stations were located in the regional offices of the entity institutes and were equipped with computers, modem and a dedicated telephone line. The completed questionnaires were delivered to these stations each day for data entry. Twenty data entry operators (10 from Federation and 10 from RS) were trained in two training sessions held for a week each in Sarajevo and Banja Luka. The trainers were the staff of the two entity institutes who had undergone training in the CSPro software earlier and had participated in the workshops of the Pilot survey. Prior to the training, laptop computers were provided to the entity institutes, and the CSPro software was installed in them. The training for the data entry operators covered the following elements:

    • Introduction to the LSMS Survey questionnaire; Introduction to the personal computers/ lap top computers; Copying data on diskette and printing of output
    • The Data entry programme (CSPro). Understanding of the Round 1 data entry screens (Modules 1-10)
    • Practice of Round 1 (data entry trainees enter questionnaires completed by interviewer trainees during practice interviews)
    • Understanding of Round 2 Data entry screen (Modules 11-13)
    • Practice of Round 2 Data entry screens (data entry trainees entered the questionnaires completed by interviewer trainees)
    • Control Procedures; Copying
  18. l

    Household Income and Expenditure Survey 2016 - Liberia

    • microdata.lisgislr.org
    • catalog.ihsn.org
    • +1more
    Updated Oct 17, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Liberia Institute for Statistics and Geo-Information Services (2024). Household Income and Expenditure Survey 2016 - Liberia [Dataset]. https://microdata.lisgislr.org/index.php/catalog/29
    Explore at:
    Dataset updated
    Oct 17, 2024
    Dataset authored and provided by
    Liberia Institute for Statistics and Geo-Information Services
    Time period covered
    2016 - 2017
    Area covered
    Liberia
    Description

    Abstract

    The main purpose of the Household Income Expenditure Survey (HIES) 2016 was to offer high quality and nationwide representative household data that provided information on incomes and expenditure in order to update the Consumer Price Index (CPI), improve National Accounts statistics, provide agricultural data and measure poverty as well as other socio-economic indicators. These statistics were urgently required for evidence-based policy making and monitoring of implementation results supported by the Poverty Reduction Strategy (I & II), the AfT and the Liberia National Vision 2030. The survey was implemented by the Liberia Institute of Statistics and Geo-Information Services (LISGIS) over a 12-month period, starting from January 2016 and was completed in January 2017. LISGIS completed a total of 8,350 interviews, thus providing sufficient observations to make the data statistically significant at the county level. The data captured the effects of seasonality, making it the first of its kind in Liberia. Support for the survey was offered by the Government of Liberia, the World Bank, the European Union, the Swedish International Development Corporation Agency, the United States Agency for International Development and the African Development Bank. The objectives of the 2016 HIES were:

    1. Update the Consumer Price Index (CPI): To obtain a new set of weights for the basket of goods and services that upgrade the Monrovia Consumer Price Index (MCPI) and the National Consumer Price Index (NCPI) and to revise the CPI basket of goods and services in Liberia to reflect the current consumption pattern of residence.
    2. Improve National Accounts Statistics: To get information on annual household expenditure patterns in order to update the household component of the National Accounts.
    3. Measure Poverty: To prepare robust poverty indices that enable the understanding of poverty dynamics across the country and of the factors influencing them.
    4. Improve Agricultural Statistics: To obtain nationally representative and policy relevant agricultural statistics in order to undertake in-depth analysis of agricultural households.
    5. Capture Socio-economic Impact of Ebola Virus Disease (EVD): To obtain a post-EVD dataset which allows for an in-depth analysis of the socioeconomic impact of EVD on households.
    6. Benchmark Agenda for Transformation Indicators: To provide an update on selected socioeconomic indicators used to benchmark the government’s policies embedded within the Agenda for Transformation.
    7. Develop Statistical Capacity: Emphasize capacity building and development of sustainable statistical systems through every stage of the project to produce accurate and timely information about Liberia.

    Geographic coverage

    National

    Analysis unit

    • Households
    • Individuals

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The original sample design for the HIES exploited two-phased clustered sampling methods, encompassing a nationally representative sample of households in every quarter and was obtained using the 2008 National Housing and Population Census sampling frame. The procedures used for each sampling stage are as follows:
    i. First stage
    Selection of sample EAs. The sample EAs for the 2016 HIES were selected within each stratum systematically with Probability Proportional to Size from the ordered list of EAs in the sampling frame. They are selected separately for each county by urban/rural stratum. The measure of size for each EA was based on the number of households from the sampling frame of EAs based on the 2008 Liberia Census. Within each stratum the EAs were ordered geographically by district, clan and EA codes. This provided implicit geographic stratification of the sampling frame.

    ii. Second stage
    Selection of sample households within a sample EA. A random systematic sample of 10 households were selected from the listing for each sample EA. Using this type of table, the supervisor only has to look up the total number of households listed, and a specific systematic sample of households is identified in the corresponding row of the table.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    There were three questionnaires administered for this survey: 1. Household and Individual Questionnaire 2. Market Price Questionnaire 3. Agricultural Recall Questionnaire

    Cleaning operations

    The data entry clerk for each team, using data entry software called CSPro, entered data for each household in the field. For each household, an error report was generated on-site, which identified key problems with the data collected (outliers, incorrect entries, inconsistencies with skip patterns, basic filters for age and gender specific questions etc.). The Supervisor along with the Data Entry Clerk and the Enumerator that collected the data reviewed these errors. Callbacks were made to households if necessary to verify information and rectify the errors while in that EA.

    Once the data were collected in each EA, they were sent to LISGIS headquarters for further processing along with EA reports for each area visited. The HIES Technical committee converted the data into STATA and ran several consistency checks to manage overall data quality and prepared reports to identify key problems with the data set and called the field teams to update them about the same. Monthly reports were prepared by summarizing observations from data received from the field alongside statistics on data collection status to share with the field teams and LISGIS Management.

  19. Expenditure and Consumption Survey, 1996 - West Bank and Gaza

    • dev.ihsn.org
    • catalog.ihsn.org
    Updated Apr 25, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Palestinian Central Bureau of Statistics (2019). Expenditure and Consumption Survey, 1996 - West Bank and Gaza [Dataset]. https://dev.ihsn.org/nada/catalog/73923
    Explore at:
    Dataset updated
    Apr 25, 2019
    Dataset authored and provided by
    Palestinian Central Bureau of Statisticshttp://pcbs.gov.ps/
    Time period covered
    1995 - 1996
    Area covered
    West Bank, Gaza, Gaza Strip
    Description

    Abstract

    The basic goal of this survey is to provide the necessary database for formulating national policies at various levels. It represents the contribution of the household sector to the Gross National Product (GNP). Household Surveys help as well in determining the incidence of poverty, and providing weighted data which reflects the relative importance of the consumption items to be employed in determining the benchmark for rates and prices of items and services. Generally, the Household Expenditure and Consumption Survey is a fundamental cornerstone in the process of studying the nutritional status in the Palestinian territory.

    The raw survey data provided by the Statistical Office was cleaned and harmonized by the Economic Research Forum, in the context of a major research project to develop and expand knowledge on equity and inequality in the Arab region. The main focus of the project is to measure the magnitude and direction of change in inequality and to understand the complex contributing social, political and economic forces influencing its levels. However, the measurement and analysis of the magnitude and direction of change in this inequality cannot be consistently carried out without harmonized and comparable micro-level data on income and expenditures. Therefore, one important component of this research project is securing and harmonizing household surveys from as many countries in the region as possible, adhering to international statistics on household living standards distribution. Once the dataset has been compiled, the Economic Research Forum makes it available, subject to confidentiality agreements, to all researchers and institutions concerned with data collection and issues of inequality. Data is a public good, in the interest of the region, and it is consistent with the Economic Research Forum's mandate to make micro data available, aiding regional research on this important topic.

    Geographic coverage

    The target population in the sample survey comprises all households living in the West Bank and Gaza Strip, excluding nomads and students.

    Analysis unit

    1- Household/families. 2- Individuals.

    Universe

    The survey covered a national sample of households and all permanently residing individuals in surveyed households.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Sample and Frame:

    In the absence of a population census since 1967, the major task, with regard to constructing master sample, was developing a frame of suitable units covering the whole country. Such units have been used as the PSUs (Primary Sampling Units) in the first stage of selection. For the second stage of selection, all PSUs have been listed in the field at the household level. This provided a sampling frame for selecting the households.

    Sample design:

    The sample design is, therefore, a stratified two-stage design for households selected to be interviewed. Four levels of stratification have been made: 1. Stratification by District. 2. Stratification by place of residence, which comprises: (a) Municipalities (b) Villages (C) refugees camps 3. Stratification by locality size 4. Stratification by cell identification in that order

    Sample size:

    The sample size is about 4893 households allowing for non-response and related losses.

    Target cluster size:

    The target cluster size or "sample-take" is the average number of households to be selected per PSU. In this survey, the sample take is around 10 households.

    Detailed information/formulas on the sampling design are available in the user manual.

    Sampling deviation

    The standard errors for the main survey estimates were calculated to give the user an idea of their reliability or precision. Whereas, the variance was calculated using the method of ultimate clusters within any domain of estimation.

    Detailed information on the sampling design deviation and calculation of the variance is available in the user manual.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The PECS questionnaire consists of two main sections:

    First section: Certain articles / provisions of the form filled at the beginning of the month, and the remainder filled out at the end of the month. The questionnaire includes the following provisions:

    Cover sheet: It contains detailed and particulars of the family, date of visit, particular of the field/office work team, number/sex of the family members.

    Statement of the family members: Contains social, economic and demographic particulars of the selected family.

    Statement of the long-lasting commodities and income generation activities: Includes a number of basic and indispensable items (i.e, Livestock, or agricultural lands).

    Housing Characteristics: Includes information and data pertaining to the housing conditions, including type of shelter, number of rooms, ownership, rent, water, electricity supply, connection to the sewer system, source of cooking and heating fuel, and remoteness/proximity of the house to education and health facilities.

    Monthly and Annual Income: Data pertaining to the income of the family is collected from different sources at the end of the registration / recording period.

    Second section: The second section of the questionnaire includes a list of 54 consumption and expenditure groups itemized and serially numbered according to its importance to the family. Each of these groups contains important commodities. The number of commodities items in each for all groups stood at 707 commodities and services items. Groups 1-21 include food, drink, and cigarettes. Group 22 includes homemade commodities. Groups 23-45 include all items except for food, drink and cigarettes. Groups 50-54 include all of the long-lasting commodities. Data on each of these groups was collected over different intervals of time so as to reflect expenditure over a period of one full year.

    Cleaning operations

    Raw Data

    Harmonized Data

    • The Statistical Package for Social Science (SPSS) is used to clean and harmonize the datasets.
    • The harmonization process starts with cleaning all raw data files received from the Statistical Office.
    • Cleaned data files are then all merged to produce one data file on the individual level containing all variables subject to harmonization.
    • A country-specific program is generated for each dataset to generate/compute/recode/rename/format/label harmonized variables.
    • A post-harmonization cleaning process is run on the data.
    • Harmonized data is saved on the household as well as the individual level, in SPSS and converted to STATA format.

    Response rate

    Excluding the uninhabited housing units, the survey sample is (4806) households, from which (3422) households are in the West Bank, and (1384) households are in Gaza Strip. A total of (4584) households completed the questionnaire: (3213) household in the West bank and (1335) households in Gaza Strip. The non-response rate is, accordingly, 5.7% for all the Palestinian territory.

    Sampling error estimates

    Generally, surveys samples are exposed to two types of errors. The statistical errors, being the first type, result from studying a part of a certain society and not including all its sections. And since the Household Expenditure and Consumption Surveys are conducted using a sample method, statistical errors are then unavoidable. Therefore, a potential sample using a suitable design has been employed whereby each unit of the society has a high chance of selection. Upon calculating the rate of bias in this survey, it appeared that the data is of high quality. The second type of errors is the non-statistical errors that relate to the design of the survey, mechanisms of data collection, and management and analysis of data. Members of the work commission were trained on all possible mechanisms to tackle such potential problems, as well as on how to address cases in which there were no responses (representing 3.1%).

  20. Distribution of unsuccessfully funded projects on Kickstarter 2025

    • statista.com
    Updated Jan 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Distribution of unsuccessfully funded projects on Kickstarter 2025 [Dataset]. https://www.statista.com/statistics/251732/overview-of-unsuccessfully-funded-projects-on-crowdfunding-platform-kickstarter/
    Explore at:
    Dataset updated
    Jan 30, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 30, 2025
    Area covered
    Worldwide
    Description

    Kickstarter, the popular crowdfunding platform, has seen a significant number of projects fall short of their funding goals. As of January 2025, 376,698 projects failed to reach their targets, with the majority (246,351) achieving only 1-20 percent of their funding objectives. This failure rate underscores the challenges creators face in securing financial backing for their ideas, despite Kickstarter's global reach and billions in pledged funds. Crowdfunding's growing impact Since its launch in 2009, Kickstarter has become a major player in the crowdfunding industry. The number of projects hosted on the platform exceeded 651,000 projects, with pledges surpassing 8.5 billion U.S. dollars. Notably, the most successful project to date, "Surpise! Four Secret Novels by Brandon Sanderson", raised an impressive 41 million U.S. dollars in 2022. These figures highlight the platform's potential for creators to secure substantial funding for their projects. Success rates vary by category While many projects struggle to meet their funding goals, success rates differ significantly across categories. As of January 2025, comics boasted the highest success rate at 67.65 percent, followed by dance at 61.11 percent and theater at 59.72 percent. These statistics suggest that certain creative fields may resonate more strongly with Kickstarter's backer community, potentially offering better odds for project success in these areas.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Kristin Lilly; Basil M. Conway (2025). A Case Study of an Evaluation of Pen-and-Paper Homework and Project-Based Learning of Statistical Literacy in an Introductory Statistics Course [Dataset]. http://doi.org/10.6084/m9.figshare.28351452.v1

Data from: A Case Study of an Evaluation of Pen-and-Paper Homework and Project-Based Learning of Statistical Literacy in an Introductory Statistics Course

Related Article
Explore at:
pdfAvailable download formats
Dataset updated
May 12, 2025
Dataset provided by
Taylor & Francis
Authors
Kristin Lilly; Basil M. Conway
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Pen-and-paper homework and project-based learning are both commonly used instructional methods in introductory statistics courses. However, there have been few studies comparing these two methods exclusively. In this case study, each was used in two different sections of the same introductory statistics course at a regional state university. Students’ statistical literacy was measured by exam scores across the course, including the final. The comparison of the two instructional methods includes using descriptive statistics and two-sample t-tests, as well authors’ reflections on the instructional methods. Results indicated that there is no statistically discernible difference between the two instructional methods in the introductory statistics course.

Search
Clear search
Close search
Google apps
Main menu