Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
App Download Key StatisticsApp and Game DownloadsiOS App and Game DownloadsGoogle Play App and Game DownloadsGame DownloadsiOS Game DownloadsGoogle Play Game DownloadsApp DownloadsiOS App...
The graph shows a comparison for app downloads worldwide from 2018 to 2024, using data from Sensor Tower and data.ai. Global app downloads have plateued in recent years, even declining, after seeing strong growth during the COVID-19 pandemic. For 2024 136 billion unique dowloads per user account were recorded. Why the difference? Source methodology explains the gap The discrepancy arises from significant differences in the methodolgy used by the sources to aggregate and generate the data. Sensor Tower reports only unique downloads per user account, excluding app updates, re-downloads, and installations on multiple devices by the same user. In contrast, data.ai includes these additional activities as well as downloads from third-party Android stores and a broader geographic scope, resulting in substantially higher total counts. As a result, Sensor Tower's numbers better reflect new user acquisition, while data.ai's encompass all market activity and total engagement. Despite stagnating downloads user spending is growing While the number of downloads is leveling off, consumer spending on in-app purchases and related revenue has grown in 2024 to 150 billion U.S. dollars, up from aroud 130 billion U.S. dollars in 2023. While gaming remains the highest grossing app category overall, the growth was driven by other categories. The entertainment, photo & video, productivity, and social networking categories ech grew by at least one billion U.S. dollars in revenue in 2024 compared to the previous year.
We built a crawler to collect data from the Google Play store including the application's metadata and APK files. The manifest files were extracted from the APK files and then processed to extract the features. The data set is composed of 870,515 records/apps, and for each app we produced 48 features. The data set was used to built and test two bootstrap aggregating of multiple XGBoost machine learning classifiers. The dataset were collected between April 2017 and November 2018. We then checked the status of these applications on three different occasions; December 2018, February 2019, and May-June 2019.
Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
Key US App Market StatisticsUS App Market SizeUS App Market Revenue by AppUS Smartphone UsersUS Smartphone PopulationTime Spent on Apps in the USUS App Market DownloadsUS Downloads by AppUS Daily...
Aaditya1/Mobile-Application-Data dataset hosted on Hugging Face and contributed by the HF Datasets community
This data set contains some basic statistics about user count and user growth as well as crash count for a real mobile app. The dataset contains a basic timeseries of 1 hour resolution for a period of one week.
The data set contains columns for total concurrent user count, new users acquired in that period of time, number of sessions and crash count.
This data set would not be available without the Real User Monitoring capabilities of Dynatrace and its flexibility to export and expose this data for scientific experiments.
The data set was intended to play around with seasonality, trend and prediction of timeseries.
As of May 2023, product interaction data were the most commonly collected data points, with 94 over the 100 analyzed apps reporting to collect such data. User ID and crash data were collected by by 93 and 92 apps over 100, respectively. Over the 10 leading shopping apps hosted on the Apple App Store, the totality collected precise location, physical address, and payment info.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Description:
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10074224%2F72a315b39866c02162b229d5a209f4b4%2F5.png?generation=1695227457850330&alt=media" alt="">
Data Fields:
- Status: A numerical indicator of the event status (e.g., 0 for success, 1 for error).
- Event: A textual description of the action or event, including error text if an error occurred.
- Device Identification: Information about the mobile device, including model and Android version.
- App Version: The version of the mobile application experiencing the event.
- App Language: The language in which the application is running.
- Android Version: The version of the Android operating system on the device.
- Session Identifiers: Unique session or device identifiers associated with the event.
- Additional Data: Additional event details, such as the country and other characteristics.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10074224%2Fbca8f9b9fb8288e258a59fad5e53ac15%2F4.png?generation=1695227273200372&alt=media" alt="">
Do you know how much time you spend on an app? Do you know the total use time of a day or average use time of an app?
This data set consists of - how many times a person unlocks his phone. - how much time he spends on every app on every day. - how much time he spends on his phone.
It lists the usage time of apps for each day.
Use the test data to find the Total Minutes that we can use the given app in a day. we can get a clear stats of apps usage. This data set will show you about the persons sleeping behavior as well as what app he spends most of his time. with this we can improve the productivity of the person.
The dataset was collected from the app usage app.
Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
Apple App Store Key StatisticsApps & Games in the Apple App StoreApps in the Apple App StoreGames in the Apple App StoreMost Popular Apple App Store CategoriesPaid vs Free Apps in Apple App...
As of January 2025, around ** percent of the data linked to users collected by iOS apps was used by app publishers to integrate their product's functionalities. In comparison, ** percent of app data not directly linked to users had the same function. Collecting analytics data was the second most common reason for apps to collect iOS users' data, while only ** percent of identifiable user data and ** percent of non-identifiable users' data went to improve or integrate third-party advertising services.
The name and download numbers of government mobile apps.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
If you use this dataset anywhere in your work, kindly cite as the below: L. Gupta, "Google Play Store Apps," Feb 2019. [Online]. Available: https://www.kaggle.com/lava18/google-play-store-apps
While many public datasets (on Kaggle and the like) provide Apple App Store data, there are not many counterpart datasets available for Google Play Store apps anywhere on the web. On digging deeper, I found out that iTunes App Store page deploys a nicely indexed appendix-like structure to allow for simple and easy web scraping. On the other hand, Google Play Store uses sophisticated modern-day techniques (like dynamic page load) using JQuery making scraping more challenging.
Each app (row) has values for catergory, rating, size, and more.
This information is scraped from the Google Play Store. This app information would not be available without it.
The Play Store apps data has enormous potential to drive app-making businesses to success. Actionable insights can be drawn for developers to work on and capture the Android market!
As of August 2022, language learning app HelloTalk and Google's meeting point for schools Google Classroom were the educational app collecting the largest amount of data points. ClassDojo and popular language learning app Duolingo followed, collecting approximately ** different data points from global Android users.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ABSTRACT The increasing use of mobile applications have been escalating with the increasing use of smartphones. In the present study, we examine (a) the adoption behavior of mobile apps using the extended TAM framework, and (b) whether adoption leads to subsequent use behavior and switching intentions. Based on data collected from two surveys in India we test the conceptual model of extended TAM and the effects of behavior on switching intentions using factor analysis and structural equation modeling. The major findings indicate a significant effect of most predictor variables on the perceived usefulness and perceived ease of use of apps. Further, we found a significant effect of behavioral intention on use behavior and subsequent switching intentions to apps from computers/laptops.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Nowadays, mobile applications (a.k.a., apps) are used by over two billion users for every type of need, including social and emergency connectivity. Their pervasiveness in today world has inspired the software testing research community in devising approaches to allow developers to better test their apps and improve the quality of the tests being developed. In spite of this research effort, we still notice a lack of empirical analyses aiming at assessing the actual quality of test cases manually developed by mobile developers: this perspective could provide evidence-based findings on the future research directions in the field as well as on the current status of testing in the wild. As such, we performed a large-scale empirical study targeting 1,780 open-source Android apps and aiming at assessing (1) the extent to which these apps are actually tested, (2) how well-designed are the available tests, and (3) what is their effectiveness. The key results of our study show that mobile developers still tend not to properly test their apps, possibly because of time to market requirements. Furthermore, we discovered that the test cases of the considered apps have a low (i) design quality, both in terms of test code metrics and test smells, and (ii) effectiveness when considering code coverage as well as assertion density.
https://www.paradoxintelligence.com/termshttps://www.paradoxintelligence.com/terms
App download rankings, usage metrics, and user engagement data (iOS/Android)
Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
App Revenue Key StatisticsMobile Ad SpendApp and Game RevenuesiOS App and Game RevenueGoogle Play App and Game RevenueGaming App RevenuesiOS Gaming App RevenueGoogle Play Gaming App RevenueApp...
To date (April 2020), Android is still the most popular mobile operating system in the world. Taking into account billion of Android users worldwide, mining this data has the potential to reveal user behaviors and trends in the whole global scope.
There are 2 CSV files: - app.csv with 53,732 rows and 18 columns. - comment.csv with 1,468,173 rows and 4 columns.
The scraping was done in April 2020.
This dataset is obtained from scraping Google Play Store. Without Google and Android, this dataset wouldn’t have existed.
The dataset is first published in this blog.
Business trends on mobile can be explored by examining this dataset.
Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
Mobile payments apps are used by more than two billion people globally, with millions more coming online each year. In India, South-east Asia and South America, the younger generation skipped the...
Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
App Download Key StatisticsApp and Game DownloadsiOS App and Game DownloadsGoogle Play App and Game DownloadsGame DownloadsiOS Game DownloadsGoogle Play Game DownloadsApp DownloadsiOS App...