Docker has emerged as the leading tool for compiling, testing, and building software, with 59 percent of developers reporting its use in 2024, the popular tool dominates containerization technology. Containerization platforms enable developers to package applications and their dependencies into a standardized unit, ensuring consistency across different environments. Kubernetes, an open-source container platform, was employed by 22 percent of developers in the same year, reflecting the growing importance of scalable, cloud-native applications. JavaScript package managers dominate the landscape In the realm of JavaScript-based development environments, npm (Node Package Manager) is a dominant force, with 52 percent of developers utilizing it for managing packages and dependencies. Yarn, an alternative package manager for JavaScript, shows a significant usage rate at over 21 percent, highlighting its efficiency and reliability. Pip and Homebrew essential for development Python's package manager, Pip, ranked third overall with 30 percent adoption, underscoring the language's popularity in software development. This tool is essential for managing Python packages and dependencies, facilitating a smooth development process. When it came to macOS and Linux, Homebrew was utilized by 24 percent of developers.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data analysis can be accurate and reliable only if the underlying assumptions of the used statistical method are validated. Any violations of these assumptions can change the outcomes and conclusions of the analysis. In this study, we developed Smart Data Analysis V2 (SDA-V2), an interactive and user-friendly web application, to assist users with limited statistical knowledge in data analysis, and it can be freely accessed at https://jularatchumnaul.shinyapps.io/SDA-V2/. SDA-V2 automatically explores and visualizes data, examines the underlying assumptions associated with the parametric test, and selects an appropriate statistical method for the given data. Furthermore, SDA-V2 can assess the quality of research instruments and determine the minimum sample size required for a meaningful study. However, while SDA-V2 is a valuable tool for simplifying statistical analysis, it does not replace the need for a fundamental understanding of statistical principles. Researchers are encouraged to combine their expertise with the software’s capabilities to achieve the most accurate and credible results.
In 2023, JUnit was the primary technology used among test frameworks and tools, with ** percent of respondents worldwide reporting the same. This comes after a small dip in 2022 where it was only at ** percent share.
https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/
Statistical Analysis Software Market size was valued at USD 7,963.44 Million in 2023 and is projected to reach USD 13,023.63 Million by 2030, growing at a CAGR of 7.28% during the forecast period 2024-2030.
Global Statistical Analysis Software Market Drivers
The market drivers for the Statistical Analysis Software Market can be influenced by various factors. These may include:
Growing Data Complexity and Volume: The demand for sophisticated statistical analysis tools has been fueled by the exponential rise in data volume and complexity across a range of industries. Robust software solutions are necessary for organizations to evaluate and extract significant insights from huge datasets. Growing Adoption of Data-Driven Decision-Making: Businesses are adopting a data-driven approach to decision-making at a faster rate. Utilizing statistical analysis tools, companies can extract meaningful insights from data to improve operational effectiveness and strategic planning. Developments in Analytics and Machine Learning: As these fields continue to progress, statistical analysis software is now capable of more. These tools' increasing popularity can be attributed to features like sophisticated modeling and predictive analytics. A greater emphasis is being placed on business intelligence: Analytics and business intelligence are now essential components of corporate strategy. In order to provide business intelligence tools for studying trends, patterns, and performance measures, statistical analysis software is essential. Increasing Need in Life Sciences and Healthcare: Large volumes of data are produced by the life sciences and healthcare sectors, necessitating complex statistical analysis. The need for data-driven insights in clinical trials, medical research, and healthcare administration is driving the market for statistical analysis software. Growth of Retail and E-Commerce: The retail and e-commerce industries use statistical analytic tools for inventory optimization, demand forecasting, and customer behavior analysis. The need for analytics tools is fueled in part by the expansion of online retail and data-driven marketing techniques. Government Regulations and Initiatives: Statistical analysis is frequently required for regulatory reporting and compliance with government initiatives, particularly in the healthcare and finance sectors. In these regulated industries, statistical analysis software uptake is driven by this. Big Data Analytics's Emergence: As big data analytics has grown in popularity, there has been a demand for advanced tools that can handle and analyze enormous datasets effectively. Software for statistical analysis is essential for deriving valuable conclusions from large amounts of data. Demand for Real-Time Analytics: In order to make deft judgments fast, there is a growing need for real-time analytics. Many different businesses have a significant demand for statistical analysis software that provides real-time data processing and analysis capabilities. Growing Awareness and Education: As more people become aware of the advantages of using statistical analysis in decision-making, its use has expanded across a range of academic and research institutions. The market for statistical analysis software is influenced by the academic sector. Trends in Remote Work: As more people around the world work from home, they are depending more on digital tools and analytics to collaborate and make decisions. Software for statistical analysis makes it possible for distant teams to efficiently examine data and exchange findings.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Increasing genetic and phenotypic data size is critical for understanding the genetic determinants of diseases. Evidently, establishing practical means for collaboration and data sharing among institutions is a fundamental methodological barrier for performing high-powered studies. As the sample sizes become more heterogeneous, complex statistical approaches, such as generalized linear mixed effects models, must be used to correct for the confounders that may bias results. On another front, due to the privacy concerns around Protected Health Information (PHI), genetic information is restrictively protected by sharing according to regulations such as Health Insurance Portability and Accountability Act (HIPAA). This limits data sharing among institutions and hampers efforts around executing high-powered collaborative studies. Federated approaches are promising to alleviate the issues around privacy and performance, since sensitive data never leaves the local sites. Motivated by these, we developed FedGMMAT, a federated genetic association testing tool that utilizes a federated statistical testing approach for efficient association tests that can correct for confounding fixed and additive polygenic random effects among different collaborating sites. Genetic data is never shared among collaborating sites, and the intermediate statistics are protected by encryption. Using simulated and real datasets, we demonstrate FedGMMAT can achieve the virtually same results as pooled analysis under a privacy-preserving framework with practical resource requirements.
This dynamic analysis tool allows you to examine National Crime Victimization Survey (NCVS) data on both violent and property victimization by select victim, household, and incident characteristics. The NCVS is the nation's primary source of information on criminal victimization. It is an annual data collection conducted by the U.S. Census Bureau for the Bureau of Justice Statistics. The NCVS collects information from a nationally representative sample of U.S. households on nonfatal crimes, reported and not reported to the police, against persons age 12 or older. Violent crimes measured by the NCVS include rape and sexual assault, robbery, aggravated assault, and simple assault. Property crimes include burglary/trespassing, motor-vehicle theft, and theft.
The statistic shows the variety of testing tools used in software development worldwide in 2017, based on a survey of development professionals. As of early 2017, 13 percent of respondents said they employed manual testing only.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Interactive analysis of estimated population change for England and Wales, by geography, age and sex. Annual estimates are from mid-2011 onwards.
https://www.statsndata.org/how-to-orderhttps://www.statsndata.org/how-to-order
The Database Testing Tool market has emerged as a critical component in the realm of software development, catering to the increasing demand for high-quality, reliable database systems across various industries. As businesses juggle massive volumes of data, the importance of ensuring that databases perform optimally
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The aim of this survey was to collect feedback about existing training programmes in statistical analysis for postgraduate researchers at the University of Edinburgh, as well as respondents' preferred methods for training, and their requirements for new courses. The survey was circulated via e-mail to research staff and postgraduate researchers across three colleges of the University of Edinburgh: the College of Arts, Humanities and Social Sciences; the College of Science and Engineering; and the College of Medicine and Veterinary Medicine. The survey was conducted on-line using the Bristol Online Survey tool, March through July 2017. 90 responses were received. The Scoping Statistical Analysis Support project, funded by Information Services Innovation Fund, aims to increase visibility and raise the profile of the Research Data Service by: understanding how statistical analysis support is conducted across University of Edinburgh Schools; scoping existing support mechanisms and models for students, researchers and teachers; identifying services and support that would satisfy existing or future demand.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global market size for statistical analysis software was estimated at USD 11.3 billion in 2023 and is projected to reach USD 21.6 billion by 2032, growing at a compound annual growth rate (CAGR) of 7.5% during the forecast period. This substantial growth can be attributed to the increasing complexity of data in various industries and the rising need for advanced analytical tools to derive actionable insights.
One of the primary growth factors for this market is the increasing demand for data-driven decision-making across various sectors. Organizations are increasingly recognizing the value of data analytics in enhancing operational efficiency, reducing costs, and identifying new business opportunities. The proliferation of big data and the advent of technologies such as artificial intelligence and machine learning are further fueling the demand for sophisticated statistical analysis software. Additionally, the growing adoption of cloud computing has significantly reduced the cost and complexity of deploying advanced analytics solutions, making them more accessible to organizations of all sizes.
Another critical driver for the market is the increasing emphasis on regulatory compliance and risk management. Industries such as finance, healthcare, and manufacturing are subject to stringent regulatory requirements, necessitating the use of advanced analytics tools to ensure compliance and mitigate risks. For instance, in the healthcare sector, statistical analysis software is used for clinical trials, patient data management, and predictive analytics to enhance patient outcomes and ensure regulatory compliance. Similarly, in the financial sector, these tools are used for fraud detection, credit scoring, and risk assessment, thereby driving the demand for statistical analysis software.
The rising trend of digital transformation across industries is also contributing to market growth. As organizations increasingly adopt digital technologies, the volume of data generated is growing exponentially. This data, when analyzed effectively, can provide valuable insights into customer behavior, market trends, and operational efficiencies. Consequently, there is a growing need for advanced statistical analysis software to analyze this data and derive actionable insights. Furthermore, the increasing integration of statistical analysis tools with other business intelligence and data visualization tools is enhancing their capabilities and driving their adoption across various sectors.
From a regional perspective, North America currently holds the largest market share, driven by the presence of major technology companies and a high level of adoption of advanced analytics solutions. However, the Asia Pacific region is expected to witness the highest growth rate during the forecast period, owing to the increasing adoption of digital technologies and the growing emphasis on data-driven decision-making in countries such as China and India. The region's rapidly expanding IT infrastructure and increasing investments in advanced analytics solutions are further contributing to this growth.
The statistical analysis software market can be segmented by component into software and services. The software segment encompasses the core statistical analysis tools and platforms used by organizations to analyze data and derive insights. This segment is expected to hold the largest market share, driven by the increasing adoption of data analytics solutions across various industries. The availability of a wide range of software solutions, from basic statistical tools to advanced analytics platforms, is catering to the diverse needs of organizations, further driving the growth of this segment.
The services segment includes consulting, implementation, training, and support services provided by vendors to help organizations effectively deploy and utilize statistical analysis software. This segment is expected to witness significant growth during the forecast period, driven by the increasing complexity of data analytics projects and the need for specialized expertise. As organizations seek to maximize the value of their data analytics investments, the demand for professional services to support the implementation and optimization of statistical analysis solutions is growing. Furthermore, the increasing trend of outsourcing data analytics functions to third-party service providers is contributing to the growth of the services segment.
Within the software segment, the market can be further categori
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Genes often work together to perform complex biological processes, and “networks” provide a versatile framework for representing the interactions between multiple genes. Differential network analysis (DiNA) quantifies how this network structure differs between two or more groups/phenotypes (e.g., disease subjects and healthy controls), with the goal of determining whether differences in network structure can help explain differences between phenotypes. In this paper, we focus on gene co-expression networks, although in principle, the methods studied can be used for DiNA for other types of features (e.g., metabolome, epigenome, microbiome, proteome, etc.). Three common applications of DiNA involve (1) testing whether the connections to a single gene differ between groups, (2) testing whether the connection between a pair of genes differs between groups, or (3) testing whether the connections within a “module” (a subset of 3 or more genes) differs between groups. This article focuses on the latter, as there is a lack of studies comparing statistical methods for identifying differentially co-expressed modules (DCMs). Through extensive simulations, we compare several previously proposed test statistics and a new p-norm difference test (PND). We demonstrate that the true positive rate of the proposed PND test is competitive with and often higher than the other methods, while controlling the false positive rate. The R package discoMod (differentially co-expressed modules) implements the proposed method and provides a full pipeline for identifying DCMs: clustering tools to derive gene modules, tests to identify DCMs, and methods for visualizing the results.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Increasing genetic and phenotypic data size is critical for understanding the genetic determinants of diseases. Evidently, establishing practical means for collaboration and data sharing among institutions is a fundamental methodological barrier for performing high-powered studies. As the sample sizes become more heterogeneous, complex statistical approaches, such as generalized linear mixed effects models, must be used to correct for the confounders that may bias results. On another front, due to the privacy concerns around Protected Health Information (PHI), genetic information is restrictively protected by sharing according to regulations such as Health Insurance Portability and Accountability Act (HIPAA). This limits data sharing among institutions and hampers efforts around executing high-powered collaborative studies. Federated approaches are promising to alleviate the issues around privacy and performance, since sensitive data never leaves the local sites. Motivated by these, we developed FedGMMAT, a federated genetic association testing tool that utilizes a federated statistical testing approach for efficient association tests that can correct for confounding fixed and additive polygenic random effects among different collaborating sites. Genetic data is never shared among collaborating sites, and the intermediate statistics are protected by encryption. Using simulated and real datasets, we demonstrate FedGMMAT can achieve the virtually same results as pooled analysis under a privacy-preserving framework with practical resource requirements.
Home ownership persists as the primary way that families build wealth. Housing researchers and advocates often discuss the racial home ownership gap, particularly for Black and Hispanic households (Urban Institute, Pew Hispanic Center). The Urban Institute projects that most new homeowners in the next two decades will be Hispanic, but yet the housing industry is ill-equipped for this shift. This map opens in Yuma, AZ and has nationwide coverage for states, counties, and tracts.This map uses the Compare A to B mapping style since we are comparing homeownership rates between two groups. Areas in red have higher homeownership rates among non-Hispanic White households, whereas purple areas have higher homeownership rates among Hispanic and Latino households.The pop-up contains information about whether the difference is statistically significant, which has been calculated through an Arcade expression based on this statistical testing tool from the US Census Bureau. When a difference is significant, it means we are 90% confident that the difference is real, and not just due to getting a lucky (or unlucky) sample.This map uses these hosted feature layers containing the most recent American Community Survey data. These layers are part of the ArcGIS Living Atlas, and are updated every year when the American Community Survey releases new estimates, so values in the map always reflect the newest data available.
https://www.statsndata.org/how-to-orderhttps://www.statsndata.org/how-to-order
The API Performance Testing Tool market has emerged as a crucial segment within the software testing industry, driven by the ever-growing dependence on application programming interfaces (APIs) in today's digital landscape. APIs are fundamental in enabling different software applications to communicate seamlessly, m
https://www.statsndata.org/how-to-orderhttps://www.statsndata.org/how-to-order
The Web Testing Tool market has rapidly evolved over the past few years, becoming an essential component for businesses that rely on robust digital platforms to connect with their consumers. These tools facilitate comprehensive testing of web applications, ensuring they function seamlessly across various devices and
https://www.thebusinessresearchcompany.com/privacy-policyhttps://www.thebusinessresearchcompany.com/privacy-policy
Global Statistical Analysis Software market size is expected to reach $15.49 billion by 2029 at 10.6%, segmented as by software, on-premise software, cloud-based software, desktop-based software, mobile-based software
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Interactive analysis of estimated UK population change, by geography, age and sex. Annual estimates are for mid-2011 to mid-2016.
https://www.sci-tech-today.com/privacy-policyhttps://www.sci-tech-today.com/privacy-policy
A/B Testing Statistics: A/B analysis, or split analysis, remains an important strategy for all businesses that want to optimize their marketing, user experience, and product results. Organizations can compare two alternatives, such as a webpage, an application feature, or a marketing campaign, and resolve which one is more effective based on the data collected.
In the year 2025, A/B Testing statistics are still expanding, and its usage is growing in many more industries for better returns on investments.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global statistics software market size is projected to grow from USD 10.5 billion in 2023 to USD 18.7 billion by 2032, exhibiting a CAGR of 6.5% over the forecast period. The growth of this market is driven by the increasing adoption of data-driven decision-making processes across various industries, the rising need for statistical modeling and analysis tools, and the growing emphasis on advanced analytics to gain competitive advantages. Additionally, the expanding use of artificial intelligence (AI) and machine learning (ML) technologies to enhance the capabilities of statistics software is contributing significantly to market growth.
One of the primary growth factors of the statistics software market is the increasing reliance on data analytics and business intelligence tools across different sectors. Organizations are leveraging statistical software to analyze large volumes of data generated through various digital channels, enabling them to make informed decisions and identify new business opportunities. This trend is particularly evident in the healthcare, finance, and retail sectors, where data-driven insights are crucial for improving operational efficiency, customer satisfaction, and overall performance.
Another key driver for the market is the proliferation of big data and the need for advanced data management solutions. With the exponential growth of data generated by various sources such as social media, IoT devices, and enterprise systems, there is a heightened demand for robust statistical software that can handle complex data sets and perform sophisticated analyses. This has led to increased investments in the development of innovative statistics software solutions that offer enhanced features and capabilities, such as real-time data processing, predictive analytics, and automated reporting.
The integration of AI and ML technologies into statistics software is also significantly boosting market growth. These technologies enable more accurate and efficient data analysis, allowing organizations to uncover hidden patterns and trends that were previously impossible to detect. AI-powered statistical tools can automate repetitive tasks, reduce human error, and provide deeper insights into data, thereby enhancing the overall decision-making process. As a result, there is a growing adoption of AI-driven statistics software across various industries, further propelling market expansion.
Regionally, North America is expected to maintain its dominance in the statistics software market, owing to the presence of numerous leading software providers, high adoption of advanced analytics solutions, and substantial investments in research and development. However, the Asia Pacific region is anticipated to witness the highest growth rate over the forecast period, driven by the rapid digital transformation of businesses, increasing awareness of data analytics benefits, and supportive government initiatives promoting technological advancements.
The statistics software market is segmented by component into software and services. The software segment includes various types of statistical analysis tools, ranging from basic data visualization software to advanced predictive analytics platforms. This segment holds the largest market share due to the widespread adoption of software solutions that enable organizations to analyze and interpret data efficiently. The continuous development of innovative features, such as real-time analytics, data mining, and machine learning capabilities, is further driving the demand for statistics software.
In contrast, the services segment encompasses consulting, implementation, training, and support services provided by software vendors and third-party providers. These services are crucial for organizations to effectively utilize statistical software and maximize its benefits. The growing complexity of data and the need for specialized expertise in data analysis are driving the demand for professional services in the statistics software market. Moreover, as more businesses adopt advanced analytics solutions, the need for ongoing support and training services is expected to increase, contributing to the growth of the services segment.
The integration of cloud computing with statistics software is also influencing the component-wise growth of this market. Cloud-based solutions offer several advantages, such as scalability, flexibility, and cost-effectiveness, making them an attractive option for organizations of all sizes. As a result, there is a
Docker has emerged as the leading tool for compiling, testing, and building software, with 59 percent of developers reporting its use in 2024, the popular tool dominates containerization technology. Containerization platforms enable developers to package applications and their dependencies into a standardized unit, ensuring consistency across different environments. Kubernetes, an open-source container platform, was employed by 22 percent of developers in the same year, reflecting the growing importance of scalable, cloud-native applications. JavaScript package managers dominate the landscape In the realm of JavaScript-based development environments, npm (Node Package Manager) is a dominant force, with 52 percent of developers utilizing it for managing packages and dependencies. Yarn, an alternative package manager for JavaScript, shows a significant usage rate at over 21 percent, highlighting its efficiency and reliability. Pip and Homebrew essential for development Python's package manager, Pip, ranked third overall with 30 percent adoption, underscoring the language's popularity in software development. This tool is essential for managing Python packages and dependencies, facilitating a smooth development process. When it came to macOS and Linux, Homebrew was utilized by 24 percent of developers.