100+ datasets found
  1. u

    Population and Family Health Survey 2012 - Jordan

    • microdata.unhcr.org
    • catalog.ihsn.org
    • +3more
    Updated May 19, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Statistics (DoS) (2021). Population and Family Health Survey 2012 - Jordan [Dataset]. https://microdata.unhcr.org/index.php/catalog/405
    Explore at:
    Dataset updated
    May 19, 2021
    Dataset authored and provided by
    Department of Statistics (DoS)
    Time period covered
    2012
    Area covered
    Jordan
    Description

    Abstract

    The Jordan Population and Family Health Survey (JPFHS) is part of the worldwide Demographic and Health Surveys Program, which is designed to collect data on fertility, family planning, and maternal and child health.

    The primary objective of the 2012 Jordan Population and Family Health Survey (JPFHS) is to provide reliable estimates of demographic parameters, such as fertility, mortality, family planning, and fertility preferences, as well as maternal and child health and nutrition, that can be used by program managers and policymakers to evaluate and improve existing programs. The JPFHS data will be useful to researchers and scholars interested in analyzing demographic trends in Jordan, as well as those conducting comparative, regional, or cross-national studies.

    Geographic coverage

    National coverage

    Analysis unit

    • Household
    • Women age 15-49

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Sample Design The 2012 JPFHS sample was designed to produce reliable estimates of major survey variables for the country as a whole, urban and rural areas, each of the 12 governorates, and for the two special domains: the Badia areas and people living in refugee camps. To facilitate comparisons with previous surveys, the sample was also designed to produce estimates for the three regions (North, Central, and South). The grouping of the governorates into regions is as follows: the North consists of Irbid, Jarash, Ajloun, and Mafraq governorates; the Central region consists of Amman, Madaba, Balqa, and Zarqa governorates; and the South region consists of Karak, Tafiela, Ma'an, and Aqaba governorates.

    The 2012 JPFHS sample was selected from the 2004 Jordan Population and Housing Census sampling frame. The frame excludes the population living in remote areas (most of whom are nomads), as well as those living in collective housing units such as hotels, hospitals, work camps, prisons, and the like. For the 2004 census, the country was subdivided into convenient area units called census blocks. For the purposes of the household surveys, the census blocks were regrouped to form a general statistical unit of moderate size (30 households or more), called a "cluster", which is widely used in surveys as a primary sampling unit (PSU).

    Stratification was achieved by first separating each governorate into urban and rural areas and then, within each urban and rural area, by Badia areas, refugee camps, and other. A two-stage sampling procedure was employed. In the first stage, 806 clusters were selected with probability proportional to the cluster size, that is, the number of residential households counted in the 2004 census. A household listing operation was then carried out in all of the selected clusters, and the resulting lists of households served as the sampling frame for the selection of households in the second stage. In the second stage of selection, a fixed number of 20 households was selected in each cluster with an equal probability systematic selection. A subsample of two-thirds of the selected households was identified for anthropometry measurements.

    Refer to Appendix A in the final report (Jordan Population and Family Health Survey 2012) for details of sampling weights calculation.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The 2012 JPFHS used two questionnaires, namely the Household Questionnaire and the Woman’s Questionnaire (see Appendix D). The Household Questionnaire was used to list all usual members of the sampled households, and visitors who slept in the household the night before the interview, and to obtain information on each household member’s age, sex, educational attainment, relationship to the head of the household, and marital status. In addition, questions were included on the socioeconomic characteristics of the household, such as source of water, sanitation facilities, and the availability of durable goods. Moreover, the questionnaire included questions about child discipline. The Household Questionnaire was also used to identify women who were eligible for the individual interview (ever-married women age 15-49 years). In addition, all women age 15-49 and children under age 5 living in the subsample of households were eligible for height and weight measurement and anemia testing.

    The Woman’s Questionnaire was administered to ever-married women age 15-49 and collected information on the following topics: • Respondent’s background characteristics • Birth history • Knowledge, attitudes, and practice of family planning and exposure to family planning messages • Maternal health (antenatal, delivery, and postnatal care) • Immunization and health of children under age 5 • Breastfeeding and infant feeding practices • Marriage and husband’s background characteristics • Fertility preferences • Respondent’s employment • Knowledge of AIDS and sexually transmitted infections (STIs) • Other health issues specific to women • Early childhood development • Domestic violence

    In addition, information on births, pregnancies, and contraceptive use and discontinuation during the five years prior to the survey was collected using a monthly calendar.

    The Household and Woman’s Questionnaires were based on the model questionnaires developed by the MEASURE DHS program. Additions and modifications to the model questionnaires were made in order to provide detailed information specific to Jordan. The questionnaires were then translated into Arabic.

    Anthropometric data were collected during the 2012 JPFHS in a subsample of two-thirds of the selected households in each cluster. All women age 15-49 and children age 0-4 in these households were measured for height using Shorr height boards and for weight using electronic Seca scales. In addition, a drop of capillary blood was taken from these women and children in the field to measure their hemoglobin level using the HemoCue system. Hemoglobin testing was used to estimate the prevalence of anemia.

    Cleaning operations

    Fieldwork and data processing activities overlapped. Data processing began two weeks after the start of the fieldwork. After field editing of questionnaires for completeness and consistency, the questionnaires for each cluster were packaged together and sent to the central office in Amman, where they were registered and stored. Special teams were formed to carry out office editing and coding of the openended questions.

    Data entry and verification started after two weeks of office data processing. The process of data entry, including 100 percent reentry, editing, and cleaning, was done by using PCs and the CSPro (Census and Survey Processing) computer package, developed specially for such surveys. The CSPro program allows data to be edited while being entered. Data processing operations were completed by early January 2013. A data processing specialist from ICF International made a trip to Jordan in February 2013 to follow up on data editing and cleaning and to work on the tabulation of results for the survey preliminary report, which was published in March 2013. The tabulations for this report were completed in April 2013.

    Response rate

    In all, 16,120 households were selected for the survey and, of these, 15,722 were found to be occupied households. Of these households, 15,190 (97 percent) were successfully interviewed.

    In the households interviewed, 11,673 ever-married women age 15-49 were identified and interviews were completed with 11,352 women, or 97 percent of all eligible women.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors and (2) sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2012 Jordan Population and Family Health Survey (JPFHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2012 JPFHS is only one of many samples that could have been selected from the same population, using the same design and identical size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling error is a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2012 JPFHS sample is the result of a multistage stratified design, and, consequently, it was necessary to use more complex formulae. The computer

  2. e

    Sample Space

    • paper.erudition.co.in
    html
    Updated Jul 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Einetic (2025). Sample Space [Dataset]. https://paper.erudition.co.in/makaut/bachelor-of-computer-application-2020-2021/5/numerical-and-statistical-methods
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Jul 10, 2025
    Dataset authored and provided by
    Einetic
    License

    https://paper.erudition.co.in/termshttps://paper.erudition.co.in/terms

    Description

    Question Paper Solutions of chapter Sample Space of Numerical and statistical Methods, 5th Semester , Bachelor of Computer Application 2020-2021

  3. w

    Living Standards Measurement Survey 2003 (Wave 3 Panel) - Bosnia-Herzegovina...

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Jan 30, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State Agency for Statistics (BHAS) (2020). Living Standards Measurement Survey 2003 (Wave 3 Panel) - Bosnia-Herzegovina [Dataset]. https://microdata.worldbank.org/index.php/catalog/67
    Explore at:
    Dataset updated
    Jan 30, 2020
    Dataset provided by
    Republika Srpska Institute of Statistics (RSIS)
    Federation of BiH Institute of Statistics (FIS)
    State Agency for Statistics (BHAS)
    Time period covered
    2003
    Area covered
    Bosnia and Herzegovina
    Description

    Abstract

    In 2001, the World Bank in co-operation with the Republika Srpska Institute of Statistics (RSIS), the Federal Institute of Statistics (FOS) and the Agency for Statistics of BiH (BHAS), carried out a Living Standards Measurement Survey (LSMS). The Living Standard Measurement Survey LSMS, in addition to collecting the information necessary to obtain a comprehensive as possible measure of the basic dimensions of household living standards, has three basic objectives, as follows:

    1. To provide the public sector, government, the business community, scientific institutions, international donor organizations and social organizations with information on different indicators of the population's living conditions, as well as on available resources for satisfying basic needs.

    2. To provide information for the evaluation of the results of different forms of government policy and programs developed with the aim to improve the population's living standard. The survey will enable the analysis of the relations between and among different aspects of living standards (housing, consumption, education, health, labor) at a given time, as well as within a household.

    3. To provide key contributions for development of government's Poverty Reduction Strategy Paper, based on analyzed data.

    The Department for International Development, UK (DFID) contributed funding to the LSMS and provided funding for a further two years of data collection for a panel survey, known as the Household Survey Panel Series (HSPS). Birks Sinclair & Associates Ltd. were responsible for the management of the HSPS with technical advice and support provided by the Institute for Social and Economic Research (ISER), University of Essex, UK. The panel survey provides longitudinal data through re-interviewing approximately half the LSMS respondents for two years following the LSMS, in the autumn of 2002 and 2003. The LSMS constitutes Wave 1 of the panel survey so there are three years of panel data available for analysis. For the purposes of this documentation we are using the following convention to describe the different rounds of the panel survey: - Wave 1 LSMS conducted in 2001 forms the baseline survey for the panel
    - Wave 2 Second interview of 50% of LSMS respondents in Autumn/ Winter 2002 - Wave 3 Third interview with sub-sample respondents in Autumn/ Winter 2003

    The panel data allows the analysis of key transitions and events over this period such as labour market or geographical mobility and observe the consequent outcomes for the well-being of individuals and households in the survey. The panel data provides information on income and labour market dynamics within FBiH and RS. A key policy area is developing strategies for the reduction of poverty within FBiH and RS. The panel will provide information on the extent to which continuous poverty is experienced by different types of households and individuals over the three year period. And most importantly, the co-variates associated with moves into and out of poverty and the relative risks of poverty for different people can be assessed. As such, the panel aims to provide data, which will inform the policy debates within FBiH and RS at a time of social reform and rapid change.

    Geographic coverage

    National coverage. Domains: Urban/rural/mixed; Federation; Republic

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The Wave 3 sample consisted of 2878 households who had been interviewed at Wave 2 and a further 73 households who were interviewed at Wave 1 but were non-contact at Wave 2 were issued. A total of 2951 households (1301 in the RS and 1650 in FBiH) were issued for Wave 3. As at Wave 2, the sample could not be replaced with any other households.

    Panel design

    Eligibility for inclusion

    The household and household membership definitions are the same standard definitions as a Wave 2. While the sample membership status and eligibility for interview are as follows: i) All members of households interviewed at Wave 2 have been designated as original sample members (OSMs). OSMs include children within households even if they are too young for interview. ii) Any new members joining a household containing at least one OSM, are eligible for inclusion and are designated as new sample members (NSMs). iii) At each wave, all OSMs and NSMs are eligible for inclusion, apart from those who move outof-scope (see discussion below). iv) All household members aged 15 or over are eligible for interview, including OSMs and NSMs.

    Following rules

    The panel design means that sample members who move from their previous wave address must be traced and followed to their new address for interview. In some cases the whole household will move together but in others an individual member may move away from their previous wave household and form a new split-off household of their own. All sample members, OSMs and NSMs, are followed at each wave and an interview attempted. This method has the benefit of maintaining the maximum number of respondents within the panel and being relatively straightforward to implement in the field.

    Definition of 'out-of-scope'

    It is important to maintain movers within the sample to maintain sample sizes and reduce attrition and also for substantive research on patterns of geographical mobility and migration. The rules for determining when a respondent is 'out-of-scope' are as follows:

    i. Movers out of the country altogether i.e. outside FBiH and RS. This category of mover is clear. Sample members moving to another country outside FBiH and RS will be out-of-scope for that year of the survey and not eligible for interview.

    ii. Movers between entities Respondents moving between entities are followed for interview. The personal details of the respondent are passed between the statistical institutes and a new interviewer assigned in that entity.

    iii. Movers into institutions Although institutional addresses were not included in the original LSMS sample, Wave 3 individuals who have subsequently moved into some institutions are followed. The definitions for which institutions are included are found in the Supervisor Instructions.

    iv. Movers into the district of Brcko are followed for interview. When coding entity Brcko is treated as the entity from which the household who moved into Brcko originated.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Questionnaire design

    Approximately 90% of the questionnaire (Annex B) is based on the Wave 2 questionnaire, carrying forward core measures that are needed to measure change over time. The questionnaire was widely circulated and changes were made as a result of comments received.

    Pretesting

    In order to undertake a longitudinal test the Wave 2 pretest sample was used. The Control Forms and Advance letters were generated from an Access database containing details of ten households in Sarajevo and fourteen in Banja Luka. The pretest was undertaken from March 24-April 4 and resulted in 24 households (51 individuals) successfully interviewed. One mover household was successfully traced and interviewed.
    In order to test the questionnaire under the hardest circumstances a briefing was not held. A list of the main questionnaire changes was given to experienced interviewers.

    Issues arising from the pretest

    Interviewers were asked to complete a Debriefing and Rating form. The debriefing form captured opinions on the following three issues:

    1. General reaction to being re-interviewed. In some cases there was a wariness of being asked to participate again, some individuals asking “Why Me?” Interviewers did a good job of persuading people to take part, only one household refused and another asked to be removed from the sample next year. Having the same interviewer return to the same households was considered an advantage. Most respondents asked what was the benefit to them of taking part in the survey. This aspect was reemphasised in the Advance Letter, Respondent Report and training of the Wave 3 interviewers.

    2. Length of the questionnaire. The average time of interview was 30 minutes. No problems were mentioned in relation to the timing, though interviewers noted that some respondents, particularly the elderly, tended to wonder off the point and that control was needed to bring them back to the questions in the questionnaire. One interviewer noted that the economic situation of many respondents seems to have got worse from the previous year and it was necessary to listen to respondents “stories” during the interview.

    3. Confidentiality. No problems were mentioned in relation to confidentiality. Though interviewers mentioned it might be worth mentioning the new Statistics Law in the Advance letter. The Rating Form asked for details of specific questions that were unclear. These are described below with a description of the changes made.

    • Module 3. Q29-31 have been added to capture funds received for education, scholarships etc.

    • Module 4. Pretest respondents complained that the 6 questions on "Has your health limited you..." and the 16 on "in the last 7 days have you felt depressed” etc were too many. These were reduced by half (Q38-Q48). The LSMS data was examined and those questions where variability between the answers was widest were chosen.

    • Module 5. The new employment questions (Q42-Q44) worked well and have been kept in the main questionnaire.

    • Module 7. There were no problems reported with adding the credit questions (Q28-Q36)

    • Module 9. SIG recommended that some of Questions 1-12 were relevant only to those aged over 18 so additional skips have been added. Some respondents complained the questionnaire was boring. To try and overcome

  4. f

    DataSheet1_Repeated Measures Correlation.pdf

    • frontiersin.figshare.com
    pdf
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DataSheet1_Repeated Measures Correlation.pdf [Dataset]. https://frontiersin.figshare.com/articles/dataset/DataSheet1_Repeated_Measures_Correlation_pdf/8190908
    Explore at:
    pdfAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Frontiers
    Authors
    Jonathan Z. Bakdash; Laura R. Marusich
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Repeated measures correlation (rmcorr) is a statistical technique for determining the common within-individual association for paired measures assessed on two or more occasions for multiple individuals. Simple regression/correlation is often applied to non-independent observations or aggregated data; this may produce biased, specious results due to violation of independence and/or differing patterns between-participants versus within-participants. Unlike simple regression/correlation, rmcorr does not violate the assumption of independence of observations. Also, rmcorr tends to have much greater statistical power because neither averaging nor aggregation is necessary for an intra-individual research question. Rmcorr estimates the common regression slope, the association shared among individuals. To make rmcorr accessible, we provide background information for its assumptions and equations, visualization, power, and tradeoffs with rmcorr compared to multilevel modeling. We introduce the R package (rmcorr) and demonstrate its use for inferential statistics and visualization with two example datasets. The examples are used to illustrate research questions at different levels of analysis, intra-individual, and inter-individual. Rmcorr is well-suited for research questions regarding the common linear association in paired repeated measures data. All results are fully reproducible.

  5. Participation Survey 2023–24 annual publication

    • gov.uk
    Updated Feb 13, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department for Culture, Media and Sport (2025). Participation Survey 2023–24 annual publication [Dataset]. https://www.gov.uk/government/statistics/participation-survey-2023-24-annual-publication
    Explore at:
    Dataset updated
    Feb 13, 2025
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Department for Culture, Media and Sport
    Description

    The Participation Survey started in October 2021 and is the key evidence source on engagement for DCMS. It is a continuous push-to-web household survey of adults aged 16 and over in England.

    The Participation Survey provides nationally representative estimates of physical and digital engagement with the arts, heritage, museums & galleries, and libraries, as well as engagement with tourism, major events, live sports and digital.

    In 2023/24, DCMS partnered with Arts Council England (ACE) to boost the Participation Survey to be able to produce meaningful estimates at Local Authority level. This has enabled us to have the most granular data we have ever had, which means there were some new questions and changes to existing questions, response options and definitions in the 23/24 survey. The questionnaire for 2023/24 has been developed collaboratively to adapt to the needs and interests of both DCMS and ACE.

    • Released: 24 July 2024.
    • Period covered: May 2023 to March 2024.
    • Geographic coverage: National , regional and local authority level data for England.
    • Next release date: September 2024.

    The Participation Survey is only asked of adults in England. Currently there is no harmonised survey or set of questions within the administrations of the UK. Data on participation in cultural sectors for the devolved administrations is available in the https://www.gov.scot/collections/scottish-household-survey/" class="govuk-link">Scottish Household Survey, https://gov.wales/national-survey-wales" class="govuk-link">National Survey for Wales and https://www.communities-ni.gov.uk/topics/statistics-and-research/culture-and-heritage-statistics" class="govuk-link">Northern Ireland Continuous Household Survey.

    The pre-release access document above contains a list of ministers and officials who have received privileged early access to this release of Participation Survey data. In line with best practice, the list has been kept to a minimum and those given access for briefing purposes had a maximum of 24 hours. Details on the pre-release access arrangements for this dataset are available in the accompanying material.

    Our statistical practice is regulated by the OSR. OSR sets the standards of trustworthiness, quality and value in the https://code.statisticsauthority.gov.uk/the-code/" class="govuk-link">Code of Practice for Statistics that all producers of official statistics should adhere to.

    You are welcome to contact us directly with any comments about how we meet these standards by emailing evidence@dcms.gov.uk. Alternatively, you can contact OSR by emailing regulation@statistics.gov.uk or via the OSR website.

    Patterns were identified in Census 2021 data that suggest that some respondents may not have interpreted the gender identity question as intended, notably those with lower levels of English language proficiency. https://www.scotlandscensus.gov.uk/2022-results/scotland-s-census-2022-sexual-orientation-and-trans-status-or-history/" class="govuk-link">Analysis of Scotland’s census, where the gender identity question was different, has added weight to this observation. Similar respondent error may have occurred during the data collection for these statistics so comparisons between subnational and other smaller group breakdowns should be considered with caution. More information can be found in the ONS https://www.ons.gov.uk/peoplepopulationandcommunity/culturalidentity/sexuality/methodologies/sexualorientationandgenderidentityqualityinformationforcensus2021" class="govuk-link">sexual orientation and gender identity quality information report, and in the National Statistical https://blog.ons.gov.uk/2024/09/12/better-understanding-the-strengths-and-limitations-of-gender-identity-statistics/" class="govuk-link">blog about the strengths and limitations of gender identity statistics.

    The responsible statisticians for this release is Donilia Asgill and Ella Bentin. For enquiries on this release, contact participationsurvey@dcms.gov.uk.

  6. Household Survey on Information and Communications Technology 2014 - West...

    • catalog.ihsn.org
    • datacatalog.ihsn.org
    Updated Oct 14, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Palestinian Central Bureau of Statistics (2021). Household Survey on Information and Communications Technology 2014 - West Bank and Gaza [Dataset]. https://catalog.ihsn.org/catalog/9840
    Explore at:
    Dataset updated
    Oct 14, 2021
    Dataset authored and provided by
    Palestinian Central Bureau of Statisticshttp://pcbs.gov.ps/
    Time period covered
    2014
    Area covered
    West Bank
    Description

    Abstract

    Within the frame of PCBS' efforts in providing official Palestinian statistics in the different life aspects of Palestinian society and because the wide spread of Computer, Internet and Mobile Phone among the Palestinian people, and the important role they may play in spreading knowledge and culture and contribution in formulating the public opinion, PCBS conducted the Household Survey on Information and Communications Technology, 2014.

    The main objective of this survey is to provide statistical data on Information and Communication Technology in the Palestine in addition to providing data on the following: - Prevalence of computers and access to the Internet. - Study the penetration and purpose of Technology use.

    Geographic coverage

    Palestine (West Bank and Gaza Strip), type of locality (urban, rural, refugee camps) and governorate.

    Analysis unit

    • Household.
    • Persons 10 years and over .

    Universe

    All Palestinian households and individuals whose usual place of residence in Palestine with focus on persons aged 10 years and over in year 2014.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Sampling Frame The sampling frame consists of a list of enumeration areas adopted in the Population, Housing and Establishments Census of 2007. Each enumeration area has an average size of about 124 households. These were used in the first phase as Preliminary Sampling Units in the process of selecting the survey sample.

    Sample Size The total sample size of the survey was 7,268 households, of which 6,000 responded.

    Sample Design The sample is a stratified clustered systematic random sample. The design comprised three phases:

    Phase I: Random sample of 240 enumeration areas. Phase II: Selection of 25 households from each enumeration area selected in phase one using systematic random selection. Phase III: Selection of an individual (10 years or more) in the field from the selected households; KISH TABLES were used to ensure indiscriminate selection.

    Sample Strata Distribution of the sample was stratified by: 1- Governorate (16 governorates, J1). 2- Type of locality (urban, rural and camps).

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The survey questionnaire consists of identification data, quality controls and three main sections: Section I: Data on household members that include identification fields, the characteristics of household members (demographic and social) such as the relationship of individuals to the head of household, sex, date of birth and age.

    Section II: Household data include information regarding computer processing, access to the Internet, and possession of various media and computer equipment. This section includes information on topics related to the use of computer and Internet, as well as supervision by households of their children (5-17 years old) while using the computer and Internet, and protective measures taken by the household in the home.

    Section III: Data on persons (aged 10 years and over) about computer use, access to the Internet and possession of a mobile phone.

    Cleaning operations

    Preparation of Data Entry Program: This stage included preparation of the data entry programs using an ACCESS package and defining data entry control rules to avoid errors, plus validation inquiries to examine the data after it had been captured electronically.

    Data Entry: The data entry process started on the 8th of May 2014 and ended on the 23rd of June 2014. The data entry took place at the main PCBS office and in field offices using 28 data clerks.

    Editing and Cleaning procedures: Several measures were taken to avoid non-sampling errors. These included editing of questionnaires before data entry to check field errors, using a data entry application that does not allow mistakes during the process of data entry, and then examining the data by using frequency and cross tables. This ensured that data were error free; cleaning and inspection of the anomalous values were conducted to ensure harmony between the different questions on the questionnaire.

    Response rate

    Response Rates: 79%

    Sampling error estimates

    There are many aspects of the concept of data quality; this includes the initial planning of the survey to the dissemination of the results and how well users understand and use the data. There are three components to the quality of statistics: accuracy, comparability, and quality control procedures.

    Checks on data accuracy cover many aspects of the survey and include statistical errors due to the use of a sample, non-statistical errors resulting from field workers or survey tools, and response rates and their effect on estimations. This section includes:

    Statistical Errors Data of this survey may be affected by statistical errors due to the use of a sample and not a complete enumeration. Therefore, certain differences can be expected in comparison with the real values obtained through censuses. Variances were calculated for the most important indicators.

    Variance calculations revealed that there is no problem in disseminating results nationally or regionally (the West Bank, Gaza Strip), but some indicators show high variance by governorate, as noted in the tables of the main report.

    Non-Statistical Errors Non-statistical errors are possible at all stages of the project, during data collection or processing. These are referred to as non-response errors, response errors, interviewing errors and data entry errors. To avoid errors and reduce their effects, strenuous efforts were made to train the field workers intensively. They were trained on how to carry out the interview, what to discuss and what to avoid, and practical and theoretical training took place during the training course. Training manuals were provided for each section of the questionnaire, along with practical exercises in class and instructions on how to approach respondents to reduce refused cases. Data entry staff were trained on the data entry program, which was tested before starting the data entry process.

    Several measures were taken to avoid non-sampling errors. These included editing of questionnaires before data entry to check field errors, using a data entry application that does not allow mistakes during the process of data entry, and then examining the data by using frequency and cross tables. This ensured that data were error free; cleaning and inspection of the anomalous values were conducted to ensure harmony between the different questions on the questionnaire.

    The sources of non-statistical errors can be summarized as: 1. Some of the households were not at home and could not be interviewed, and some households refused to be interviewed. 2. In unique cases, errors occurred due to the way the questions were asked by interviewers and respondents misunderstood some of the questions.

  7. d

    The case of the TERRIFYING Data and Statistics Questions

    • search.dataone.org
    Updated Dec 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Julie Marcoux; Carolyn DeLorey (2023). The case of the TERRIFYING Data and Statistics Questions [Dataset]. http://doi.org/10.5683/SP3/FTAY38
    Explore at:
    Dataset updated
    Dec 28, 2023
    Dataset provided by
    Borealis
    Authors
    Julie Marcoux; Carolyn DeLorey
    Description

    Examples of common research questions a Data Librarian might receive. "Can YOU answer the questions before time runs out?"

  8. CourseKata Dataset Items (QuestionTypes)

    • kaggle.com
    Updated Apr 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gagan Karnati (2024). CourseKata Dataset Items (QuestionTypes) [Dataset]. https://www.kaggle.com/datasets/gagankarnati/coursekata-dataset-items-questiontypes
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 21, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Gagan Karnati
    Description

    CourseKata is a platform that creates and publishes a series of e-books for introductory statistics and data science classes that utilize demonstrated learning strategies to help students learn statistics and data science. The developers of CourseKata, Jim Stigler (UCLA) and Ji Son (Cal State Los Angeles) and their team, are cognitive psychologists interested in improving statistics learning by examining students' interactions with online interactive textbooks. Traditionally, much of the research in how students learn is done in a 1-hour lab or through small-scale interviews with students. CourseKata offers the opportunity to peek into the actions, responses, and choices of thousands of students as they are engaged in learning the interrelated concepts and skills of statistics and coding in R over many weeks or months in real classes.

    1. items.csv (1335 X 19) Each row contains information about a particular question (although it does not provide the prompt). The item to which a question belongs is included. All items/questions are represented. Use this file to go deeper into particular questions that students encounter in the course.

    Questions are grouped into items (item_id). An item can be one of three item_type 's: code, learnosity or learnosity-activity (the distinction between learnosity and learnosity-activity is not important). Code items are a single question and ask for R code as a response. (Responses can be seen in responses.csv.) Learnosity-activities and learnosity items are collections of one or more questions that can be of a variety of lrn_type's: ● association ● choicematrix ● clozeassociation ● formulaV2 ● imageclozeassociation ● mcq ● plaintext ● shorttext ● sortlist

    Examples of these question types are provided at the end of this document.

    The level of detail made available to you in the responses file depends on the lrn_type. For example, for multiple choice questions (mcq), you can find the options in the responses file in the columns labeled lrn_option_0 through lrn_option_11, and you can see the chosen option in the results variable.

    Assessment Types In general, assessments, such as the items and questions included in CourseKata, can be used for two purposes. Formative assessments are meant to provide feedback to the student (and instructor), or to serve as a learning aid to help prompt students improve memory and deepen their understanding. Summative assessments are meant to provide a summary of a student's understanding, often for use in assigning a grade. For example, most midterms and final exams that you've taken are summative assessments.

    The vast majority of items in CourseKata should be treated as formative assessments. The exceptions are the end-of-chapter Review questions, which can be thought of as summative. The mean number of correct answers for end-of-chapter review questions is provided within the checkpoints file. You might see that some pages have the word "Quiz" or "Exam" or "Midterm" in them. Results from these items and responses to them are not provided to us in this data set.

  9. Minimum Credence Test

    • figshare.com
    txt
    Updated Feb 25, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ilya Fastovets (2017). Minimum Credence Test [Dataset]. http://doi.org/10.6084/m9.figshare.4696168.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Feb 25, 2017
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Ilya Fastovets
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    R script for Minimum Credence statistical test for comparing mixed samples. The test evaluates maximum possible population standard deviation from a reference sample and then applies this estimate to mixed samples for comparisons. In case the reference sample is less than 8, chi-squared approximation is used to find confidence interval for population standard deviation. Otherwise, the test bootstraps corrected median absolute deviation of the reference sample to obtain bias-corrected accelerated confidence interval for population standard deviation. This script is adapted for RFA soil analysis, but can be used elswhere if method=0. If method=1, the test extracts GOST metrological data (between-lab analytical error) from the excel file, and must be corrected for every specific analysis. The test implies homogeniety of variances among groups, and the studied parameter must average additively (i. e. arithmetic mean of individual samples is equal to mixed sample) in order to use mixed samples.For any questions/remarks please contact me at: fastovetsilya@yandex.ru

  10. i

    Demographic and Health Survey 1998 - Ghana

    • catalog.ihsn.org
    • datacatalog.ihsn.org
    • +2more
    Updated Jul 6, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ghana Statistical Service (GSS) (2017). Demographic and Health Survey 1998 - Ghana [Dataset]. https://catalog.ihsn.org/catalog/50
    Explore at:
    Dataset updated
    Jul 6, 2017
    Dataset authored and provided by
    Ghana Statistical Service (GSS)
    Time period covered
    1998 - 1999
    Area covered
    Ghana
    Description

    Abstract

    The 1998 Ghana Demographic and Health Survey (GDHS) is the latest in a series of national-level population and health surveys conducted in Ghana and it is part of the worldwide MEASURE DHS+ Project, designed to collect data on fertility, family planning, and maternal and child health.

    The primary objective of the 1998 GDHS is to provide current and reliable data on fertility and family planning behaviour, child mortality, children’s nutritional status, and the utilisation of maternal and child health services in Ghana. Additional data on knowledge of HIV/AIDS are also provided. This information is essential for informed policy decisions, planning and monitoring and evaluation of programmes at both the national and local government levels.

    The long-term objectives of the survey include strengthening the technical capacity of the Ghana Statistical Service (GSS) to plan, conduct, process, and analyse the results of complex national sample surveys. Moreover, the 1998 GDHS provides comparable data for long-term trend analyses within Ghana, since it is the third in a series of demographic and health surveys implemented by the same organisation, using similar data collection procedures. The GDHS also contributes to the ever-growing international database on demographic and health-related variables.

    Geographic coverage

    National

    Analysis unit

    • Household
    • Children under five years
    • Women age 15-49
    • Men age 15-59

    Kind of data

    Sample survey data

    Sampling procedure

    The major focus of the 1998 GDHS was to provide updated estimates of important population and health indicators including fertility and mortality rates for the country as a whole and for urban and rural areas separately. In addition, the sample was designed to provide estimates of key variables for the ten regions in the country.

    The list of Enumeration Areas (EAs) with population and household information from the 1984 Population Census was used as the sampling frame for the survey. The 1998 GDHS is based on a two-stage stratified nationally representative sample of households. At the first stage of sampling, 400 EAs were selected using systematic sampling with probability proportional to size (PPS-Method). The selected EAs comprised 138 in the urban areas and 262 in the rural areas. A complete household listing operation was then carried out in all the selected EAs to provide a sampling frame for the second stage selection of households. At the second stage of sampling, a systematic sample of 15 households per EA was selected in all regions, except in the Northern, Upper West and Upper East Regions. In order to obtain adequate numbers of households to provide reliable estimates of key demographic and health variables in these three regions, the number of households in each selected EA in the Northern, Upper West and Upper East regions was increased to 20. The sample was weighted to adjust for over sampling in the three northern regions (Northern, Upper East and Upper West), in relation to the other regions. Sample weights were used to compensate for the unequal probability of selection between geographically defined strata.

    The survey was designed to obtain completed interviews of 4,500 women age 15-49. In addition, all males age 15-59 in every third selected household were interviewed, to obtain a target of 1,500 men. In order to take cognisance of non-response, a total of 6,375 households nation-wide were selected.

    Note: See detailed description of sample design in APPENDIX A of the survey report.

    Mode of data collection

    Face-to-face

    Research instrument

    Three types of questionnaires were used in the GDHS: the Household Questionnaire, the Women’s Questionnaire, and the Men’s Questionnaire. These questionnaires were based on model survey instruments developed for the international MEASURE DHS+ programme and were designed to provide information needed by health and family planning programme managers and policy makers. The questionnaires were adapted to the situation in Ghana and a number of questions pertaining to on-going health and family planning programmes were added. These questionnaires were developed in English and translated into five major local languages (Akan, Ga, Ewe, Hausa, and Dagbani).

    The Household Questionnaire was used to enumerate all usual members and visitors in a selected household and to collect information on the socio-economic status of the household. The first part of the Household Questionnaire collected information on the relationship to the household head, residence, sex, age, marital status, and education of each usual resident or visitor. This information was used to identify women and men who were eligible for the individual interview. For this purpose, all women age 15-49, and all men age 15-59 in every third household, whether usual residents of a selected household or visitors who slept in a selected household the night before the interview, were deemed eligible and interviewed. The Household Questionnaire also provides basic demographic data for Ghanaian households. The second part of the Household Questionnaire contained questions on the dwelling unit, such as the number of rooms, the flooring material, the source of water and the type of toilet facilities, and on the ownership of a variety of consumer goods.

    The Women’s Questionnaire was used to collect information on the following topics: respondent’s background characteristics, reproductive history, contraceptive knowledge and use, antenatal, delivery and postnatal care, infant feeding practices, child immunisation and health, marriage, fertility preferences and attitudes about family planning, husband’s background characteristics, women’s work, knowledge of HIV/AIDS and STDs, as well as anthropometric measurements of children and mothers.

    The Men’s Questionnaire collected information on respondent’s background characteristics, reproduction, contraceptive knowledge and use, marriage, fertility preferences and attitudes about family planning, as well as knowledge of HIV/AIDS and STDs.

    Response rate

    A total of 6,375 households were selected for the GDHS sample. Of these, 6,055 were occupied. Interviews were completed for 6,003 households, which represent 99 percent of the occupied households. A total of 4,970 eligible women from these households and 1,596 eligible men from every third household were identified for the individual interviews. Interviews were successfully completed for 4,843 women or 97 percent and 1,546 men or 97 percent. The principal reason for nonresponse among individual women and men was the failure of interviewers to find them at home despite repeated callbacks.

    Note: See summarized response rates by place of residence in Table 1.1 of the survey report.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors, and (2) sampling errors. Nonsampling errors are the results of shortfalls made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 1998 GDHS to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 1998 GDHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 1998 GDHS sample is the result of a two-stage stratified design, and, consequently, it was necessary to use more complex formulae. The computer software used to calculate sampling errors for the 1998 GDHS is the ISSA Sampling Error Module. This module uses the Taylor linearization method of variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.

    Data appraisal

    Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months

    Note: See detailed tables in APPENDIX C of the survey report.

  11. Enterprise Survey 2009 - Czech Republic

    • dev.ihsn.org
    • catalog.ihsn.org
    • +2more
    Updated Apr 25, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    European Bank for Reconstruction and Development (2019). Enterprise Survey 2009 - Czech Republic [Dataset]. https://dev.ihsn.org/nada/catalog/study/CZE_2009_ES_v01_M_WB
    Explore at:
    Dataset updated
    Apr 25, 2019
    Dataset provided by
    World Bankhttp://worldbank.org/
    European Bank for Reconstruction and Development
    Time period covered
    2008 - 2009
    Area covered
    Czechia
    Description

    Abstract

    The objective of the survey is to obtain feedback from enterprises in client countries on the state of the private sector as well as to help in building a panel of enterprise data that will make it possible to track changes in the business environment over time, thus allowing, for example, impact assessments of reforms. Through interviews with firms in the manufacturing and services sectors, the survey assesses the constraints to private sector growth and creates statistically significant business environment indicators that are comparable across countries.

    The standard Enterprise Survey topics include firm characteristics, gender participation, access to finance, annual sales, costs of inputs/labor, workforce composition, bribery, licensing, infrastructure, trade, crime, competition, capacity utilization, land and permits, taxation, informality, business-government relations, innovation and technology, and performance measures. Over 90% of the questions objectively ascertain characteristics of a country’s business environment. The remaining questions assess the survey respondents’ opinions on what are the obstacles to firm growth and performance. The mode of data collection is face-to-face interviews.

    Geographic coverage

    National

    Analysis unit

    The primary sampling unit of the study is the establishment. An establishment is a physical location where business is carried out and where industrial operations take place or services are provided. A firm may be composed of one or more establishments. For example, a brewery may have several bottling plants and several establishments for distribution. For the purposes of this survey an establishment must make its own financial decisions and have its own financial statements separate from those of the firm. An establishment must also have its own management and control over its payroll.

    Universe

    The manufacturing and services sectors are the primary business sectors of interest. This corresponds to firms classified with International Standard Industrial Classification of All Economic Activities (ISIC) codes 15-37, 45, 50-52, 55, 60-64, and 72 (ISIC Rev.3.1). Formal (registered) companies with 5 or more employees are targeted for interview. Services firms include construction, retail, wholesale, hotels, restaurants, transport, storage, communications, and IT. Firms with 100% government/state ownership are not eligible to participate in an Enterprise Survey.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sample for Azerbaijan was selected using stratified random sampling. Three levels of stratification were used in this country: industry, establishment size, and oblast (region).

    Industry stratification was designed in the way that follows: the universe was stratified into 23 manufacturing industries, 2 services industries -retail and IT-, and one residual sector. Each sector had a target of 90 interviews.

    Size stratification was defined following the standardized definition for the rollout: small (5 to 19 employees), medium (20 to 99 employees), and large (more than 99 employees). For stratification purposes, the number of employees was defined on the basis of reported permanent full-time workers. This seems to be an appropriate definition of the labor force since seasonal/casual/part-time employment is not a common practice, except in the sectors of construction and agriculture.

    Regional stratification was defined in eight regions. These regions are Praha, Stredni Cechy, Jihozapad, Severozapad, Severovychod, Jihovychod, Stredni Morava, and Moravskoslezsko.

    Given the stratified design, sample frames containing a complete and updated list of establishments for the selected regions were required. Great efforts were made to obtain the best source for these listings. However, the quality of the sample frames was not optimal and, therefore, some adjustments were needed to correct for the presence of ineligible units. These adjustments are reflected in the weights computation.

    For most countries covered in BEEPS IV, two sample frames were used. The first was supplied by the World Bank and consisted of enterprises interviewed in BEEPS 2005. The World Bank required that attempts should be made to re-interview establishments responding to the BEEPS 2005 survey where they were within the selected geographical regions and met eligibility criteria. That sample is referred to as the Panel. The second frame for the Czech Republic was an official database known as Albertina data [Creditinfo Czech Republic], which is obtained from the complete Business Register [RES] of the Czech Statistical Office. An extract from that frame was sent to the TNS statistical team in London to select the establishments for interview.

    The quality of the frame was assessed at the onset of the project. The frame proved to be useful though it showed positive rates of non-eligibility, repetition, non-existent units, etc. These problems are typical of establishment surveys, but given the impact these inaccuracies may have on the results, adjustments were needed when computing the appropriate weights for individual observations. The percentage of confirmed non-eligible units as a proportion of the total number of contacts to complete the survey was 28% (572 out of 2041 establishments).

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The current survey instruments are available: - Core Questionnaire + Manufacturing Module [ISIC Rev.3.1: 15-37] - Core Questionnaire + Retail Module [ISIC Rev.3.1: 52] - Core Questionnaire [ISIC Rev.3.1: 45, 50, 51, 55, 60-64, 72] - Screener Questionnaire.

    The “Core Questionnaire” is the heart of the Enterprise Survey and contains the survey questions asked of all firms across the world. There are also two other survey instruments- the “Core Questionnaire + Manufacturing Module” and the “Core Questionnaire + Retail Module.” The survey is fielded via three instruments in order to not ask questions that are irrelevant to specific types of firms, e.g. a question that relates to production and nonproduction workers should not be asked of a retail firm. In addition to questions that are asked across countries, all surveys are customized and contain country-specific questions. An example of customization would be including tourism-related questions that are asked in certain countries when tourism is an existing or potential sector of economic growth.

    The standard Enterprise Survey topics include firm characteristics, gender participation, access to finance, annual sales, costs of inputs/labor, workforce composition, bribery, licensing, infrastructure, trade, crime, competition, capacity utilization, land and permits, taxation, informality, business-government relations, innovation and technology, and performance measures. Over 90% of the questions objectively ascertain characteristics of a country’s business environment. The remaining questions assess the survey respondents’ opinions on what are the obstacles to firm growth and performance.

    Cleaning operations

    Data entry and quality controls are implemented by the contractor and data is delivered to the World Bank in batches (typically 10%, 50% and 100%). These data deliveries are checked for logical consistency, out of range values, skip patterns, and duplicate entries. Problems are flagged by the World Bank and corrected by the implementing contractor through data checks, callbacks, and revisiting establishments.

    Response rate

    Complete information regarding the sampling methodology, sample frame, weights, response rates, and implementation can be found in the document "Description of Czech Republic Implementation 2009.pdf"

  12. d

    COVID Impact Survey - Public Data

    • data.world
    csv, zip
    Updated Oct 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2024). COVID Impact Survey - Public Data [Dataset]. https://data.world/associatedpress/covid-impact-survey-public-data
    Explore at:
    csv, zipAvailable download formats
    Dataset updated
    Oct 16, 2024
    Authors
    The Associated Press
    Description

    Overview

    The Associated Press is sharing data from the COVID Impact Survey, which provides statistics about physical health, mental health, economic security and social dynamics related to the coronavirus pandemic in the United States.

    Conducted by NORC at the University of Chicago for the Data Foundation, the probability-based survey provides estimates for the United States as a whole, as well as in 10 states (California, Colorado, Florida, Louisiana, Minnesota, Missouri, Montana, New York, Oregon and Texas) and eight metropolitan areas (Atlanta, Baltimore, Birmingham, Chicago, Cleveland, Columbus, Phoenix and Pittsburgh).

    The survey is designed to allow for an ongoing gauge of public perception, health and economic status to see what is shifting during the pandemic. When multiple sets of data are available, it will allow for the tracking of how issues ranging from COVID-19 symptoms to economic status change over time.

    The survey is focused on three core areas of research:

    • Physical Health: Symptoms related to COVID-19, relevant existing conditions and health insurance coverage.
    • Economic and Financial Health: Employment, food security, and government cash assistance.
    • Social and Mental Health: Communication with friends and family, anxiety and volunteerism. (Questions based on those used on the U.S. Census Bureau’s Current Population Survey.) ## Using this Data - IMPORTANT This is survey data and must be properly weighted during analysis: DO NOT REPORT THIS DATA AS RAW OR AGGREGATE NUMBERS!!

    Instead, use our queries linked below or statistical software such as R or SPSS to weight the data.

    Queries

    If you'd like to create a table to see how people nationally or in your state or city feel about a topic in the survey, use the survey questionnaire and codebook to match a question (the variable label) to a variable name. For instance, "How often have you felt lonely in the past 7 days?" is variable "soc5c".

    Nationally: Go to this query and enter soc5c as the variable. Hit the blue Run Query button in the upper right hand corner.

    Local or State: To find figures for that response in a specific state, go to this query and type in a state name and soc5c as the variable, and then hit the blue Run Query button in the upper right hand corner.

    The resulting sentence you could write out of these queries is: "People in some states are less likely to report loneliness than others. For example, 66% of Louisianans report feeling lonely on none of the last seven days, compared with 52% of Californians. Nationally, 60% of people said they hadn't felt lonely."

    Margin of Error

    The margin of error for the national and regional surveys is found in the attached methods statement. You will need the margin of error to determine if the comparisons are statistically significant. If the difference is:

    • At least twice the margin of error, you can report there is a clear difference.
    • At least as large as the margin of error, you can report there is a slight or apparent difference.
    • Less than or equal to the margin of error, you can report that the respondents are divided or there is no difference. ## A Note on Timing Survey results will generally be posted under embargo on Tuesday evenings. The data is available for release at 1 p.m. ET Thursdays.

    About the Data

    The survey data will be provided under embargo in both comma-delimited and statistical formats.

    Each set of survey data will be numbered and have the date the embargo lifts in front of it in the format of: 01_April_30_covid_impact_survey. The survey has been organized by the Data Foundation, a non-profit non-partisan think tank, and is sponsored by the Federal Reserve Bank of Minneapolis and the Packard Foundation. It is conducted by NORC at the University of Chicago, a non-partisan research organization. (NORC is not an abbreviation, it part of the organization's formal name.)

    Data for the national estimates are collected using the AmeriSpeak Panel, NORC’s probability-based panel designed to be representative of the U.S. household population. Interviews are conducted with adults age 18 and over representing the 50 states and the District of Columbia. Panel members are randomly drawn from AmeriSpeak with a target of achieving 2,000 interviews in each survey. Invited panel members may complete the survey online or by telephone with an NORC telephone interviewer.

    Once all the study data have been made final, an iterative raking process is used to adjust for any survey nonresponse as well as any noncoverage or under and oversampling resulting from the study specific sample design. Raking variables include age, gender, census division, race/ethnicity, education, and county groupings based on county level counts of the number of COVID-19 deaths. Demographic weighting variables were obtained from the 2020 Current Population Survey. The count of COVID-19 deaths by county was obtained from USA Facts. The weighted data reflect the U.S. population of adults age 18 and over.

    Data for the regional estimates are collected using a multi-mode address-based (ABS) approach that allows residents of each area to complete the interview via web or with an NORC telephone interviewer. All sampled households are mailed a postcard inviting them to complete the survey either online using a unique PIN or via telephone by calling a toll-free number. Interviews are conducted with adults age 18 and over with a target of achieving 400 interviews in each region in each survey.Additional details on the survey methodology and the survey questionnaire are attached below or can be found at https://www.covid-impact.org.

    Attribution

    Results should be credited to the COVID Impact Survey, conducted by NORC at the University of Chicago for the Data Foundation.

    AP Data Distributions

    ​To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

  13. d

    Current Population Survey (CPS)

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Damico, Anthony (2023). Current Population Survey (CPS) [Dataset]. http://doi.org/10.7910/DVN/AK4FDD
    Explore at:
    Dataset updated
    Nov 21, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Damico, Anthony
    Description

    analyze the current population survey (cps) annual social and economic supplement (asec) with r the annual march cps-asec has been supplying the statistics for the census bureau's report on income, poverty, and health insurance coverage since 1948. wow. the us census bureau and the bureau of labor statistics ( bls) tag-team on this one. until the american community survey (acs) hit the scene in the early aughts (2000s), the current population survey had the largest sample size of all the annual general demographic data sets outside of the decennial census - about two hundred thousand respondents. this provides enough sample to conduct state- and a few large metro area-level analyses. your sample size will vanish if you start investigating subgroups b y state - consider pooling multiple years. county-level is a no-no. despite the american community survey's larger size, the cps-asec contains many more variables related to employment, sources of income, and insurance - and can be trended back to harry truman's presidency. aside from questions specifically asked about an annual experience (like income), many of the questions in this march data set should be t reated as point-in-time statistics. cps-asec generalizes to the united states non-institutional, non-active duty military population. the national bureau of economic research (nber) provides sas, spss, and stata importation scripts to create a rectangular file (rectangular data means only person-level records; household- and family-level information gets attached to each person). to import these files into r, the parse.SAScii function uses nber's sas code to determine how to import the fixed-width file, then RSQLite to put everything into a schnazzy database. you can try reading through the nber march 2012 sas importation code yourself, but it's a bit of a proc freak show. this new github repository contains three scripts: 2005-2012 asec - download all microdata.R down load the fixed-width file containing household, family, and person records import by separating this file into three tables, then merge 'em together at the person-level download the fixed-width file containing the person-level replicate weights merge the rectangular person-level file with the replicate weights, then store it in a sql database create a new variable - one - in the data table 2012 asec - analysis examples.R connect to the sql database created by the 'download all microdata' progr am create the complex sample survey object, using the replicate weights perform a boatload of analysis examples replicate census estimates - 2011.R connect to the sql database created by the 'download all microdata' program create the complex sample survey object, using the replicate weights match the sas output shown in the png file below 2011 asec replicate weight sas output.png statistic and standard error generated from the replicate-weighted example sas script contained in this census-provided person replicate weights usage instructions document. click here to view these three scripts for more detail about the current population survey - annual social and economic supplement (cps-asec), visit: the census bureau's current population survey page the bureau of labor statistics' current population survey page the current population survey's wikipedia article notes: interviews are conducted in march about experiences during the previous year. the file labeled 2012 includes information (income, work experience, health insurance) pertaining to 2011. when you use the current populat ion survey to talk about america, subract a year from the data file name. as of the 2010 file (the interview focusing on america during 2009), the cps-asec contains exciting new medical out-of-pocket spending variables most useful for supplemental (medical spending-adjusted) poverty research. confidential to sas, spss, stata, sudaan users: why are you still rubbing two sticks together after we've invented the butane lighter? time to transition to r. :D

  14. Reduced Access to Care During COVID-19

    • catalog.data.gov
    • cloud.csiss.gmu.edu
    • +3more
    Updated Apr 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Reduced Access to Care During COVID-19 [Dataset]. https://catalog.data.gov/dataset/reduced-access-to-care-during-covid-19
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    The Research and Development Survey (RANDS) is a platform designed for conducting survey question evaluation and statistical research. RANDS is an ongoing series of surveys from probability-sampled commercial survey panels used for methodological research at the National Center for Health Statistics (NCHS). RANDS estimates are generated using an experimental approach that differs from the survey design approaches generally used by NCHS, including possible biases from different response patterns and sampling frames as well as increased variability from lower sample sizes. Use of the RANDS platform allows NCHS to produce more timely data than would be possible using traditional data collection methods. RANDS is not designed to replace NCHS’ higher quality, core data collections. Below are experimental estimates of reduced access to healthcare for three rounds of RANDS during COVID-19. Data collection for the three rounds of RANDS during COVID-19 occurred between June 9, 2020 and July 6, 2020, August 3, 2020 and August 20, 2020, and May 17, 2021 and June 30, 2021. Information needed to interpret these estimates can be found in the Technical Notes. RANDS during COVID-19 included questions about unmet care in the last 2 months during the coronavirus pandemic. Unmet needs for health care are often the result of cost-related barriers. The National Health Interview Survey, conducted by NCHS, is the source for high-quality data to monitor cost-related health care access problems in the United States. For example, in 2018, 7.3% of persons of all ages reported delaying medical care due to cost and 4.8% reported needing medical care but not getting it due to cost in the past year. However, cost is not the only reason someone might delay or not receive needed medical care. As a result of the coronavirus pandemic, people also may not get needed medical care due to cancelled appointments, cutbacks in transportation options, fear of going to the emergency room, or an altruistic desire to not be a burden on the health care system, among other reasons. The Household Pulse Survey (https://www.cdc.gov/nchs/covid19/pulse/reduced-access-to-care.htm), an online survey conducted in response to the COVID-19 pandemic by the Census Bureau in partnership with other federal agencies including NCHS, also reports estimates of reduced access to care during the pandemic (beginning in Phase 1, which started on April 23, 2020). The Household Pulse Survey reports the percentage of adults who delayed medical care in the last 4 weeks or who needed medical care at any time in the last 4 weeks for something other than coronavirus but did not get it because of the pandemic. The experimental estimates on this page are derived from RANDS during COVID-19 and show the percentage of U.S. adults who were unable to receive medical care (including urgent care, surgery, screening tests, ongoing treatment, regular checkups, prescriptions, dental care, vision care, and hearing care) in the last 2 months. Technical Notes: https://www.cdc.gov/nchs/covid19/rands/reduced-access-to-care.htm#limitations

  15. Additional Examples

    • springernature.figshare.com
    zip
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Susanna-Assunta Sansone; Philippe Rocca-Serra; Pawel Krajewski; Hanna Ćwiek-Kupczyńska; Alejandra Gonzalez-Beltran; Emilie J. Millet; Katarzyna Filipiak; Agnieszka Ławrynowicz; Augustyn Markiewicz; Fred van Eeuwijk (2023). Additional Examples [Dataset]. http://doi.org/10.6084/m9.figshare.11819274.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Susanna-Assunta Sansone; Philippe Rocca-Serra; Pawel Krajewski; Hanna Ćwiek-Kupczyńska; Alejandra Gonzalez-Beltran; Emilie J. Millet; Katarzyna Filipiak; Agnieszka Ławrynowicz; Augustyn Markiewicz; Fred van Eeuwijk
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    The collection contains two sets of examples: 1. examplary RDF datasets, demontrating generation of semantic models for the analyses described in Results/Exemplary analyses section with 'SemLMM' R package, 2. exemplary SPARQL queries, implementing the use cases discussed in Results/Exemplary queries section.

  16. d

    Data from: Reference Mysteries

    • search.dataone.org
    Updated Dec 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Elizabeth Hamilton (2023). Reference Mysteries [Dataset]. http://doi.org/10.5683/SP3/2VLBGJ
    Explore at:
    Dataset updated
    Dec 28, 2023
    Dataset provided by
    Borealis
    Authors
    Elizabeth Hamilton
    Description

    The requests we receive at the Reference Desk keep surprising us. We'll take a look at some of the best examples from the year on data questions and data solutions.

  17. Energy Consumption in Transport Survey 2014, Main Results - West Bank and...

    • pcbs.gov.ps
    Updated Dec 12, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Palestinian Central Bureau of Statistics (2021). Energy Consumption in Transport Survey 2014, Main Results - West Bank and Gaza [Dataset]. https://www.pcbs.gov.ps/PCBS-Metadata-en-v5.2/index.php/catalog/699
    Explore at:
    Dataset updated
    Dec 12, 2021
    Dataset authored and provided by
    Palestinian Central Bureau of Statisticshttp://pcbs.gov.ps/
    Time period covered
    2015
    Area covered
    West Bank, Palestine
    Description

    Abstract

    Most countries collect official statistics on energy use due to its vital role in the infrastructure, economy and living standards.

    In Palestine, additional attention is warranted for energy statistics due to a scarcity of natural resources, the high cost of energy and high population density. These factors demand comprehensive and high quality statistics.

    In this contest PCBS decided to conduct a special Energy Consumption in Transport Survey to provide high quality data about energy consumption by type, expenditure on maintenance and insurance for vehicles, and questions on vehicles motor capacity and year of production.

    The survey aimed to provide data on energy consumption by transport sector and also on the energy consumption by the type of vehicles and its motor capacity and year of production.

    Geographic coverage

    Palestine

    Analysis unit

    Vehicles

    Universe

    All the operating vehicles in Palestine in 2014.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Target Population: All the operating vehicles in Palestine in 2014.

    2.1Sample Frame A list of the number of the operating vehicles in Palestine in 2014, they are broken down by governorates and vehicle types, this list was obtained from Ministry of transport.

    2.2.1 Sample size The sample size is 6,974 vehicles.

    2.2.2 Sampling Design it is stratified random sample, and in some of the small size strata the quota sample was used to cover them.

    The method of reaching the vehicles sample was through : 1-reaching to all the dynamometers (the centers for testing the vehicles) 2-selecting a random sample of vehicles by type of vehicle, model, fuel type and engine capacity

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The design of the questionnaire was based on the experiences of other similar countries in energy statistics subject to cover the most important indicators for energy statistics in transport sector, taking into account Palestine's particular situation.

    Cleaning operations

    The data processing stage consisted of the following operations: Editing and coding prior to data entry: all questionnaires were edited and coded in the office using the same instructions adopted for editing in the field.

    Data entry: The survey questionnaire was uploaded on office computers. At this stage, data were entered into the computer using a data entry template developed in Access Database. The data entry program was prepared to satisfy a number of requirements: ·To prevent the duplication of questionnaires during data entry. ·To apply checks on the integrity and consistency of entered data. ·To handle errors in a user friendly manner. ·The ability to transfer captured data to another format for data analysis using statistical analysis software such as SPSS. Audit after data entered at this stage is data entered scrutiny by pulling the data entered file periodically and review the data and examination of abnormal values and check consistency between the different questions in the questionnaire, and if there are any errors in the data entered to be the withdrawal of the questionnaire and make sure this data and adjusted, even been getting the final data file that is the final extract data from it. Extraction Results: The extract final results of the report by using the SPSS program, and then display the results through tables to Excel format.

    Response rate

    80.7%

    Sampling error estimates

    Data of this survey may be affected by sampling errors due to use of a sample and not a complete enumeration. Therefore, certain differences are anticipated in comparison with the real values obtained through censuses. The variance was calculated for the most important indicators: the variance table is attached with the final report. There is no problem in the dissemination of results at national and regional level (North, Middle, South of West Bank, Gaza Strip).

    Data appraisal

    The survey sample consisted of around 6,974 vehicles, of which 5,631 vehicles completed the questionnaire, 3,652 vehicles from the West Bank and 1,979 vehicles in Gaza Strip.

  18. D

    Replication Data for: A Three-Year Mixed Methods Study of Undergraduates’...

    • dataverse.no
    • dataverse.azure.uit.no
    • +1more
    Updated Oct 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ellen Nierenberg; Ellen Nierenberg (2024). Replication Data for: A Three-Year Mixed Methods Study of Undergraduates’ Information Literacy Development: Knowing, Doing, and Feeling [Dataset]. http://doi.org/10.18710/SK0R1N
    Explore at:
    txt(21865), txt(19475), csv(55030), txt(14751), txt(26578), txt(16861), txt(28211), pdf(107685), pdf(657212), txt(12082), txt(16243), text/x-fixed-field(55030), pdf(65240), txt(8172), pdf(634629), txt(31896), application/x-spss-sav(51476), txt(4141), pdf(91121), application/x-spss-sav(31612), txt(35011), txt(23981), text/x-fixed-field(15653), txt(25369), txt(17935), csv(15653)Available download formats
    Dataset updated
    Oct 8, 2024
    Dataset provided by
    DataverseNO
    Authors
    Ellen Nierenberg; Ellen Nierenberg
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    Aug 8, 2019 - Jun 10, 2022
    Area covered
    Norway
    Description

    This data set contains the replication data and supplements for the article "Knowing, Doing, and Feeling: A three-year, mixed-methods study of undergraduates’ information literacy development." The survey data is from two samples: - cross-sectional sample (different students at the same point in time) - longitudinal sample (the same students and different points in time)Surveys were distributed via Qualtrics during the students' first and sixth semesters. Quantitative and qualitative data were collected and used to describe students' IL development over 3 years. Statistics from the quantitative data were analyzed in SPSS. The qualitative data was coded and analyzed thematically in NVivo. The qualitative, textual data is from semi-structured interviews with sixth-semester students in psychology at UiT, both focus groups and individual interviews. All data were collected as part of the contact author's PhD research on information literacy (IL) at UiT. The following files are included in this data set: 1. A README file which explains the quantitative data files. (2 file formats: .txt, .pdf)2. The consent form for participants (in Norwegian). (2 file formats: .txt, .pdf)3. Six data files with survey results from UiT psychology undergraduate students for the cross-sectional (n=209) and longitudinal (n=56) samples, in 3 formats (.dat, .csv, .sav). The data was collected in Qualtrics from fall 2019 to fall 2022. 4. Interview guide for 3 focus group interviews. File format: .txt5. Interview guides for 7 individual interviews - first round (n=4) and second round (n=3). File format: .txt 6. The 21-item IL test (Tromsø Information Literacy Test = TILT), in English and Norwegian. TILT is used for assessing students' knowledge of three aspects of IL: evaluating sources, using sources, and seeking information. The test is multiple choice, with four alternative answers for each item. This test is a "KNOW-measure," intended to measure what students know about information literacy. (2 file formats: .txt, .pdf)7. Survey questions related to interest - specifically students' interest in being or becoming information literate - in 3 parts (all in English and Norwegian): a) information and questions about the 4 phases of interest; b) interest questionnaire with 26 items in 7 subscales (Tromsø Interest Questionnaire - TRIQ); c) Survey questions about IL and interest, need, and intent. (2 file formats: .txt, .pdf)8. Information about the assignment-based measures used to measure what students do in practice when evaluating and using sources. Students were evaluated with these measures in their first and sixth semesters. (2 file formats: .txt, .pdf)9. The Norwegain Centre for Research Data's (NSD) 2019 assessment of the notification form for personal data for the PhD research project. In Norwegian. (Format: .pdf)

  19. i

    Project for Statistics on Living Standards and Development 1993 - South...

    • catalog.ihsn.org
    • microdata.fao.org
    • +2more
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Southern Africa Labour and Development Research Unit (2019). Project for Statistics on Living Standards and Development 1993 - South Africa [Dataset]. https://catalog.ihsn.org/catalog/4628
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    Southern Africa Labour and Development Research Unit
    Time period covered
    1993
    Area covered
    South Africa
    Description

    Abstract

    The Project for Statistics on Living standards and Development was a coutrywide World Bank Living Standards Measurement Survey. It covered approximately 9000 households, drawn from a representative sample of South African households. The fieldwork was undertaken during the nine months leading up to the country's first democratic elections at the end of April 1994. The purpose of the survey was to collect statistical information about the conditions under which South Africans live in order to provide policymakers with the data necessary for planning strategies. This data would aid the implementation of goals such as those outlined in the Government of National Unity's Reconstruction and Development Programme.

    Geographic coverage

    National coverage

    Analysis unit

    • Households
    • Individuals
    • Community

    Universe

    All Household members.

    Individuals in hospitals, old age homes, hotels and hostels of educational institutions were not included in the sample. Migrant labour hostels were included. In addition to those that turned up in the selected ESDs, a sample of three hostels was chosen from a national list provided by the Human Sciences Research Council and within each of these hostels a representative sample was drawn on a similar basis as described above for the households in ESDs.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Sample size is 9,000 households

    The sample design adopted for the study was a two-stage self-weightingdesign in which the first stage units were Census Enumerator Subdistricts (ESDs, or their equivalent) and the second stage were households.

    The advantage of using such a design is that it provides a representative sample that need not be based on accurate census population distribution.in the case of South Africa, the sample will automatically include many poor people, without the need to go beyond this and oversample the poor. Proportionate sampling as in such a self-weighting sample design offers the simplest possible data files for further analysis, as weights do not have to be added. However, in the end this advantage could not be retained and weights had to be added.

    The sampling frame was drawn up on the basis of small, clearly demarcated area units, each with a population estimate. The nature of the self-weighting procedure adopted ensured that this population estimate was not important for determining the final sample, however. For most of the country, census ESDs were used. Where some ESDs comprised relatively large populations as for instance in some black townships such as Soweto, aerial photographs were used to divide the areas into blocks of approximately equal population size. In other instances, particularly in some of the former homelands, the area units were not ESDs but villages or village groups.

    In the sample design chosen, the area stage units (generally ESDs) were selected with probability proportional to size, based on the census population. Systematic sampling was used throughout that is, sampling at fixed interval in a list of ESDs, starting at a randomly selected starting point. Given that sampling was self-weighting, the impact of stratification was expected to be modest. The main objective was to ensure that the racial and geographic breakdown approximated the national population distribution. This was done by listing the area stage units (ESDs) by statistical region and then within the statistical region by urban or rural. Within these sub-statistical regions, the ESDs were then listed in order of percentage African. The sampling interval for the selection of the ESDs was obtained by dividing the 1991 census population of 38,120,853 by the 300 clusters to be selected. This yielded 105,800. Starting at a randomly selected point, every 105,800th person down the cluster list was selected. This ensured both geographic and racial diversity (ESDs were ordered by statistical sub-region and proportion of the population African). In three or four instances, the ESD chosen was judged inaccessible and replaced with a similar one.

    In the second sampling stage the unit of analysis was the household. In each selected ESD a listing or enumeration of households was carried out by means of a field operation. From the households listed in an ESD a sample of households was selected by systematic sampling. Even though the ultimate enumeration unit was the household, in most cases "stands" were used as enumeration units. However, when a stand was chosen as the enumeration unit all households on that stand had to be interviewed.

    Census population data, however, was available only for 1991. An assumption on population growth was thus made to obtain an approximation of the population size for 1993, the year of the survey. The sampling interval at the level of the household was determined in the following way: Based on the decision to have a take of 125 individuals on average per cluster (i.e. assuming 5 members per household to give an average cluster size of 25 households), the interval of households to be selected was determined as the census population divided by 118.1, i.e. allowing for population growth since the census. It was subsequently discovered that population growth was slightly over-estimated but this had little effect on the findings of the survey.

    Individuals in hospitals, old age homes, hotels and hostels of educational institutions were not included in the sample. Migrant labour hostels were included. In addition to those that turned up in the selected ESDs, a sample of three hostels was chosen from a national list provided by the Human Sciences Research Council and within each of these hostels a representative sample was drawn on a similar basis as described abovefor the households in ESDs.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The main instrument used in the survey was a comprehensive household questionnaire. This questionnaire covered a wide range of topics but was not intended to provide exhaustive coverage of any single subject. In other words, it was an integrated questionnaire aimed at capturing different aspects of living standards. The topics covered included demography, household services, household expenditure, educational status and expenditure, remittances and marital maintenance, land access and use, employment and income, health status and expenditure and anthropometry (children under the age of six were weighed and their heights measured). This questionnaire was available to households in two languages, namely English and Afrikaans. In addition, interviewers had in their possession a translation in the dominant African language/s of the region.

    In addition to the detailed household questionnaire referred to above, a community questionnaire was administered in each cluster of the sample. The purpose of this questionnaire was to elicit information on the facilities available to the community in each cluster. Questions related primarily to the provision of education, health and recreational facilities. Furthermore there was a detailed section for the prices of a range of commodities from two retail sources in or near the cluster: a formal source such as a supermarket and a less formal one such as the "corner cafe" or a "spaza". The purpose of this latter section was to obtain a measure of regional price variation both by region and by retail source. These prices were obtained by the interviewer. For the questions relating to the provision of facilities, respondents were "prominent" members of the community such as school principals, priests and chiefs.

    Cleaning operations

    All the questionnaires were checked when received. Where information was incomplete or appeared contradictory, the questionnaire was sent back to the relevant survey organization. As soon as the data was available, it was captured using local development platform ADE. This was completed in February 1994. Following this, a series of exploratory programs were written to highlight inconsistencies and outlier. For example, all person level files were linked together to ensure that the same person code reported in different sections of the questionnaire corresponded to the same person. The error reports from these programs were compared to the questionnaires and the necessary alterations made. This was a lengthy process, as several files were checked more than once, and completed at the beginning of August 1994. In some cases questionnaires would contain missing values, or comments that the respondent did not know, or refused to answer a question.

    These responses are coded in the data files with the following values: VALUE MEANING -1 : The data was not available on the questionnaire or form -2 : The field is not applicable -3 : Respondent refused to answer -4 : Respondent did not know answer to question

    Data appraisal

    The data collected in clusters 217 and 218 should be viewed as highly unreliable and therefore removed from the data set. The data currently available on the web site has been revised to remove the data from these clusters. Researchers who have downloaded the data in the past should revise their data sets. For information on the data in those clusters, contact SALDRU http://www.saldru.uct.ac.za/.

  20. i

    Demographic and Health Survey 1991 - Indonesia

    • catalog.ihsn.org
    • datacatalog.ihsn.org
    • +1more
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central Bureau of Statistics (BPS) (2019). Demographic and Health Survey 1991 - Indonesia [Dataset]. https://catalog.ihsn.org/catalog/2484
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset provided by
    Central Bureau of Statistics (BPS)
    National Family Planning Coordinating Board (NFPCB)
    Ministry of Health
    Time period covered
    1991
    Area covered
    Indonesia
    Description

    Abstract

    The 1991 Indonesia Demographic and Health Survey (IDHS) is a nationally representative survey of ever-married women age 15-49. It was conducted between May and July 1991. The survey was designed to provide information on levels and trends of fertility, infant and child mortality, family planning and maternal and child health. The IDHS was carried out as collaboration between the Central Bureau of Statistics, the National Family Planning Coordinating Board, and the Ministry of Health. The IDHS is follow-on to the National Indonesia Contraceptive Prevalence Survey conducted in 1987.

    The DHS program has four general objectives: - To provide participating countries with data and analysis useful for informed policy choices; - To expand the international population and health database; - To advance survey methodology; and - To help develop in participating countries the technical skills and resources necessary to conduct demographic and health surveys.

    In 1987 the National Indonesia Contraceptive Prevalence Survey (NICPS) was conducted in 20 of the 27 provinces in Indonesia, as part of Phase I of the DHS program. This survey did not include questions related to health since the Central Bureau of Statistics (CBS) had collected that information in the 1987 National Socioeconomic Household Survey (SUSENAS). The 1991 Indonesia Demographic and Health Survey (IDHS) was conducted in all 27 provinces of Indonesia as part of Phase II of the DHS program. The IDHS received financial assistance from several sources.

    The 1991 IDHS was specifically designed to meet the following objectives: - To provide data concerning fertility, family planning, and maternal and child health that can be used by program managers, policymakers, and researchers to evaluate and improve existing programs; - To measure changes in fertility and contraceptive prevalence rates and at the same time study factors which affect the change, such as marriage patterns, urban/rural residence, education, breastfeeding habits, and the availability of contraception; - To measure the development and achievements of programs related to health policy, particularly those concerning the maternal and child health development program implemented through public health clinics in Indonesia.

    Geographic coverage

    National

    Analysis unit

    • Household
    • Children under five years
    • Women age 15-49
    • Men

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Indonesia is divided into 27 provinces. For the implementation of its family planning program, the National Family Planning Coordinating Board (BKKBN) has divided these provinces into three regions as follows:

    • Java-Bali: Jakarta, West Java, Central Java, Yogyakarta, East Java, and Bali
    • Outer Java-Bali I: Aceh, North Sumatra, West Sumatra, South Sumatra, Lampung, West Kalimantan, South Kalimantan, North Sulawesi, South Sulawesi, and West Nusa Tenggara
    • Outer Java-Bali II: Riau, Jambi, Bengkulu, East Nusa Tenggara, East Timor, Central Kalimantan, East Kalimantan, Central Sulawesi, Southeast Sulawesi, Maluku, and Irian Jaya.

    The 1990 Population Census of Indonesia shows that Java-Bali contains about 62 percent of the national population, while Outer Java-Bali I contains 27 percent and Outer Java-Bali II contains 11 percent. The sample for the Indonesia DHS survey was designed to produce reliable estimates of contraceptive prevalence and several other major survey variables for each of the 27 provinces and for urban and rural areas of the three regions.

    In order to accomplish this goal, approximately 1500 to 2000 households were selected in each of the provinces in Java-Bali, 1000 households in each of the ten provinces in Outer Java-Bali I, and 500 households in each of the 11 provinces in Outer Java-Bali II for a total of 28,000 households. With an average of 0.8 eligible women (ever-married women age 15-49) per selected household, the 28,000 households were expected to yield approximately 23,000 individual interviews.

    Note: See detailed description of sample design in APPENDIX A of the survey report.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The DHS model "A" questionnaire and manuals were modified to meet the requirements of measuring family planning and health program attainment, and were translated into Bahasa Indonesia.

    Cleaning operations

    The first stage of data editing was done by the field editors who checked the completed questionnaires for completeness and accuracy. Field supervisors also checked the questionnaires. They were then sent to the central office in Jakarta where they were edited again and open-ended questions were coded. The data were processed using 11 microcomputers and ISSA (Integrated System for Survey Analysis).

    Data entry and editing were initiated almost immediately after the beginning of fieldwork. Simple range and skip errors were corrected at the data entry stage. Secondary machine editing of the data was initiated as soon as sufficient questionnaires had been entered. The objective of the secondary editing was to detect and correct, if possible, inconsistencies in the data. All of the data were entered and edited by September 1991. A brief report containing preliminary survey results was published in November 1991.

    Response rate

    Of 28,141 households sampled, 27,109 were eligible to be interviewed (excluding those that were absent, vacant, or destroyed), and of these, 26,858 or 99 percent of eligible households were successfully interviewed. In the interviewed households, 23,470 eligible women were found and complete interviews were obtained with 98 percent of these women.

    Note: See summarized response rates by place of residence in Table 1.2 of the survey report.

    Sampling error estimates

    The results from sample surveys are affected by two types of errors, non-sampling error and sampling error. Non-sampling error is due to mistakes made in carrying out field activities, such as failure to locate and interview the correct household, errors in the way the questions are asked, misunderstanding on the part of either the interviewer or the respondent, data entry errors, etc. Although efforts were made during the design and implementation of the IDHS to minimize this type of error, non-sampling errors are impossible to avoid and difficult to evaluate analytically.

    Sampling errors, on the other hand, can be measured statistically. The sample of women selected in the IDHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each one would have yielded results that differed somewhat from the actual sample selected. The sampling error is a measure of the variability between all possible samples; although it is not known exactly, it can be estimated from the survey results. Sampling error is usually measured in terms of standard error of a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which one can reasonably be assured that, apart from non-sampling errors, the true value of the variable for the whole population falls. For example, for any given statistic calculated from a sample survey, the value of that same statistic as measured in 95 percent of all possible samples with the same design (and expected size) will fall within a range of plus or minus two times the standard error of that statistic.

    If the sample of women had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the IDHS sample design depended on stratification, stages and clusters. Consequently, it was necessary to utilize more complex formulas. The computer package CLUSTERS, developed by the International Statistical Institute for the World Fertility Survey, was used to assist in computing the sampling errors with the proper statistical methodology.

    Note: See detailed estimate of sampling error calculation in APPENDIX B of the survey report.

    Data appraisal

    Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Completeness of reporting - Births by calendar year since birth - Reporting of age at death in days - Reporting of age at death in months

    Note: See detailed tables in APPENDIX C of the survey report.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Department of Statistics (DoS) (2021). Population and Family Health Survey 2012 - Jordan [Dataset]. https://microdata.unhcr.org/index.php/catalog/405

Population and Family Health Survey 2012 - Jordan

Explore at:
4 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
May 19, 2021
Dataset authored and provided by
Department of Statistics (DoS)
Time period covered
2012
Area covered
Jordan
Description

Abstract

The Jordan Population and Family Health Survey (JPFHS) is part of the worldwide Demographic and Health Surveys Program, which is designed to collect data on fertility, family planning, and maternal and child health.

The primary objective of the 2012 Jordan Population and Family Health Survey (JPFHS) is to provide reliable estimates of demographic parameters, such as fertility, mortality, family planning, and fertility preferences, as well as maternal and child health and nutrition, that can be used by program managers and policymakers to evaluate and improve existing programs. The JPFHS data will be useful to researchers and scholars interested in analyzing demographic trends in Jordan, as well as those conducting comparative, regional, or cross-national studies.

Geographic coverage

National coverage

Analysis unit

  • Household
  • Women age 15-49

Kind of data

Sample survey data [ssd]

Sampling procedure

Sample Design The 2012 JPFHS sample was designed to produce reliable estimates of major survey variables for the country as a whole, urban and rural areas, each of the 12 governorates, and for the two special domains: the Badia areas and people living in refugee camps. To facilitate comparisons with previous surveys, the sample was also designed to produce estimates for the three regions (North, Central, and South). The grouping of the governorates into regions is as follows: the North consists of Irbid, Jarash, Ajloun, and Mafraq governorates; the Central region consists of Amman, Madaba, Balqa, and Zarqa governorates; and the South region consists of Karak, Tafiela, Ma'an, and Aqaba governorates.

The 2012 JPFHS sample was selected from the 2004 Jordan Population and Housing Census sampling frame. The frame excludes the population living in remote areas (most of whom are nomads), as well as those living in collective housing units such as hotels, hospitals, work camps, prisons, and the like. For the 2004 census, the country was subdivided into convenient area units called census blocks. For the purposes of the household surveys, the census blocks were regrouped to form a general statistical unit of moderate size (30 households or more), called a "cluster", which is widely used in surveys as a primary sampling unit (PSU).

Stratification was achieved by first separating each governorate into urban and rural areas and then, within each urban and rural area, by Badia areas, refugee camps, and other. A two-stage sampling procedure was employed. In the first stage, 806 clusters were selected with probability proportional to the cluster size, that is, the number of residential households counted in the 2004 census. A household listing operation was then carried out in all of the selected clusters, and the resulting lists of households served as the sampling frame for the selection of households in the second stage. In the second stage of selection, a fixed number of 20 households was selected in each cluster with an equal probability systematic selection. A subsample of two-thirds of the selected households was identified for anthropometry measurements.

Refer to Appendix A in the final report (Jordan Population and Family Health Survey 2012) for details of sampling weights calculation.

Mode of data collection

Face-to-face [f2f]

Research instrument

The 2012 JPFHS used two questionnaires, namely the Household Questionnaire and the Woman’s Questionnaire (see Appendix D). The Household Questionnaire was used to list all usual members of the sampled households, and visitors who slept in the household the night before the interview, and to obtain information on each household member’s age, sex, educational attainment, relationship to the head of the household, and marital status. In addition, questions were included on the socioeconomic characteristics of the household, such as source of water, sanitation facilities, and the availability of durable goods. Moreover, the questionnaire included questions about child discipline. The Household Questionnaire was also used to identify women who were eligible for the individual interview (ever-married women age 15-49 years). In addition, all women age 15-49 and children under age 5 living in the subsample of households were eligible for height and weight measurement and anemia testing.

The Woman’s Questionnaire was administered to ever-married women age 15-49 and collected information on the following topics: • Respondent’s background characteristics • Birth history • Knowledge, attitudes, and practice of family planning and exposure to family planning messages • Maternal health (antenatal, delivery, and postnatal care) • Immunization and health of children under age 5 • Breastfeeding and infant feeding practices • Marriage and husband’s background characteristics • Fertility preferences • Respondent’s employment • Knowledge of AIDS and sexually transmitted infections (STIs) • Other health issues specific to women • Early childhood development • Domestic violence

In addition, information on births, pregnancies, and contraceptive use and discontinuation during the five years prior to the survey was collected using a monthly calendar.

The Household and Woman’s Questionnaires were based on the model questionnaires developed by the MEASURE DHS program. Additions and modifications to the model questionnaires were made in order to provide detailed information specific to Jordan. The questionnaires were then translated into Arabic.

Anthropometric data were collected during the 2012 JPFHS in a subsample of two-thirds of the selected households in each cluster. All women age 15-49 and children age 0-4 in these households were measured for height using Shorr height boards and for weight using electronic Seca scales. In addition, a drop of capillary blood was taken from these women and children in the field to measure their hemoglobin level using the HemoCue system. Hemoglobin testing was used to estimate the prevalence of anemia.

Cleaning operations

Fieldwork and data processing activities overlapped. Data processing began two weeks after the start of the fieldwork. After field editing of questionnaires for completeness and consistency, the questionnaires for each cluster were packaged together and sent to the central office in Amman, where they were registered and stored. Special teams were formed to carry out office editing and coding of the openended questions.

Data entry and verification started after two weeks of office data processing. The process of data entry, including 100 percent reentry, editing, and cleaning, was done by using PCs and the CSPro (Census and Survey Processing) computer package, developed specially for such surveys. The CSPro program allows data to be edited while being entered. Data processing operations were completed by early January 2013. A data processing specialist from ICF International made a trip to Jordan in February 2013 to follow up on data editing and cleaning and to work on the tabulation of results for the survey preliminary report, which was published in March 2013. The tabulations for this report were completed in April 2013.

Response rate

In all, 16,120 households were selected for the survey and, of these, 15,722 were found to be occupied households. Of these households, 15,190 (97 percent) were successfully interviewed.

In the households interviewed, 11,673 ever-married women age 15-49 were identified and interviews were completed with 11,352 women, or 97 percent of all eligible women.

Sampling error estimates

The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors and (2) sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2012 Jordan Population and Family Health Survey (JPFHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2012 JPFHS is only one of many samples that could have been selected from the same population, using the same design and identical size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling error is a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.

If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2012 JPFHS sample is the result of a multistage stratified design, and, consequently, it was necessary to use more complex formulae. The computer

Search
Clear search
Close search
Google apps
Main menu