Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This Website Statistics dataset has four resources showing usage of the Lincolnshire Open Data website. Web analytics terms used in each resource are defined in their accompanying Metadata file.
Website Usage Statistics: This document shows a statistical summary of usage of the Lincolnshire Open Data site for the latest calendar year.
Website Statistics Summary: This dataset shows a website statistics summary for the Lincolnshire Open Data site for the latest calendar year.
Webpage Statistics: This dataset shows statistics for individual Webpages on the Lincolnshire Open Data site by calendar year.
Dataset Statistics: This dataset shows cumulative totals for Datasets on the Lincolnshire Open Data site that have also been published on the national Open Data site Data.Gov.UK - see the Source link.
Note: Website and Webpage statistics (the first three resources above) show only UK users, and exclude API calls (automated requests for datasets). The Dataset Statistics are confined to users with javascript enabled, which excludes web crawlers and API calls.
These Website Statistics resources are updated annually in January by the Lincolnshire County Council Business Intelligence team. For any enquiries about the information contact opendata@lincolnshire.gov.uk.
The Core Based Statistical Areas boundaries were defined by OMB based on the 2010 Census, and the dataset was updated on August 09, 2019 from the United States Census Bureau (USCB) and is part of the U.S. Department of Transportation (USDOT)/Bureau of Transportation Statistics (BTS) National Transportation Atlas Database (NTAD). The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Metropolitan and Micropolitan Statistical Areas are together termed Core Based Statistical Areas (CBSAs) and are defined by the Office of Management and Budget (OMB) and consist of the county or counties or equivalent entities associated with at least one urban core (urbanized area or urban cluster) of at least 10,000 population, plus adjacent counties having a high degree of social and economic integration with the core as measured through commuting ties with the counties containing the core. Categories of CBSAs are: Metropolitan Statistical Areas, based on urbanized areas of 50,000 or more population; and Micropolitan Statistical Areas, based on urban clusters of at least 10,000 population but less than 50,000 population. The CBSA boundaries are those defined by OMB based on the 2010 Census, published in 2013, and updated in 2018.
In March 2024, the video platform YouTube reported around 32.5 billion visits from global users. Meta-owned Facebook.com reported around 16.1 billion visits from global users, as Instagram.com and Twitter.com followed, each with 7 billion and 6.1 billion visits from users worldwide during the examined month. Wikipedia.org, which hosts users-generated encyclopedic entries, recorded around 4.4 billion visits, while news aggregator and community platform Reddit.com saw approximately 2.2 billion visits during the examined period.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The Bureau of Labor Statistics (BLS) is a unit of the United States Department of Labor. It is the principal fact-finding agency for the U.S. government in the broad field of labor economics and statistics and serves as a principal agency of the U.S. Federal Statistical System. The BLS is a governmental statistical agency that collects, processes, analyzes, and disseminates essential statistical data to the American public, the U.S. Congress, other Federal agencies, State and local governments, business, and labor representatives. Source: https://en.wikipedia.org/wiki/Bureau_of_Labor_Statistics
Bureau of Labor Statistics including CPI (inflation), employment, unemployment, and wage data.
Update Frequency: Monthly
Fork this kernel to get started.
https://bigquery.cloud.google.com/dataset/bigquery-public-data:bls
https://cloud.google.com/bigquery/public-data/bureau-of-labor-statistics
Dataset Source: http://www.bls.gov/data/
This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
Banner Photo by Clark Young from Unsplash.
What is the average annual inflation across all US Cities? What was the monthly unemployment rate (U3) in 2016? What are the top 10 hourly-waged types of work in Pittsburgh, PA for 2016?
https://scoop.market.us/privacy-policyhttps://scoop.market.us/privacy-policy
Online Video Platform Statistics: An Online Video Platform (OVP) is a crucial digital infrastructure for hosting, managing, and delivering video content online.
It facilitates content uploading, organization, and playback across various devices with adaptive streaming capabilities.
OVPs support monetization through advertising, subscriptions, or pay-per-view models alongside robust analytics for tracking viewer engagement and performance metrics.
They offer customization options for branding and player interfaces, ensuring a seamless user experience. Security features like encryption and DRM safeguard content, while integration with other platforms and APIs enables extended functionality and automation.
OVPs also cater to live streaming needs, making them versatile tools for media, entertainment, education, and corporate sectors seeking reliable video distribution solutions.
https://www.sci-tech-today.com/privacy-policyhttps://www.sci-tech-today.com/privacy-policy
Website Statistics: The internet landscape is constantly evolving, and understanding the dynamics of website development and browser usage is crucial for businesses and individuals alike. In 2024, the web design and development industry has grown significantly, driven by increased demand for innovative and responsive web solutions. Major browsers like Google Chrome, Safari, and Microsoft Edge dominate the market, each offering unique features that cater to diverse user needs.
This article delves into the latest statistics, market shares, and technological trends in the web development and browser domains, providing valuable insights to help you navigate the digital world effectively.
The Participation Survey started in October 2021 and is the key evidence source on engagement for DCMS. It is a continuous push-to-web household survey of adults aged 16 and over in England.
The Participation Survey provides nationally representative estimates of physical and digital engagement with the arts, heritage, museums & galleries, libraries and archives, as well as engagement with tourism, major events, live sports and digital.
The Participation Survey is only asked of adults in England. Currently there is no harmonised survey or set of questions within the administrations of the UK. Data on participation in cultural sectors for the devolved administrations is available in the https://www.gov.scot/collections/scottish-household-survey/" class="govuk-link">Scottish Household Survey, https://gov.wales/national-survey-wales" class="govuk-link">National Survey for Wales and https://www.communities-ni.gov.uk/topics/statistics-and-research/culture-and-heritage-statistics" class="govuk-link">Northern Ireland Continuous Household Survey.
The pre-release access document above contains a list of ministers and officials who have received privileged early access to this release of Participation Survey data. In line with best practice, the list has been kept to a minimum and those given access for briefing purposes had a maximum of 24 hours. Details on the pre-release access arrangements for this dataset are available in the accompanying material.
Our statistical practice is regulated by the OSR. OSR sets the standards of trustworthiness, quality and value in the https://code.statisticsauthority.gov.uk/the-code/" class="govuk-link">Code of Practice for Statistics that all producers of official statistics should adhere to.
You are welcome to contact us directly with any comments about how we meet these standards by emailing evidence@dcms.gov.uk. Alternatively, you can contact OSR by emailing regulation@statistics.gov.uk or via the OSR website.
The responsible statisticians for this release is Oliver Maxwell. For enquiries on this release, contact participationsurvey@dcms.gov.uk.
Historical Employment Statistics 1990 - current. The Current Employment Statistics (CES) more information program provides the most current estimates of nonfarm employment, hours, and earnings data by industry (place of work) for the nation as a whole, all states, and most major metropolitan areas. The CES survey is a federal-state cooperative endeavor in which states develop state and sub-state data using concepts, definitions, and technical procedures prescribed by the Bureau of Labor Statistics (BLS). Estimates produced by the CES program include both full- and part-time jobs. Excluded are self-employment, as well as agricultural and domestic positions. In Connecticut, more than 4,000 employers are surveyed each month to determine the number of the jobs in the State. For more information please visit us at http://www1.ctdol.state.ct.us/lmi/ces/default.asp.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Sheet 1 (Raw-Data): The raw data of the study is provided, presenting the tagging results for the used measures described in the paper. For each subject, it includes multiple columns: A. a sequential student ID B an ID that defines a random group label and the notation C. the used notation: user Story or use Cases D. the case they were assigned to: IFA, Sim, or Hos E. the subject's exam grade (total points out of 100). Empty cells mean that the subject did not take the first exam F. a categorical representation of the grade L/M/H, where H is greater or equal to 80, M is between 65 included and 80 excluded, L otherwise G. the total number of classes in the student's conceptual model H. the total number of relationships in the student's conceptual model I. the total number of classes in the expert's conceptual model J. the total number of relationships in the expert's conceptual model K-O. the total number of encountered situations of alignment, wrong representation, system-oriented, omitted, missing (see tagging scheme below) P. the researchers' judgement on how well the derivation process explanation was explained by the student: well explained (a systematic mapping that can be easily reproduced), partially explained (vague indication of the mapping ), or not present.
Tagging scheme:
Aligned (AL) - A concept is represented as a class in both models, either
with the same name or using synonyms or clearly linkable names;
Wrongly represented (WR) - A class in the domain expert model is
incorrectly represented in the student model, either (i) via an attribute,
method, or relationship rather than class, or
(ii) using a generic term (e.g., user'' instead of
urban
planner'');
System-oriented (SO) - A class in CM-Stud that denotes a technical
implementation aspect, e.g., access control. Classes that represent legacy
system or the system under design (portal, simulator) are legitimate;
Omitted (OM) - A class in CM-Expert that does not appear in any way in
CM-Stud;
Missing (MI) - A class in CM-Stud that does not appear in any way in
CM-Expert.
All the calculations and information provided in the following sheets
originate from that raw data.
Sheet 2 (Descriptive-Stats): Shows a summary of statistics from the data collection,
including the number of subjects per case, per notation, per process derivation rigor category, and per exam grade category.
Sheet 3 (Size-Ratio):
The number of classes within the student model divided by the number of classes within the expert model is calculated (describing the size ratio). We provide box plots to allow a visual comparison of the shape of the distribution, its central value, and its variability for each group (by case, notation, process, and exam grade) . The primary focus in this study is on the number of classes. However, we also provided the size ratio for the number of relationships between student and expert model.
Sheet 4 (Overall):
Provides an overview of all subjects regarding the encountered situations, completeness, and correctness, respectively. Correctness is defined as the ratio of classes in a student model that is fully aligned with the classes in the corresponding expert model. It is calculated by dividing the number of aligned concepts (AL) by the sum of the number of aligned concepts (AL), omitted concepts (OM), system-oriented concepts (SO), and wrong representations (WR). Completeness on the other hand, is defined as the ratio of classes in a student model that are correctly or incorrectly represented over the number of classes in the expert model. Completeness is calculated by dividing the sum of aligned concepts (AL) and wrong representations (WR) by the sum of the number of aligned concepts (AL), wrong representations (WR) and omitted concepts (OM). The overview is complemented with general diverging stacked bar charts that illustrate correctness and completeness.
For sheet 4 as well as for the following four sheets, diverging stacked bar
charts are provided to visualize the effect of each of the independent and mediated variables. The charts are based on the relative numbers of encountered situations for each student. In addition, a "Buffer" is calculated witch solely serves the purpose of constructing the diverging stacked bar charts in Excel. Finally, at the bottom of each sheet, the significance (T-test) and effect size (Hedges' g) for both completeness and correctness are provided. Hedges' g was calculated with an online tool: https://www.psychometrica.de/effect_size.html. The independent and moderating variables can be found as follows:
Sheet 5 (By-Notation):
Model correctness and model completeness is compared by notation - UC, US.
Sheet 6 (By-Case):
Model correctness and model completeness is compared by case - SIM, HOS, IFA.
Sheet 7 (By-Process):
Model correctness and model completeness is compared by how well the derivation process is explained - well explained, partially explained, not present.
Sheet 8 (By-Grade):
Model correctness and model completeness is compared by the exam grades, converted to categorical values High, Low , and Medium.
Statistics on the visits to the websites of the institutions located on the single platform of the websites of national and local authorities. Statistics do not reflect all website visitors, but only those who have consented to statistical cookies.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains statistics related to the Unleashed website (http://uladl.com). Unleashed is an open data competition, an initiative of the Office for Digital Government, Department of the Premier and Cabinet. The data is used to monitor the level of engagement activity with the audience, and make the communication effective in regards to the event.
https://data.gov.tw/licensehttps://data.gov.tw/license
Social welfare statistics_ related business annual statistical data is presented on the [Department of Social Affairs Statistical Data Related Business Annual Statistics] website.
As of the third quarter of 2024, **** percent of internet users in Spain stated being concerned about companies' misuse of their personal data. Portugal ranked second, with ** percent, while Brazil followed, with around **** percent of online users worried about improper use of their personal online data.
TEMPO-Online provides the following functions and services: Free access to statistical information.Export of tables in .csv and .xls formats and its printing. What is the content of TEMPO-Online? The National Institute of Statistics offers a statistical database, TEMPO-Online, that gives the possibility to access a large range of information.The content of the above-mentioned database consists of:Approximately 1100 statistical indicators, divided in socio-economical fields and sub-fields; Metadata associated to the statistical indicators (definition, starting and ending year of the time series, the last period of data loading, statistical methodology, the last updating); Detailed indicators at statistical characteristics group and/or sub-group level ( ex. The total number of employees at the end of the year by employee category, activities of the national economy - sections, sexes, areas and counties); Time series starting with 1990 - till today: With a monthly, quarterly, semi-annual and annual frequency; At national level, development region level, county and commune level. Search according to key words The search key words allows the finding of various objects (tables with statistical variables divided on time series). The search will give back results based on the matrix code and on the key words in the title or in the definition of a matrix. The result of the search will show on a list with specific objects. For a key word, one can use the searching section from the menu bar on the left.Tables As a whole, the tables that result following an interrogation have a flexible structure. For instance, the user may select the variables and attributes with the help of the interrogation interface, according to his needs.The user can save the table that results following an interrogation in .csv and .xls formats and its printingNote: in order to access tables at place level (very large), the user has to select each county with the respective places, so that the access be faster and avoid technical blocks.
From April 2022 to January 2024, the ************************************************* saw an average of approximately ** million visits, ranking as the most popular education site worldwide. ********, which offers classes and certifications on various subjects, saw ** million visits from global users in the examined period. ********************************************** for students and teachers, ranked third with ***** million visits recorded on average between April 2022 and the beginning of 2024.
The dataset collection pertains to statistical data sourced from the website of Tilastokeskus (Statistics Finland) based in Finland. The datasets encompass a range of related data tables, each organized into rows and columns for easy interpretation. These tables collectively provide comprehensive statistical data, made available through the service interface of the Tilastokeskuksen palvelurajapinta (Statistics Finland's Service Interface). This data is particularly useful for anyone looking to analyze or draw insights from a broad scope of statistical data from Finland. This dataset is licensed under CC BY 4.0 (Creative Commons Attribution 4.0, https://creativecommons.org/licenses/by/4.0/deed.fi).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Monthly statistics for pages viewed by visitors to the Queensland Government website—Homes and housing franchise. Source: Google Analytics
https://data.gov.tw/licensehttps://data.gov.tw/license
Provide water resources statistics indicators.....
FSRDC allows qualified researchers to securely use restricted-access data from the U.S. Census Bureau, the National Center for Health Statistics (NCHS), the Agency for Healthcare Research and Quality (AHRQ), and the Bureau of Labor Statistics. These data are extraordinarily rich and virtually the only source for many important questions in health and social sciences. The Stanford Federal Statistical Research Data Center (FSRDC) allows qualified researchers to securely use restricted-access data from the U.S. Census Bureau, the National Center for Health Statistics (NCHS), the Agency for Healthcare Research and Quality (AHRQ), and the Bureau of Labor Statistics. For example, researchers can access detailed geographic indicators that are not publicly available in data such as the National Health Interview Survey (NHIS) and National Health and Nutrition Examination Survey (NHANES).
PHS does not host FSRDC data. If you wish to use FSRDC data for a health related project, please reach out to the Stanford FSRDC: https://iriss.stanford.edu/fsrdc
All manuscripts (and other items you'd like to publish) must be submitted to
phsdatacore@stanford.edu for approval prior to journal submission.
We will check your cell sizes and citations.
For more information about how to cite PHS and PHS datasets, please visit:
https:/phsdocs.developerhub.io/need-help/citing-phs-data-core
Metadata access is required to view this section.
https://webtechsurvey.com/termshttps://webtechsurvey.com/terms
A complete list of live websites using the WP Statistics technology, compiled through global website indexing conducted by WebTechSurvey.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This Website Statistics dataset has four resources showing usage of the Lincolnshire Open Data website. Web analytics terms used in each resource are defined in their accompanying Metadata file.
Website Usage Statistics: This document shows a statistical summary of usage of the Lincolnshire Open Data site for the latest calendar year.
Website Statistics Summary: This dataset shows a website statistics summary for the Lincolnshire Open Data site for the latest calendar year.
Webpage Statistics: This dataset shows statistics for individual Webpages on the Lincolnshire Open Data site by calendar year.
Dataset Statistics: This dataset shows cumulative totals for Datasets on the Lincolnshire Open Data site that have also been published on the national Open Data site Data.Gov.UK - see the Source link.
Note: Website and Webpage statistics (the first three resources above) show only UK users, and exclude API calls (automated requests for datasets). The Dataset Statistics are confined to users with javascript enabled, which excludes web crawlers and API calls.
These Website Statistics resources are updated annually in January by the Lincolnshire County Council Business Intelligence team. For any enquiries about the information contact opendata@lincolnshire.gov.uk.