Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset was derived by the Bioregional Assessment Programme from multiple source datasets. The source datasets are identified in the Lineage field in this metadata statement. The processes undertaken to produce this derived dataset are described in the History field in this metadata statement.
Various climate variables summary for all 15 subregions based on Bureau of Meteorology Australian Water Availability Project (BAWAP) climate grids. Including
Time series mean annual BAWAP rainfall from 1900 - 2012.
Long term average BAWAP rainfall and Penman Potentail Evapotranspiration (PET) from Jan 1981 - Dec 2012 for each month
Values calculated over the years 1981 - 2012 (inclusive), for 17 time periods (i.e., annual, 4 seasons and 12 months) for the following 8 meteorological variables: (i) BAWAP_P (precipitation); (ii) Penman ETp; (iii) Tavg (average temperature); (iv) Tmax (maximum temperature); (v) Tmin (minimum temperature); (vi) VPD (Vapour Pressure Deficit); (vii) Rn (net radiation); and (viii) Wind speed. For each of the 17 time periods for each of the 8 meteorological variables have calculated the: (a) average; (b) maximum; (c) minimum; (d) average plus standard deviation (stddev); (e) average minus stddev; (f) stddev; and (g) trend.
Correlation coefficients (-1 to 1) between rainfall and 4 remote rainfall drivers between 1957-2006 for the four seasons. The data and methodology are described in Risbey et al. (2009).
As described in the Risbey et al. (2009) paper, the rainfall was from 0.05 degree gridded data described in Jeffrey et al. (2001 - known as the SILO datasets); sea surface temperature was from the Hadley Centre Sea Ice and Sea Surface Temperature dataset (HadISST) on a 1 degree grid. BLK=Blocking; DMI=Dipole Mode Index; SAM=Southern Annular Mode; SOI=Southern Oscillation Index; DJF=December, January, February; MAM=March, April, May; JJA=June, July, August; SON=September, October, November. The analysis is a summary of Fig. 15 of Risbey et al. (2009).
There are 4 csv files here:
BAWAP_P_annual_BA_SYB_GLO.csv
Desc: Time series mean annual BAWAP rainfall from 1900 - 2012.
Source data: annual BILO rainfall
P_PET_monthly_BA_SYB_GLO.csv
long term average BAWAP rainfall and Penman PET from 198101 - 201212 for each month
Climatology_Trend_BA_SYB_GLO.csv
Values calculated over the years 1981 - 2012 (inclusive), for 17 time periods (i.e., annual, 4 seasons and 12 months) for the following 8 meteorological variables: (i) BAWAP_P; (ii) Penman ETp; (iii) Tavg; (iv) Tmax; (v) Tmin; (vi) VPD; (vii) Rn; and (viii) Wind speed. For each of the 17 time periods for each of the 8 meteorological variables have calculated the: (a) average; (b) maximum; (c) minimum; (d) average plus standard deviation (stddev); (e) average minus stddev; (f) stddev; and (g) trend
Risbey_Remote_Rainfall_Drivers_Corr_Coeffs_BA_NSB_GLO.csv
Correlation coefficients (-1 to 1) between rainfall and 4 remote rainfall drivers between 1957-2006 for the four seasons. The data and methodology are described in Risbey et al. (2009). As described in the Risbey et al. (2009) paper, the rainfall was from 0.05 degree gridded data described in Jeffrey et al. (2001 - known as the SILO datasets); sea surface temperature was from the Hadley Centre Sea Ice and Sea Surface Temperature dataset (HadISST) on a 1 degree grid. BLK=Blocking; DMI=Dipole Mode Index; SAM=Southern Annular Mode; SOI=Southern Oscillation Index; DJF=December, January, February; MAM=March, April, May; JJA=June, July, August; SON=September, October, November. The analysis is a summary of Fig. 15 of Risbey et al. (2009).
Dataset was created from various BAWAP source data, including Monthly BAWAP rainfall, Tmax, Tmin, VPD, etc, and other source data including monthly Penman PET, Correlation coefficient data. Data were extracted from national datasets for the GLO subregion.
BAWAP_P_annual_BA_SYB_GLO.csv
Desc: Time series mean annual BAWAP rainfall from 1900 - 2012.
Source data: annual BILO rainfall
P_PET_monthly_BA_SYB_GLO.csv
long term average BAWAP rainfall and Penman PET from 198101 - 201212 for each month
Climatology_Trend_BA_SYB_GLO.csv
Values calculated over the years 1981 - 2012 (inclusive), for 17 time periods (i.e., annual, 4 seasons and 12 months) for the following 8 meteorological variables: (i) BAWAP_P; (ii) Penman ETp; (iii) Tavg; (iv) Tmax; (v) Tmin; (vi) VPD; (vii) Rn; and (viii) Wind speed. For each of the 17 time periods for each of the 8 meteorological variables have calculated the: (a) average; (b) maximum; (c) minimum; (d) average plus standard deviation (stddev); (e) average minus stddev; (f) stddev; and (g) trend
Risbey_Remote_Rainfall_Drivers_Corr_Coeffs_BA_NSB_GLO.csv
Correlation coefficients (-1 to 1) between rainfall and 4 remote rainfall drivers between 1957-2006 for the four seasons. The data and methodology are described in Risbey et al. (2009). As described in the Risbey et al. (2009) paper, the rainfall was from 0.05 degree gridded data described in Jeffrey et al. (2001 - known as the SILO datasets); sea surface temperature was from the Hadley Centre Sea Ice and Sea Surface Temperature dataset (HadISST) on a 1 degree grid. BLK=Blocking; DMI=Dipole Mode Index; SAM=Southern Annular Mode; SOI=Southern Oscillation Index; DJF=December, January, February; MAM=March, April, May; JJA=June, July, August; SON=September, October, November. The analysis is a summary of Fig. 15 of Risbey et al. (2009).
Bioregional Assessment Programme (2014) GLO climate data stats summary. Bioregional Assessment Derived Dataset. Viewed 18 July 2018, http://data.bioregionalassessments.gov.au/dataset/afed85e0-7819-493d-a847-ec00a318e657.
Derived From Natural Resource Management (NRM) Regions 2010
Derived From Bioregional Assessment areas v03
Derived From BILO Gridded Climate Data: Daily Climate Data for each year from 1900 to 2012
Derived From Bioregional Assessment areas v01
Derived From Bioregional Assessment areas v02
Derived From GEODATA TOPO 250K Series 3
Derived From NSW Catchment Management Authority Boundaries 20130917
Derived From Geological Provinces - Full Extent
Derived From GEODATA TOPO 250K Series 3, File Geodatabase format (.gdb)
This dataset contains information about daily weather statistic
The average temperature in the contiguous United States reached 55.5 degrees Fahrenheit (13 degrees Celsius) in 2024, approximately 3.5 degrees Fahrenheit higher than the 20th-century average. These levels represented a record since measurements started in 1895. Monthly average temperatures in the U.S. were also indicative of this trend. Temperatures and emissions are on the rise The rise in temperatures since 1975 is similar to the increase in carbon dioxide emissions in the U.S. Although CO₂ emissions in recent years were lower than when they peaked in 2007, they were still generally higher than levels recorded before 1990. Carbon dioxide is a greenhouse gas and is the main driver of climate change. Extreme weather Scientists worldwide have found links between the rise in temperatures and changing weather patterns. Extreme weather in the U.S. has resulted in natural disasters such as hurricanes and extreme heat waves becoming more likely. Economic damage caused by extreme temperatures in the U.S. has amounted to hundreds of billions of U.S. dollars over the past few decades.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Average Rainfall (mm) and average Temperature (centigrade) for the North East England and East England Met Office Climate district, which includes Lincolnshire.
This dataset shows the average Rainfall in millimetres and average Temperature in centigrade, by month, meteorological season, and annual calendar year.
The data is sourced from the UK Met Office website. See the Source link for more information about the data and the area it covers.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
2023
This dataset contains information about Weather statistics – Current
https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/licence-to-use-copernicus-products/licence-to-use-copernicus-products_b4b9451f54cffa16ecef5c912c9cebd6979925a956e3fa677976e0cf198c2c18.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/licence-to-use-copernicus-products/licence-to-use-copernicus-products_b4b9451f54cffa16ecef5c912c9cebd6979925a956e3fa677976e0cf198c2c18.pdf
ERA5 is the fifth generation ECMWF reanalysis for the global climate and weather for the past 8 decades. Data is available from 1940 onwards. ERA5 replaces the ERA-Interim reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. This principle, called data assimilation, is based on the method used by numerical weather prediction centres, where every so many hours (12 hours at ECMWF) a previous forecast is combined with newly available observations in an optimal way to produce a new best estimate of the state of the atmosphere, called analysis, from which an updated, improved forecast is issued. Reanalysis works in the same way, but at reduced resolution to allow for the provision of a dataset spanning back several decades. Reanalysis does not have the constraint of issuing timely forecasts, so there is more time to collect observations, and when going further back in time, to allow for the ingestion of improved versions of the original observations, which all benefit the quality of the reanalysis product. This catalogue entry provides post-processed ERA5 hourly single-level data aggregated to daily time steps. In addition to the data selection options found on the hourly page, the following options can be selected for the daily statistic calculation:
The daily aggregation statistic (daily mean, daily max, daily min, daily sum*) The sub-daily frequency sampling of the original data (1 hour, 3 hours, 6 hours) The option to shift to any local time zone in UTC (no shift means the statistic is computed from UTC+00:00)
*The daily sum is only available for the accumulated variables (see ERA5 documentation for more details). Users should be aware that the daily aggregation is calculated during the retrieval process and is not part of a permanently archived dataset. For more details on how the daily statistics are calculated, including demonstrative code, please see the documentation. For more details on the hourly data used to calculate the daily statistics, please refer to the ERA5 hourly single-level data catalogue entry and the documentation found therein.
Near-real-time meteorological products from the HARMONIE atmospheric model. NWP computer models use high performance computers to solve a set of hydro-dynamical equations that mathematically describe motions in the atmosphere. NWP simulations are used along with the skill of experienced forecasters to predict future weather events. There are many inputs to our prediction model such as, previous model run, current weather observations, marine buoy data and satellite imagery to name a few. The two main components of any atmospheric model are known as the dynamics and the physics. For the dynamics, we divide the forecast region into a grid and use mathematical algorithms to solve the equations governing the motions of the atmosphere at each grid-point. Currently, this grid has a 2km horizontal resolution. The physics of the model considers the key processes which occur at scales smaller than this, and thus are not “seen” by the grid. These include solar radiation and turbulence. The data presented here are from the control member of the ensemble NWP system. Each file represents the next 60 steps of the forecast. Each hourly file is availavble for approximately 24 hours here. Every effort is made to have a complete model run in each fie, that is, all 60 steps of the forecast, however due to timing and processing occasionally a file may not have all steps. This data is released in response to the EU's open data directive. For official weather forecasts please see met.ie We will be removing this page in the coming weeks. Access to NWP data can now be found here https://opendata.met.ie
The monthly average temperature in the United States between 2020 and 2025 shows distinct seasonal variation, following similar patterns. For instance, in April 2025, the average temperature across the North American country stood at 12.02 degrees Celsius. Rising temperatures Globally, 2016, 2019, 2021 and 2024 were some of the warmest years ever recorded since 1880. Overall, there has been a dramatic increase in the annual temperature since 1895. Within the U.S. annual temperatures show a great deal of variation depending on region. For instance, Florida tends to record the highest maximum temperatures across the North American country, while Wyoming recorded the lowest minimum average temperature in recent years. Carbon dioxide emissions Carbon dioxide is a known driver of climate change, which impacts average temperatures. Global historical carbon dioxide emissions from fossil fuels have been on the rise since the industrial revolution. In recent years, carbon dioxide emissions from fossil fuel combustion and industrial processes reached over 37 billion metric tons. Among all countries globally, China was the largest emitter of carbon dioxide in 2023.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Descriptive statistics of weather conditions used for the analysis.
https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/licence-to-use-copernicus-products/licence-to-use-copernicus-products_b4b9451f54cffa16ecef5c912c9cebd6979925a956e3fa677976e0cf198c2c18.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/licence-to-use-copernicus-products/licence-to-use-copernicus-products_b4b9451f54cffa16ecef5c912c9cebd6979925a956e3fa677976e0cf198c2c18.pdf
This dataset contains temperature exposure statistics for Europe (e.g. percentiles) derived from the daily 2 metre mean, minimum and maximum air temperature for the entire year, winter (DJF: December-January-February) and summer (JJA: June-July-August). These statistics were derived within the C3S European Health service and are available for different future time periods and using different climate change scenarios. Temperature percentiles are typically used in epidemiology and public health when defining health risk estimates and when looking at current and future health impacts, and they allow to identify a common threshold and comparison between different cities/areas. The temperature statistics are calculated, either for the season winter and summer or for the whole year, based on a bias-adjusted EURO-CORDEX dataset. The statistics are averaged for 30 years as a smoothed average from 1971 to 2100. This results in a timeseries covering the period from 1986 to 2085. Finally, the timeseries are averaged for the model ensemble and the standard deviation to this ensemble mean is provided.
This dataset contains information about hourly weather statistic
The NOAA Weather and Climate Toolkit is an application that provides simple visualization and data export of weather and climatological data archived at NCDC. The Toolkit also provides access to weather and climate web services provided from NCDC and other organizations. The Viewer provides tools for displaying custom data overlay, Web Map Services (WMS), animations and basic filters. The export of images and movies is provided in multiple formats. The Data Exporter allows for data export in both vector point/line/polygon and raster grid formats. Current data types supported include: CF-compliant Fridded NetCDF; Generic CF-compliant Irregularly-Spaced/Curvilinear Gridded NetCDF/HDF; GRIB1, GRIB2, GINI, GEMPAK, HDF(CF-compliant) and more gridded formats; GPES Satellite AREA Files; NEXRAD Radar Data(Level-II and Level-III); U.S. Drought Monitor Service from the National Drought Mitigation Center (NDMC); OPeNDAP support for Gridded Datasets
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Environmental monitoring stations (EMS) were installed in Campbelltown and Liverpool's CBD in December 2020. The EMS measures weather data and pollutants data. This dataset stores weather related measures (temperature, humidity, wind speed etc.)Associated Heat Stress Index is calculated based on a number of parameters. Data in this dataset is presented in the Quality of Place dashboard.Please note this data is indicative as sensors may from time to time provide incorrect data due to wear and tear or unforeseen circumstances.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset was derived by the Bioregional Assessment Programme from 'Mean climate variables for all subregions' and 'fPAR derived from MODIS for BA subregions'. You can find a link to the parent datasets in the Lineage Field in this metadata statement. The History Field in this metadata statement describes how this dataset was derived.
These are charts of climate statistics and MODIS data for each BA subregion. There are six 600dpi PNG files per subregion, with the naming convention BA-[regioncode]-[subregioncode]-[chartname].png. The charts, according to their filename, are: rain (time-series of rainfall; Figure 1), P-PET (average monthly precipitation and potential evapotranspiration; Figure 2), 5line (assorted monthly statistics; Figure 3), trend (monthly long-term trends; Figure 4) and fPAR (fraction of photosynthetically available radiation - an indication of biomass; Figure 5).
This version was created on 18 November 2014, using data that accounted for a modified boundary for the Gippsland Basin bioregion and the combination of two subregions to form the Sydney Basin bioregion.
These charts were generated to be included in the Contextual Report (geography) for each subregion.
These charts were generated using MatPlotLib 1.3.0 in Python 2.7.5 (Anaconda distribution v1.7.0 32-bit).
The script for generating these plots is BA-ClimateCharts.py, and is packaged with the dataset. This script is a data collection and chart drawing script, it does not do any analysis. The data are charted as they appear in the parent datasets (see Lineage). A word document (BA-ClimateGraphs-ReadMe) is also included. This document includes examples of, and approved captions for, each chart.
Bioregional Assessment Programme (2014) Charts of climate statistics and MODIS data for all Bioregional Assessment subregions. Bioregional Assessment Derived Dataset. Viewed 14 June 2018, http://data.bioregionalassessments.gov.au/dataset/8a1c5f43-b150-4357-aa25-5f301b1a02e1.
Derived From Mean climate variables for all subregions
Derived From BILO Gridded Climate Data: Daily Climate Data for each year from 1900 to 2012
Derived From fPar derived from MODIS for BA subregions
World Weather Records (WWR) is an archived publication and digital data set. WWR is meteorological data from locations around the world. Through most of its history, WWR has been a publication, first published in 1927. Data includes monthly mean values of pressure, temperature, precipitation, and where available, station metadata notes documenting observation practices and station configurations. In recent years, data were supplied by National Meteorological Services of various countries, many of which became members of the World Meteorological Organization (WMO). The First Issue included data from earliest records available at that time up to 1920. Data have been collected for periods 1921-30 (2nd Series), 1931-40 (3rd Series), 1941-50 (4th Series), 1951-60 (5th Series), 1961-70 (6th Series), 1971-80 (7th Series), 1981-90 (8th Series), 1991-2000 (9th Series), and 2001-2011 (10th Series). The most recent Series 11 continues, insofar as possible, the record of monthly mean values of station pressure, sea-level pressure, temperature, and monthly total precipitation for stations listed in previous volumes. In addition to these parameters, mean monthly maximum and minimum temperatures have been collected for many stations and are archived in digital files by NCEI. New stations have also been included. In contrast to previous series, the 11th Series is available for the partial decade, so as to limit waiting period for new records. It begins in 2010 and is updated yearly, extending into the entire decade.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset contains Raleigh Durham International Airport weather data pulled from the NOAA web service described at Climate Data Online: Web Services Documentation. We have pulled this data and converted it to commonly used units. This dataset is an archive - it is not being updated.
Compilation of Earth Surface temperatures historical. Source: https://www.kaggle.com/berkeleyearth/climate-change-earth-surface-temperature-data
Data compiled by the Berkeley Earth project, which is affiliated with Lawrence Berkeley National Laboratory. The Berkeley Earth Surface Temperature Study combines 1.6 billion temperature reports from 16 pre-existing archives. It is nicely packaged and allows for slicing into interesting subsets (for example by country). They publish the source data and the code for the transformations they applied. They also use methods that allow weather observations from shorter time series to be included, meaning fewer observations need to be thrown away.
In this dataset, we have include several files:
Global Land and Ocean-and-Land Temperatures (GlobalTemperatures.csv):
%3C!-- --%3E
%3C!-- --%3E
%3C!-- --%3E
%3C!-- --%3E
%3C!-- --%3E
%3C!-- --%3E
%3C!-- --%3E
%3C!-- --%3E
%3C!-- --%3E
**Other files include: **
%3C!-- --%3E
%3C!-- --%3E
%3C!-- --%3E
%3C!-- --%3E
The raw data comes from the Berkeley Earth data page.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset presents daily meteorological observations collected from the official government website of the Delhi region. The data includes measurements of mean temperature, humidity, wind speed, and mean pressure recorded over a period of time. The inspiration behind compiling this dataset lies in the necessity for researchers, environmentalists, and policymakers to access accurate and up-to-date climate information for the Delhi area. By providing this dataset sourced directly from governmental sources, it aims to support various stakeholders in conducting climate research, analyzing weather patterns, and making informed decisions related to environmental policies and practices.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset was derived by the Bioregional Assessment Programme from multiple source datasets. The source datasets are identified in the Lineage field in this metadata statement. The processes undertaken to produce this derived dataset are described in the History field in this metadata statement.
Various climate variables summary for all 15 subregions based on Bureau of Meteorology Australian Water Availability Project (BAWAP) climate grids. Including
Time series mean annual BAWAP rainfall from 1900 - 2012.
Long term average BAWAP rainfall and Penman Potentail Evapotranspiration (PET) from Jan 1981 - Dec 2012 for each month
Values calculated over the years 1981 - 2012 (inclusive), for 17 time periods (i.e., annual, 4 seasons and 12 months) for the following 8 meteorological variables: (i) BAWAP_P (precipitation); (ii) Penman ETp; (iii) Tavg (average temperature); (iv) Tmax (maximum temperature); (v) Tmin (minimum temperature); (vi) VPD (Vapour Pressure Deficit); (vii) Rn (net radiation); and (viii) Wind speed. For each of the 17 time periods for each of the 8 meteorological variables have calculated the: (a) average; (b) maximum; (c) minimum; (d) average plus standard deviation (stddev); (e) average minus stddev; (f) stddev; and (g) trend.
Correlation coefficients (-1 to 1) between rainfall and 4 remote rainfall drivers between 1957-2006 for the four seasons. The data and methodology are described in Risbey et al. (2009).
As described in the Risbey et al. (2009) paper, the rainfall was from 0.05 degree gridded data described in Jeffrey et al. (2001 - known as the SILO datasets); sea surface temperature was from the Hadley Centre Sea Ice and Sea Surface Temperature dataset (HadISST) on a 1 degree grid. BLK=Blocking; DMI=Dipole Mode Index; SAM=Southern Annular Mode; SOI=Southern Oscillation Index; DJF=December, January, February; MAM=March, April, May; JJA=June, July, August; SON=September, October, November. The analysis is a summary of Fig. 15 of Risbey et al. (2009).
There are 4 csv files here:
BAWAP_P_annual_BA_SYB_GLO.csv
Desc: Time series mean annual BAWAP rainfall from 1900 - 2012.
Source data: annual BILO rainfall
P_PET_monthly_BA_SYB_GLO.csv
long term average BAWAP rainfall and Penman PET from 198101 - 201212 for each month
Climatology_Trend_BA_SYB_GLO.csv
Values calculated over the years 1981 - 2012 (inclusive), for 17 time periods (i.e., annual, 4 seasons and 12 months) for the following 8 meteorological variables: (i) BAWAP_P; (ii) Penman ETp; (iii) Tavg; (iv) Tmax; (v) Tmin; (vi) VPD; (vii) Rn; and (viii) Wind speed. For each of the 17 time periods for each of the 8 meteorological variables have calculated the: (a) average; (b) maximum; (c) minimum; (d) average plus standard deviation (stddev); (e) average minus stddev; (f) stddev; and (g) trend
Risbey_Remote_Rainfall_Drivers_Corr_Coeffs_BA_NSB_GLO.csv
Correlation coefficients (-1 to 1) between rainfall and 4 remote rainfall drivers between 1957-2006 for the four seasons. The data and methodology are described in Risbey et al. (2009). As described in the Risbey et al. (2009) paper, the rainfall was from 0.05 degree gridded data described in Jeffrey et al. (2001 - known as the SILO datasets); sea surface temperature was from the Hadley Centre Sea Ice and Sea Surface Temperature dataset (HadISST) on a 1 degree grid. BLK=Blocking; DMI=Dipole Mode Index; SAM=Southern Annular Mode; SOI=Southern Oscillation Index; DJF=December, January, February; MAM=March, April, May; JJA=June, July, August; SON=September, October, November. The analysis is a summary of Fig. 15 of Risbey et al. (2009).
Dataset was created from various BAWAP source data, including Monthly BAWAP rainfall, Tmax, Tmin, VPD, etc, and other source data including monthly Penman PET, Correlation coefficient data. Data were extracted from national datasets for the GLO subregion.
BAWAP_P_annual_BA_SYB_GLO.csv
Desc: Time series mean annual BAWAP rainfall from 1900 - 2012.
Source data: annual BILO rainfall
P_PET_monthly_BA_SYB_GLO.csv
long term average BAWAP rainfall and Penman PET from 198101 - 201212 for each month
Climatology_Trend_BA_SYB_GLO.csv
Values calculated over the years 1981 - 2012 (inclusive), for 17 time periods (i.e., annual, 4 seasons and 12 months) for the following 8 meteorological variables: (i) BAWAP_P; (ii) Penman ETp; (iii) Tavg; (iv) Tmax; (v) Tmin; (vi) VPD; (vii) Rn; and (viii) Wind speed. For each of the 17 time periods for each of the 8 meteorological variables have calculated the: (a) average; (b) maximum; (c) minimum; (d) average plus standard deviation (stddev); (e) average minus stddev; (f) stddev; and (g) trend
Risbey_Remote_Rainfall_Drivers_Corr_Coeffs_BA_NSB_GLO.csv
Correlation coefficients (-1 to 1) between rainfall and 4 remote rainfall drivers between 1957-2006 for the four seasons. The data and methodology are described in Risbey et al. (2009). As described in the Risbey et al. (2009) paper, the rainfall was from 0.05 degree gridded data described in Jeffrey et al. (2001 - known as the SILO datasets); sea surface temperature was from the Hadley Centre Sea Ice and Sea Surface Temperature dataset (HadISST) on a 1 degree grid. BLK=Blocking; DMI=Dipole Mode Index; SAM=Southern Annular Mode; SOI=Southern Oscillation Index; DJF=December, January, February; MAM=March, April, May; JJA=June, July, August; SON=September, October, November. The analysis is a summary of Fig. 15 of Risbey et al. (2009).
Bioregional Assessment Programme (2014) GLO climate data stats summary. Bioregional Assessment Derived Dataset. Viewed 18 July 2018, http://data.bioregionalassessments.gov.au/dataset/afed85e0-7819-493d-a847-ec00a318e657.
Derived From Natural Resource Management (NRM) Regions 2010
Derived From Bioregional Assessment areas v03
Derived From BILO Gridded Climate Data: Daily Climate Data for each year from 1900 to 2012
Derived From Bioregional Assessment areas v01
Derived From Bioregional Assessment areas v02
Derived From GEODATA TOPO 250K Series 3
Derived From NSW Catchment Management Authority Boundaries 20130917
Derived From Geological Provinces - Full Extent
Derived From GEODATA TOPO 250K Series 3, File Geodatabase format (.gdb)