This page lists ad-hoc statistics released during the period July - September 2020. These are additional analyses not included in any of the Department for Digital, Culture, Media and Sport’s standard publications.
If you would like any further information please contact evidence@dcms.gov.uk.
This analysis considers businesses in the DCMS Sectors split by whether they had reported annual turnover above or below £500 million, at one time the threshold for the Coronavirus Business Interruption Loan Scheme (CBILS). Please note the DCMS Sectors totals here exclude the Tourism and Civil Society sectors, for which data is not available or has been excluded for ease of comparability.
The analysis looked at number of businesses; and total GVA generated for both turnover bands. In 2018, an estimated 112 DCMS Sector businesses had an annual turnover of £500m or more (0.03% of the total DCMS Sector businesses). These businesses generated 35.3% (£73.9bn) of all GVA by the DCMS Sectors.
These are trends are broadly similar for the wider non-financial UK business economy, where an estimated 823 businesses had an annual turnover of £500m or more (0.03% of the total) and generated 24.3% (£409.9bn) of all GVA.
The Digital Sector had an estimated 89 businesses (0.04% of all Digital Sector businesses) – the largest number – with turnover of £500m or more; and these businesses generated 41.5% (£61.9bn) of all GVA for the Digital Sector. By comparison, the Creative Industries had an estimated 44 businesses with turnover of £500m or more (0.01% of all Creative Industries businesses), and these businesses generated 23.9% (£26.7bn) of GVA for the Creative Industries sector.
<p class="gem-c-attachment_metadata"><span class="gem-c-attachment_attribute">MS Excel Spreadsheet</span>, <span class="gem-c-attachment_attribute">42.5 KB</span></p>
This analysis shows estimates from the ONS Opinion and Lifestyle Omnibus Survey Data Module, commissioned by DCMS in February 2020. The Opinions and Lifestyles Survey (OPN) is run by the Office for National Statistics. For more information on the survey, please see the https://www.ons.gov.uk/aboutus/whatwedo/paidservices/opinions" class="govuk-link">ONS website.
DCMS commissioned 19 questions to be included in the February 2020 survey relating to the public’s views on a range of data related issues, such as trust in different types of organisations when handling personal data, confidence using data skills at work, understanding of how data is managed by companies and the use of data skills at work.
The high level results are included in the accompanying tables. The survey samples adults (16+) across the whole of Great Britain (excluding the Isles of Scilly).
This is a quarterly report that compares electronic data vs non-electronic data for electronic services. Report contains six main sections: electronic access, My Social Security Suite, MySSA Help Desk Callback, Entitlement, Post-Entitlement, and Pre-Entitlement. Examples of applications in the reports include, electronic access (ROME), iClaims, Internet Benefit Verification, Online Social Security Statement, MRC, and Retirement Estimator.
The 1998 Ghana Demographic and Health Survey (GDHS) is the latest in a series of national-level population and health surveys conducted in Ghana and it is part of the worldwide MEASURE DHS+ Project, designed to collect data on fertility, family planning, and maternal and child health.
The primary objective of the 1998 GDHS is to provide current and reliable data on fertility and family planning behaviour, child mortality, children’s nutritional status, and the utilisation of maternal and child health services in Ghana. Additional data on knowledge of HIV/AIDS are also provided. This information is essential for informed policy decisions, planning and monitoring and evaluation of programmes at both the national and local government levels.
The long-term objectives of the survey include strengthening the technical capacity of the Ghana Statistical Service (GSS) to plan, conduct, process, and analyse the results of complex national sample surveys. Moreover, the 1998 GDHS provides comparable data for long-term trend analyses within Ghana, since it is the third in a series of demographic and health surveys implemented by the same organisation, using similar data collection procedures. The GDHS also contributes to the ever-growing international database on demographic and health-related variables.
National
Sample survey data
The major focus of the 1998 GDHS was to provide updated estimates of important population and health indicators including fertility and mortality rates for the country as a whole and for urban and rural areas separately. In addition, the sample was designed to provide estimates of key variables for the ten regions in the country.
The list of Enumeration Areas (EAs) with population and household information from the 1984 Population Census was used as the sampling frame for the survey. The 1998 GDHS is based on a two-stage stratified nationally representative sample of households. At the first stage of sampling, 400 EAs were selected using systematic sampling with probability proportional to size (PPS-Method). The selected EAs comprised 138 in the urban areas and 262 in the rural areas. A complete household listing operation was then carried out in all the selected EAs to provide a sampling frame for the second stage selection of households. At the second stage of sampling, a systematic sample of 15 households per EA was selected in all regions, except in the Northern, Upper West and Upper East Regions. In order to obtain adequate numbers of households to provide reliable estimates of key demographic and health variables in these three regions, the number of households in each selected EA in the Northern, Upper West and Upper East regions was increased to 20. The sample was weighted to adjust for over sampling in the three northern regions (Northern, Upper East and Upper West), in relation to the other regions. Sample weights were used to compensate for the unequal probability of selection between geographically defined strata.
The survey was designed to obtain completed interviews of 4,500 women age 15-49. In addition, all males age 15-59 in every third selected household were interviewed, to obtain a target of 1,500 men. In order to take cognisance of non-response, a total of 6,375 households nation-wide were selected.
Note: See detailed description of sample design in APPENDIX A of the survey report.
Face-to-face
Three types of questionnaires were used in the GDHS: the Household Questionnaire, the Women’s Questionnaire, and the Men’s Questionnaire. These questionnaires were based on model survey instruments developed for the international MEASURE DHS+ programme and were designed to provide information needed by health and family planning programme managers and policy makers. The questionnaires were adapted to the situation in Ghana and a number of questions pertaining to on-going health and family planning programmes were added. These questionnaires were developed in English and translated into five major local languages (Akan, Ga, Ewe, Hausa, and Dagbani).
The Household Questionnaire was used to enumerate all usual members and visitors in a selected household and to collect information on the socio-economic status of the household. The first part of the Household Questionnaire collected information on the relationship to the household head, residence, sex, age, marital status, and education of each usual resident or visitor. This information was used to identify women and men who were eligible for the individual interview. For this purpose, all women age 15-49, and all men age 15-59 in every third household, whether usual residents of a selected household or visitors who slept in a selected household the night before the interview, were deemed eligible and interviewed. The Household Questionnaire also provides basic demographic data for Ghanaian households. The second part of the Household Questionnaire contained questions on the dwelling unit, such as the number of rooms, the flooring material, the source of water and the type of toilet facilities, and on the ownership of a variety of consumer goods.
The Women’s Questionnaire was used to collect information on the following topics: respondent’s background characteristics, reproductive history, contraceptive knowledge and use, antenatal, delivery and postnatal care, infant feeding practices, child immunisation and health, marriage, fertility preferences and attitudes about family planning, husband’s background characteristics, women’s work, knowledge of HIV/AIDS and STDs, as well as anthropometric measurements of children and mothers.
The Men’s Questionnaire collected information on respondent’s background characteristics, reproduction, contraceptive knowledge and use, marriage, fertility preferences and attitudes about family planning, as well as knowledge of HIV/AIDS and STDs.
A total of 6,375 households were selected for the GDHS sample. Of these, 6,055 were occupied. Interviews were completed for 6,003 households, which represent 99 percent of the occupied households. A total of 4,970 eligible women from these households and 1,596 eligible men from every third household were identified for the individual interviews. Interviews were successfully completed for 4,843 women or 97 percent and 1,546 men or 97 percent. The principal reason for nonresponse among individual women and men was the failure of interviewers to find them at home despite repeated callbacks.
Note: See summarized response rates by place of residence in Table 1.1 of the survey report.
The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors, and (2) sampling errors. Nonsampling errors are the results of shortfalls made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 1998 GDHS to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 1998 GDHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 1998 GDHS sample is the result of a two-stage stratified design, and, consequently, it was necessary to use more complex formulae. The computer software used to calculate sampling errors for the 1998 GDHS is the ISSA Sampling Error Module. This module uses the Taylor linearization method of variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.
Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months
Note: See detailed tables in APPENDIX C of the survey report.
The health and wealth of a nation and its potential to develop and grow depend on its ability to feed its people. To help ensure that food will remain available to those who need it, there is nothing more important to give priority to than agriculture. Accurate and timely statistics about the basic produce and supplies of agriculture are essential to assess the agricultural situation. To help policy maker's deal with the fundamental challenge they are faced within the agricultural sector of the economy and develop measures and policies to maintain food security, there should be a continuous provision of statistics. The collection of reliable, comprehensive and timely data on agriculture is thus required for the above purposes. In this perspective, the Central Statistical Agency (CSA) has endeavored to generate agricultural data for policy makers and other users. The general objective of CSA's annual Agricultural Sample Survey (AgSS) is to collect basic quantitative information on the country's agriculture that is considered essential for development planning, socio-economic policy formulation, food security, etc. The AgSS is composed of four components: Crop production forecast survey, Main (“Meher”) season survey, Livestock survey, and survey of the “Belg” season crop area and production.
The specific objectives of the Main (“Meher”) season area and production survey are: - To estimate the total cultivated land area, production and yield per hectare of major crops (temporary). - To estimate the total farm inputs applied area and quantity of inputs applied by type for major temporary and permanent crops.
The survey covered all sedentary rural agricultural population in all regions of the country except urban and nomadic areas which were not included in the survey.
Agricultural household/ Holder/ Crop
Agricultural households
Sample survey data [ssd]
The 2000/2001 (1993 E.C) Meher season agricultural sample survey covered the rural part of the country except three zones in Afar regional state and six zones in Somalie regional state that are predominantly nomadic. A two-stage stratified sample design was used to select the sample. Each zones/special wereda was adopted as stratum for which major findings of the survey are reported except the four regions; namely, Gambella, Harari, Addis Ababa and Dire Dawa which were considered as strata/reporting levels. The primary sampling units (PSUs) were enumeration areas (EAs) and agricultural households were the secondary sampling units. The survey questionnaires were administered to all agricultural holders within the sample households. A fixed number of sample EAs were determined for each stratum/reporting level based on precision of major estimates and cost considerations. Within each stratum EAs were selected using probability proportional to size systematic sampling; size being total number of agricultural households in the EAs as obtained from the 1994 population and housing census. From each sample EA, 40 agricultural households were systematically selected for the annual agricultural sample survey from a fresh list of households prepared at the beginning of the field work of the annual agricultural survey. Of the forty agricultural households, the first twenty-five were used for obtaining information on area under crops, Meher and Beleg season production of crops, land use, agricultural practices, crop damage, and quantity of agricultural households sampled in each of the selected EAs, data on crop cutting were collected for only the fifteen households (11th - 25th households selected). A total of 1,430 EAs were selected for the survey. However, 8 EAs were closed for various reasons beyond the control of the Authority and the survey succeeded in covering 1422 (99.44%) EAs. Within respect to ultimate sampling units, for the Meher season agricultural sample survey, it was planned to cover 35,750 agricultural households.
Note: Distribution of the number of sampling units sampled and covered by strata is given in Appendix I of the 2000-2001 annual Agricultural Sample Survey report which is provided as external resource.
Face-to-face [f2f]
The 2000-2001 annual Agricultural Sample Survey used structured questionnaires to collect agricultural information from selected sample households. Lists of forms in the questionnaires: - AgSS Form 93/0: Used to list all households and agricultural holders in the sample enumeration areas. - AgSS Form 93/1: Used to list selected households and agricultural holders in the sample enumeration areas. - AgSS Form 93/3A: Used to list fields and agricultural practices only pure stand temporary and permanent crops, list of fields and agricultural practices for mixed crops, other land use, quantity of improved and local seeds by type of crop and type and quantity of crop protection chemicals. - AgSS Form 93/4A: Used to collect results of area measurement. - AgSS Form 93/5: Used to list fields for selecting fields for crop cuttings and collect information about details of crop cutting.
Note: The questionnaires are presented in the Appendix IV of the 2000-2001 Agricultural Sample Survey Volume I report which is provided as external resource.
Editing, Coding and Verification: In order to insure the quality of the collected survey data an editing, coding and verification instruction manual was prepared and printed. Then 23 editors-coders and 22 verifiers were trained for two days in the editing, coding and verification operation using the aforementioned manual as a reference and teaching aid. The completed questionnaires were edited, coded and later verified on a 100% basis before the questionnaires were passed over to the data entry unit. The editing, coding and verification exercise of all questionnaires was completed in about 30 days.
Data Entry, Cleaning and Tabulation: Before starting data entry, professional staff of Agricultural Statistics Department prepared edit specifications to use on personal computers utilizing the Integrated Microcomputer Processing System (IMPS) software for data consistency checking purposes. The data on the coded questionnaires were then entered into personal computers using IMPS software. The data were then checked and cleaned using the edit specification prepared earlier for this purpose. The data entry operation involved about 31 data encoders and it took 28 days to complete the job. Finally, tabulation was done on personal computers to produce results as indicated in the tabulation plan.
A total of 1,430 EAs were selected for the survey. However, 8 EAs were closed for various reasons beyond the control of the Authority and the survey succeeded in covering 1422 (99.44%) EAs. Within respect to ultimate sampling units, for the Meher season agricultural sample survey, it was planned to cover 35,750 agricultural households. The response rate was found to be 99.14%.
Estimation procedures of parameters of interest (total and ratio) and their sampling error is presented in Appendix II of the 2000-2001 annual Agricultural Sample Survey report which is provided as external resource.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Dataset containing variables extracted from original articles published in Peruvian journals.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Supplementary materials for the article: De Winter, J. C. F., Dodou, D., & Wieringa, P. A. (2009). Exploratory factor analysis with small sample sizes. Multivariate Behavioral Research, 44, 147–181.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This dataset contains all of the supporting materials to accompany Helsel, D.R., Hirsch, R.M., Ryberg, K.R., Archfield, S.A., and Gilroy, E.J., 2020, Statistical methods in water resources: U.S. Geological Survey Techniques and Methods, book 4, chapter A3, 454 p., https://doi.org/10.3133/tm4a3. [Supersedes USGS Techniques of Water-Resources Investigations, book 4, chapter A3, version 1.1.]. Supplemental material (SM) for each chapter are available to re-create all examples and figures, and to solve the exercises at the end of each chapter, with relevant datasets provided in an electronic format readable by R. The SM provide (1) datasets as .Rdata files for immediate input into R, (2) datasets as .csv files for input into R or for use with other software programs, (3) R functions that are used in the textbook but not part of a published R package, (4) R scripts to produce virtually all of the figures in the book, and (5) solutions to the exercises as .html and .Rmd files. The suff ...
Within the frame of PCBS' efforts in providing official Palestinian statistics in the different life aspects of Palestinian society and because the wide spread of Computer, Internet and Mobile Phone among the Palestinian people, and the important role they may play in spreading knowledge and culture and contribution in formulating the public opinion, PCBS conducted the Household Survey on Information and Communications Technology, 2014.
The main objective of this survey is to provide statistical data on Information and Communication Technology in the Palestine in addition to providing data on the following: -
· Prevalence of computers and access to the Internet. · Study the penetration and purpose of Technology use.
Palestine (West Bank and Gaza Strip) , type of locality (Urban, Rural, Refugee Camps) and governorate
Household. Person 10 years and over .
All Palestinian households and individuals whose usual place of residence in Palestine with focus on persons aged 10 years and over in year 2014.
Sample survey data [ssd]
Sampling Frame The sampling frame consists of a list of enumeration areas adopted in the Population, Housing and Establishments Census of 2007. Each enumeration area has an average size of about 124 households. These were used in the first phase as Preliminary Sampling Units in the process of selecting the survey sample.
Sample Size The total sample size of the survey was 7,268 households, of which 6,000 responded.
Sample Design The sample is a stratified clustered systematic random sample. The design comprised three phases:
Phase I: Random sample of 240 enumeration areas. Phase II: Selection of 25 households from each enumeration area selected in phase one using systematic random selection. Phase III: Selection of an individual (10 years or more) in the field from the selected households; KISH TABLES were used to ensure indiscriminate selection.
Sample Strata Distribution of the sample was stratified by: 1- Governorate (16 governorates, J1). 2- Type of locality (urban, rural and camps).
-
Face-to-face [f2f]
The survey questionnaire consists of identification data, quality controls and three main sections: Section I: Data on household members that include identification fields, the characteristics of household members (demographic and social) such as the relationship of individuals to the head of household, sex, date of birth and age.
Section II: Household data include information regarding computer processing, access to the Internet, and possession of various media and computer equipment. This section includes information on topics related to the use of computer and Internet, as well as supervision by households of their children (5-17 years old) while using the computer and Internet, and protective measures taken by the household in the home.
Section III: Data on persons (aged 10 years and over) about computer use, access to the Internet and possession of a mobile phone.
Preparation of Data Entry Program: This stage included preparation of the data entry programs using an ACCESS package and defining data entry control rules to avoid errors, plus validation inquiries to examine the data after it had been captured electronically.
Data Entry: The data entry process started on 8 May 2014 and ended on 23 June 2014. The data entry took place at the main PCBS office and in field offices using 28 data clerks.
Editing and Cleaning procedures: Several measures were taken to avoid non-sampling errors. These included editing of questionnaires before data entry to check field errors, using a data entry application that does not allow mistakes during the process of data entry, and then examining the data by using frequency and cross tables. This ensured that data were error free; cleaning and inspection of the anomalous values were conducted to ensure harmony between the different questions on the questionnaire.
Response Rates= 79%
There are many aspects of the concept of data quality; this includes the initial planning of the survey to the dissemination of the results and how well users understand and use the data. There are three components to the quality of statistics: accuracy, comparability, and quality control procedures.
Checks on data accuracy cover many aspects of the survey and include statistical errors due to the use of a sample, non-statistical errors resulting from field workers or survey tools, and response rates and their effect on estimations. This section includes:
Statistical Errors Data of this survey may be affected by statistical errors due to the use of a sample and not a complete enumeration. Therefore, certain differences can be expected in comparison with the real values obtained through censuses. Variances were calculated for the most important indicators.
Variance calculations revealed that there is no problem in disseminating results nationally or regionally (the West Bank, Gaza Strip), but some indicators show high variance by governorate, as noted in the tables of the main report.
Non-Statistical Errors Non-statistical errors are possible at all stages of the project, during data collection or processing. These are referred to as non-response errors, response errors, interviewing errors and data entry errors. To avoid errors and reduce their effects, strenuous efforts were made to train the field workers intensively. They were trained on how to carry out the interview, what to discuss and what to avoid, and practical and theoretical training took place during the training course. Training manuals were provided for each section of the questionnaire, along with practical exercises in class and instructions on how to approach respondents to reduce refused cases. Data entry staff were trained on the data entry program, which was tested before starting the data entry process.
Several measures were taken to avoid non-sampling errors. These included editing of questionnaires before data entry to check field errors, using a data entry application that does not allow mistakes during the process of data entry, and then examining the data by using frequency and cross tables. This ensured that data were error free; cleaning and inspection of the anomalous values were conducted to ensure harmony between the different questions on the questionnaire.
The sources of non-statistical errors can be summarized as: 1. Some of the households were not at home and could not be interviewed, and some households refused to be interviewed. 2. In unique cases, errors occurred due to the way the questions were asked by interviewers and respondents misunderstood some of the questions.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
To create the dataset, the top 10 countries leading in the incidence of COVID-19 in the world were selected as of October 22, 2020 (on the eve of the second full of pandemics), which are presented in the Global 500 ranking for 2020: USA, India, Brazil, Russia, Spain, France and Mexico. For each of these countries, no more than 10 of the largest transnational corporations included in the Global 500 rating for 2020 and 2019 were selected separately. The arithmetic averages were calculated and the change (increase) in indicators such as profitability and profitability of enterprises, their ranking position (competitiveness), asset value and number of employees. The arithmetic mean values of these indicators for all countries of the sample were found, characterizing the situation in international entrepreneurship as a whole in the context of the COVID-19 crisis in 2020 on the eve of the second wave of the pandemic. The data is collected in a general Microsoft Excel table. Dataset is a unique database that combines COVID-19 statistics and entrepreneurship statistics. The dataset is flexible data that can be supplemented with data from other countries and newer statistics on the COVID-19 pandemic. Due to the fact that the data in the dataset are not ready-made numbers, but formulas, when adding and / or changing the values in the original table at the beginning of the dataset, most of the subsequent tables will be automatically recalculated and the graphs will be updated. This allows the dataset to be used not just as an array of data, but as an analytical tool for automating scientific research on the impact of the COVID-19 pandemic and crisis on international entrepreneurship. The dataset includes not only tabular data, but also charts that provide data visualization. The dataset contains not only actual, but also forecast data on morbidity and mortality from COVID-19 for the period of the second wave of the pandemic in 2020. The forecasts are presented in the form of a normal distribution of predicted values and the probability of their occurrence in practice. This allows for a broad scenario analysis of the impact of the COVID-19 pandemic and crisis on international entrepreneurship, substituting various predicted morbidity and mortality rates in risk assessment tables and obtaining automatically calculated consequences (changes) on the characteristics of international entrepreneurship. It is also possible to substitute the actual values identified in the process and following the results of the second wave of the pandemic to check the reliability of pre-made forecasts and conduct a plan-fact analysis. The dataset contains not only the numerical values of the initial and predicted values of the set of studied indicators, but also their qualitative interpretation, reflecting the presence and level of risks of a pandemic and COVID-19 crisis for international entrepreneurship.
analyze the current population survey (cps) annual social and economic supplement (asec) with r the annual march cps-asec has been supplying the statistics for the census bureau's report on income, poverty, and health insurance coverage since 1948. wow. the us census bureau and the bureau of labor statistics ( bls) tag-team on this one. until the american community survey (acs) hit the scene in the early aughts (2000s), the current population survey had the largest sample size of all the annual general demographic data sets outside of the decennial census - about two hundred thousand respondents. this provides enough sample to conduct state- and a few large metro area-level analyses. your sample size will vanish if you start investigating subgroups b y state - consider pooling multiple years. county-level is a no-no. despite the american community survey's larger size, the cps-asec contains many more variables related to employment, sources of income, and insurance - and can be trended back to harry truman's presidency. aside from questions specifically asked about an annual experience (like income), many of the questions in this march data set should be t reated as point-in-time statistics. cps-asec generalizes to the united states non-institutional, non-active duty military population. the national bureau of economic research (nber) provides sas, spss, and stata importation scripts to create a rectangular file (rectangular data means only person-level records; household- and family-level information gets attached to each person). to import these files into r, the parse.SAScii function uses nber's sas code to determine how to import the fixed-width file, then RSQLite to put everything into a schnazzy database. you can try reading through the nber march 2012 sas importation code yourself, but it's a bit of a proc freak show. this new github repository contains three scripts: 2005-2012 asec - download all microdata.R down load the fixed-width file containing household, family, and person records import by separating this file into three tables, then merge 'em together at the person-level download the fixed-width file containing the person-level replicate weights merge the rectangular person-level file with the replicate weights, then store it in a sql database create a new variable - one - in the data table 2012 asec - analysis examples.R connect to the sql database created by the 'download all microdata' progr am create the complex sample survey object, using the replicate weights perform a boatload of analysis examples replicate census estimates - 2011.R connect to the sql database created by the 'download all microdata' program create the complex sample survey object, using the replicate weights match the sas output shown in the png file below 2011 asec replicate weight sas output.png statistic and standard error generated from the replicate-weighted example sas script contained in this census-provided person replicate weights usage instructions document. click here to view these three scripts for more detail about the current population survey - annual social and economic supplement (cps-asec), visit: the census bureau's current population survey page the bureau of labor statistics' current population survey page the current population survey's wikipedia article notes: interviews are conducted in march about experiences during the previous year. the file labeled 2012 includes information (income, work experience, health insurance) pertaining to 2011. when you use the current populat ion survey to talk about america, subract a year from the data file name. as of the 2010 file (the interview focusing on america during 2009), the cps-asec contains exciting new medical out-of-pocket spending variables most useful for supplemental (medical spending-adjusted) poverty research. confidential to sas, spss, stata, sudaan users: why are you still rubbing two sticks together after we've invented the butane lighter? time to transition to r. :D
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Scientific investigation is of value only insofar as relevant results are obtained and communicated, a task that requires organizing, evaluating, analysing and unambiguously communicating the significance of data. In this context, working with ecological data, reflecting the complexities and interactions of the natural world, can be a challenge. Recent innovations for statistical analysis of multifaceted interrelated data make obtaining more accurate and meaningful results possible, but key decisions of the analyses to use, and which components to present in a scientific paper or report, may be overwhelming. We offer a 10-step protocol to streamline analysis of data that will enhance understanding of the data, the statistical models and the results, and optimize communication with the reader with respect to both the procedure and the outcomes. The protocol takes the investigator from study design and organization of data (formulating relevant questions, visualizing data collection, data exploration, identifying dependency), through conducting analysis (presenting, fitting and validating the model) and presenting output (numerically and visually), to extending the model via simulation. Each step includes procedures to clarify aspects of the data that affect statistical analysis, as well as guidelines for written presentation. Steps are illustrated with examples using data from the literature. Following this protocol will reduce the organization, analysis and presentation of what may be an overwhelming information avalanche into sequential and, more to the point, manageable, steps. It provides guidelines for selecting optimal statistical tools to assess data relevance and significance, for choosing aspects of the analysis to include in a published report and for clearly communicating information.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
dataset and Octave/MatLab codes/scripts for data analysis Background: Methods for p-value correction are criticized for either increasing Type II error or improperly reducing Type I error. This problem is worse when dealing with thousands or even hundreds of paired comparisons between waves or images which are performed point-to-point. This text considers patterns in probability vectors resulting from multiple point-to-point comparisons between two event-related potentials (ERP) waves (mass univariate analysis) to correct p-values, where clusters of signiticant p-values may indicate true H0 rejection. New method: We used ERP data from normal subjects and other ones with attention deficit hyperactivity disorder (ADHD) under a cued forced two-choice test to study attention. The decimal logarithm of the p-vector (p') was convolved with a Gaussian window whose length was set as the shortest lag above which autocorrelation of each ERP wave may be assumed to have vanished. To verify the reliability of the present correction method, we realized Monte-Carlo simulations (MC) to (1) evaluate confidence intervals of rejected and non-rejected areas of our data, (2) to evaluate differences between corrected and uncorrected p-vectors or simulated ones in terms of distribution of significant p-values, and (3) to empirically verify rate of type-I error (comparing 10,000 pairs of mixed samples whit control and ADHD subjects). Results: the present method reduced the range of p'-values that did not show covariance with neighbors (type I and also type-II errors). The differences between simulation or raw p-vector and corrected p-vectors were, respectively, minimal and maximal for window length set by autocorrelation in p-vector convolution. Comparison with existing methods: Our method was less conservative while FDR methods rejected basically all significant p-values for Pz and O2 channels. The MC simulations, gold-standard method for error correction, presented 2.78±4.83% of difference (all 20 channels) from p-vector after correction, while difference between raw and corrected p-vector was 5,96±5.00% (p = 0.0003). Conclusion: As a cluster-based correction, the present new method seems to be biological and statistically suitable to correct p-values in mass univariate analysis of ERP waves, which adopts adaptive parameters to set correction.
https://www.statsndata.org/how-to-orderhttps://www.statsndata.org/how-to-order
The Capacitor Sample Kit market is a pivotal segment within the electronics and components industry, catering to engineers and designers seeking versatile and high-performance capacitors for various applications. These kits typically contain an assortment of capacitors encompassing different types, values, and volta
The Taking Part survey has run since 2005 and is the key evidence source for DCMS. It is a continuous face to face household survey of adults aged 16 and over in England and children aged 5 to 15 years old.
The Taking Part survey provides reliable national estimates of engagement with the arts, heritage, museums and libraries. It carries the National Statistics badge, meaning that it meets the highest standards of statistical quality.
These two reports present additional analysis of data from the Taking Part adult and child surveys. The reports cover museums and galleries, and trends in diversity.
26 April 2017
April 2005 to March 2016
National and Regional level data for England.
A release of annual estimates for adults and children covering the period April 2016 to March 2017 is due to be published in July 2017.
These spreadsheets contain the data and sample sizes to support the material in this release.
The document above contains a list of ministers and officials who have received privileged early access to this release of Taking Part data. In line with best practice, the list has been kept to a minimum and those given access for briefing purposes had a maximum of 24 hours.
This release is published in accordance with the Code of Practice for Official Statistics (2009), as produced by the UK Statistics Authority (UKSA). The UKSA has the overall objective of promoting and safeguarding the production and publication of official statistics that serve the public good. It monitors and reports on all official statistics, and promotes good practice in this area.
The responsible statistician for this release is Alison Reynolds. For enquiries on this release, contact Alison Reynolds on 020 7211 6776.
For any other queries regarding Taking Part, contact the Taking Part team at takingpart@culture.gov.uk.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Rutherford College by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Rutherford College. The dataset can be utilized to understand the population distribution of Rutherford College by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Rutherford College. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Rutherford College.
Key observations
Largest age group (population): Male # 60-64 years (98) | Female # 30-34 years (70). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Rutherford College Population by Gender. You can refer the same here
The objective of the survey is to prepare and publish statistical information on the availability of computers in households, Internet access at home; frequency and purposes of Internet usage; use of e-commerce, e-government services; computer literacy; ICT safety, obstacles to ICT and Internet usage. Moreover, respondents’ demographic and social characteristics, enabling the analysis of survey results by respondents’ sex, age, educational attainment, employment status, are surveyed.
Households Individual
Survey population – all residents of Lithuania aged 16–74. Statistical unit – individual aged 16–74. Individuals residing in institutional households (care homes, imprisonment institutions, monasteries, convents, seminaries, etc.) are not surveyed.
Sample survey data [ssd]
Sample size:
Households: 7 000 Individuals: 7 000
Sampling and statistical methodology:
Data of the Population Register are used. The State Enterprise Centre of Registers is the manager of the Population Register. Data of the Population Register in on-line mode are submitted to Statistics Lithuania.
The Population Register database includes data on the residents of the Republic of Lithuania: the citizens of Lithuania, the citizens of foreign countries or persons without citizenship, declaring the place of residence in Lithuania or registering any changes of the civil state in a registry office.
The Population Register is updated regularly. All persons are obliged to declare their place of residence, i.e. to submit data on the address of the place of residence to an institution responsible for the declaration of the place of residence.
However, not all movements of the population within the country are reflected: not all persons report about changing the address to a responsible institution or the declared place of residence is not the main place of residence. Consequently, if the person included in the sample does not live at the address specified, the person actually living at that address whose birthday is the closest to the date of the interview is asked to answer the survey questionnaire.
A one-stage sampling was used, with stratification by type of residence (urban/rural) and by size (for urban area). A simple random sample of individuals aged 16- 74 from every stratum was drawn using the Population Register. Households whose members are selected are surveyed. One individual in the household was interviewed.
Other [oth]
Questionnaire accessible online at: https://apklausos.stat.gov.lt/en/statistines-anketos
72.8% (IND)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Code Examples from the Book
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Provides R replication scripts for the manuscript 'Analysis of type I and II error rates of Bayesian and frequentist parametric and nonparametric two-sample hypothesis tests under preliminary assessment of normality'
The statistical data generated through the administration of the Federal milk order program is recognized widely as one of the benefits of this program. These data provide comprehensive and accurate information on milk supplies, utilization, and sales, as well as class prices established under the orders and prices paid to dairy farmers (producers). The sources of this data are monthly reports of receipts and utilization, producer payroll reports, and reports of nonpool handlers filed by milk processors (handlers) subject to the provisions of the various milk orders. The local market administrator (MA) uses these reports to determine pool obligations under the order and to verify proper payments to producers. Auditors employed by the MA review handler records to assure the accuracy of reported information. Reporting errors are corrected; if necessary, pool obligations are revised.
After the pool obligations have been determined the local market administrator summarizes the individual handler reports and submits a series of order summary reports to the Market Information Branch (MIB) in Dairy Programs. The MIB summarizes the individual order data and disseminates this information via monthly, bimonthly, and annual releases or publications. Since milk marketing order statistics are based on reports filed by the population of possible reporting firms and not a sample, these statistics are comprehensive. Also, since these individual firm reports are subject to audit and verification, these statistics are accurate.
The Federal milk order statistics database contains historical information, beginning in January 2000, generated by the administration of the Federal milk order program. Most of the information in the database has been published previously by the Market Information Branch in Dairy Programs either on its web site or in the Dairy Market News Report. New users are encouraged to use the "User Guide" to learn how to navigate the search screens. If you are interested in a description of the Federal milk order statistics program, or want current data, in ready made table form, use the "Current Information" link.
The 1997 Jordan Population and Family Health Survey (JPFHS) is a national sample survey carried out by the Department of Statistics (DOS) as part of its National Household Surveys Program (NHSP). The JPFHS was specifically aimed at providing information on fertility, family planning, and infant and child mortality. Information was also gathered on breastfeeding, on maternal and child health care and nutritional status, and on the characteristics of households and household members. The survey will provide policymakers and planners with important information for use in formulating informed programs and policies on reproductive behavior and health.
National
Sample survey data
SAMPLE DESIGN AND IMPLEMENTATION
The 1997 JPFHS sample was designed to produce reliable estimates of major survey variables for the country as a whole, for urban and rural areas, for the three regions (each composed of a group of governorates), and for the three major governorates, Amman, Irbid, and Zarqa.
The 1997 JPFHS sample is a subsample of the master sample that was designed using the frame obtained from the 1994 Population and Housing Census. A two-stage sampling procedure was employed. First, primary sampling units (PSUs) were selected with probability proportional to the number of housing units in the PSU. A total of 300 PSUs were selected at this stage. In the second stage, in each selected PSU, occupied housing units were selected with probability inversely proportional to the number of housing units in the PSU. This design maintains a self-weighted sampling fraction within each governorate.
UPDATING OF SAMPLING FRAME
Prior to the main fieldwork, mapping operations were carried out and the sample units/blocks were selected and then identified and located in the field. The selected blocks were delineated and the outer boundaries were demarcated with special signs. During this process, the numbers on buildings and housing units were updated, listed and documented, along with the name of the owner/tenant of the unit or household and the name of the household head. These activities took place between January 7 and February 28, 1997.
Note: See detailed description of sample design in APPENDIX A of the survey report.
Face-to-face
The 1997 JPFHS used two questionnaires, one for the household interview and the other for eligible women. Both questionnaires were developed in English and then translated into Arabic. The household questionnaire was used to list all members of the sampled households, including usual residents as well as visitors. For each member of the household, basic demographic and social characteristics were recorded and women eligible for the individual interview were identified. The individual questionnaire was developed utilizing the experience gained from previous surveys, in particular the 1983 and 1990 Jordan Fertility and Family Health Surveys (JFFHS).
The 1997 JPFHS individual questionnaire consists of 10 sections: - Respondent’s background - Marriage - Reproduction (birth history) - Contraception - Pregnancy, breastfeeding, health and immunization - Fertility preferences - Husband’s background, woman’s work and residence - Knowledge of AIDS - Maternal mortality - Height and weight of children and mothers.
Fieldwork and data processing activities overlapped. After a week of data collection, and after field editing of questionnaires for completeness and consistency, the questionnaires for each cluster were packaged together and sent to the central office in Amman where they were registered and stored. Special teams were formed to carry out office editing and coding.
Data entry started after a week of office data processing. The process of data entry, editing, and cleaning was done by means of the ISSA (Integrated System for Survey Analysis) program DHS has developed especially for such surveys. The ISSA program allows data to be edited while being entered. Data entry was completed on November 14, 1997. A data processing specialist from Macro made a trip to Jordan in November and December 1997 to identify problems in data entry, editing, and cleaning, and to work on tabulations for both the preliminary and final report.
A total of 7,924 occupied housing units were selected for the survey; from among those, 7,592 households were found. Of the occupied households, 7,335 (97 percent) were successfully interviewed. In those households, 5,765 eligible women were identified, and complete interviews were obtained with 5,548 of them (96 percent of all eligible women). Thus, the overall response rate of the 1997 JPFHS was 93 percent. The principal reason for nonresponse among the women was the failure of interviewers to find them at home despite repeated callbacks.
Note: See summarized response rates by place of residence in Table 1.1 of the survey report.
The estimates from a sample survey are subject to two types of errors: nonsampling errors and sampling errors. Nonsampling errors are the result of mistakes made in implementing data collection and data processing (such as failure to locate and interview the correct household, misunderstanding questions either by the interviewer or the respondent, and data entry errors). Although during the implementation of the 1997 JPFHS numerous efforts were made to minimize this type of error, nonsampling errors are not only impossible to avoid but also difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The respondents selected in the 1997 JPFHS constitute only one of many samples that could have been selected from the same population, given the same design and expected size. Each of those samples would have yielded results differing somewhat from the results of the sample actually selected. Sampling errors are a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, since the 1997 JDHS-II sample resulted from a multistage stratified design, formulae of higher complexity had to be used. The computer software used to calculate sampling errors for the 1997 JDHS-II was the ISSA Sampling Error Module, which uses the Taylor linearization method of variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics, such as fertility and mortality rates.
Note: See detailed estimate of sampling error calculation in APPENDIX B of the survey report.
Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months
Note: See detailed tables in APPENDIX C of the survey report.
This page lists ad-hoc statistics released during the period July - September 2020. These are additional analyses not included in any of the Department for Digital, Culture, Media and Sport’s standard publications.
If you would like any further information please contact evidence@dcms.gov.uk.
This analysis considers businesses in the DCMS Sectors split by whether they had reported annual turnover above or below £500 million, at one time the threshold for the Coronavirus Business Interruption Loan Scheme (CBILS). Please note the DCMS Sectors totals here exclude the Tourism and Civil Society sectors, for which data is not available or has been excluded for ease of comparability.
The analysis looked at number of businesses; and total GVA generated for both turnover bands. In 2018, an estimated 112 DCMS Sector businesses had an annual turnover of £500m or more (0.03% of the total DCMS Sector businesses). These businesses generated 35.3% (£73.9bn) of all GVA by the DCMS Sectors.
These are trends are broadly similar for the wider non-financial UK business economy, where an estimated 823 businesses had an annual turnover of £500m or more (0.03% of the total) and generated 24.3% (£409.9bn) of all GVA.
The Digital Sector had an estimated 89 businesses (0.04% of all Digital Sector businesses) – the largest number – with turnover of £500m or more; and these businesses generated 41.5% (£61.9bn) of all GVA for the Digital Sector. By comparison, the Creative Industries had an estimated 44 businesses with turnover of £500m or more (0.01% of all Creative Industries businesses), and these businesses generated 23.9% (£26.7bn) of GVA for the Creative Industries sector.
<p class="gem-c-attachment_metadata"><span class="gem-c-attachment_attribute">MS Excel Spreadsheet</span>, <span class="gem-c-attachment_attribute">42.5 KB</span></p>
This analysis shows estimates from the ONS Opinion and Lifestyle Omnibus Survey Data Module, commissioned by DCMS in February 2020. The Opinions and Lifestyles Survey (OPN) is run by the Office for National Statistics. For more information on the survey, please see the https://www.ons.gov.uk/aboutus/whatwedo/paidservices/opinions" class="govuk-link">ONS website.
DCMS commissioned 19 questions to be included in the February 2020 survey relating to the public’s views on a range of data related issues, such as trust in different types of organisations when handling personal data, confidence using data skills at work, understanding of how data is managed by companies and the use of data skills at work.
The high level results are included in the accompanying tables. The survey samples adults (16+) across the whole of Great Britain (excluding the Isles of Scilly).