70 datasets found
  1. b

    App Downloads Data (2025)

    • businessofapps.com
    Updated Aug 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Business of Apps (2025). App Downloads Data (2025) [Dataset]. https://www.businessofapps.com/data/app-statistics/
    Explore at:
    Dataset updated
    Aug 1, 2025
    Dataset authored and provided by
    Business of Apps
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Description

    App Download Key StatisticsApp and Game DownloadsiOS App and Game DownloadsGoogle Play App and Game DownloadsGame DownloadsiOS Game DownloadsGoogle Play Game DownloadsApp DownloadsiOS App...

  2. RICO dataset

    • kaggle.com
    Updated Dec 2, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Onur Gunes (2021). RICO dataset [Dataset]. https://www.kaggle.com/datasets/onurgunes1993/rico-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 2, 2021
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Onur Gunes
    Description

    Context

    Data-driven models help mobile app designers understand best practices and trends, and can be used to make predictions about design performance and support the creation of adaptive UIs. This paper presents Rico, the largest repository of mobile app designs to date, created to support five classes of data-driven applications: design search, UI layout generation, UI code generation, user interaction modeling, and user perception prediction. To create Rico, we built a system that combines crowdsourcing and automation to scalably mine design and interaction data from Android apps at runtime. The Rico dataset contains design data from more than 9.3k Android apps spanning 27 categories. It exposes visual, textual, structural, and interactive design properties of more than 66k unique UI screens. To demonstrate the kinds of applications that Rico enables, we present results from training an autoencoder for UI layout similarity, which supports query-by-example search over UIs.

    Content

    Rico was built by mining Android apps at runtime via human-powered and programmatic exploration. Like its predecessor ERICA, Rico’s app mining infrastructure requires no access to — or modification of — an app’s source code. Apps are downloaded from the Google Play Store and served to crowd workers through a web interface. When crowd workers use an app, the system records a user interaction trace that captures the UIs visited and the interactions performed on them. Then, an automated agent replays the trace to warm up a new copy of the app and continues the exploration programmatically, leveraging a content-agnostic similarity heuristic to efficiently discover new UI states. By combining crowdsourcing and automation, Rico can achieve higher coverage over an app’s UI states than either crawling strategy alone. In total, 13 workers recruited on UpWork spent 2,450 hours using apps on the platform over five months, producing 10,811 user interaction traces. After collecting a user trace for an app, we ran the automated crawler on the app for one hour.

    Acknowledgements

    UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN https://interactionmining.org/rico

    Inspiration

    The Rico dataset is large enough to support deep learning applications. We trained an autoencoder to learn an embedding for UI layouts, and used it to annotate each UI with a 64-dimensional vector representation encoding visual layout. This vector representation can be used to compute structurally — and often semantically — similar UIs, supporting example-based search over the dataset. To create training inputs for the autoencoder that embed layout information, we constructed a new image for each UI capturing the bounding box regions of all leaf elements in its view hierarchy, differentiating between text and non-text elements. Rico’s view hierarchies obviate the need for noisy image processing or OCR techniques to create these inputs.

  3. b

    App Store Data (2025)

    • businessofapps.com
    Updated Aug 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Business of Apps (2025). App Store Data (2025) [Dataset]. https://www.businessofapps.com/data/app-stores/
    Explore at:
    Dataset updated
    Aug 1, 2025
    Dataset authored and provided by
    Business of Apps
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Description

    Apple App Store Key StatisticsApps & Games in the Apple App StoreApps in the Apple App StoreGames in the Apple App StoreMost Popular Apple App Store CategoriesPaid vs Free Apps in Apple App...

  4. IOS App Store reviews dataset

    • crawlfeeds.com
    csv, zip
    Updated Jul 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Crawl Feeds (2025). IOS App Store reviews dataset [Dataset]. https://crawlfeeds.com/datasets/ios-app-store-reviews-dataset
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Jul 7, 2025
    Dataset authored and provided by
    Crawl Feeds
    License

    https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy

    Description

    Unlock the power of user feedback with our iOS App Store Reviews Dataset, a comprehensive collection of reviews from thousands of apps across various categories. This robust App Store dataset includes essential details such as app names, ratings, user comments, timestamps, and more, offering valuable insights into user experiences and preferences.

    Perfect for app developers, marketers, and data analysts, this dataset allows you to conduct sentiment analysis, monitor app performance, and identify trends in user behavior. By leveraging the iOS App Store Reviews Dataset, you can refine app features, optimize marketing strategies, and elevate user satisfaction.

    Whether you’re tracking mobile app trends, analyzing specific app categories, or developing data-driven strategies, this App Store dataset is an indispensable tool. Download the iOS App Store Reviews Dataset today or contact us for custom datasets tailored to your unique project requirements.

    Ready to take your app insights to the next level? Get the iOS App Store Reviews Dataset now or explore our custom data solutions to meet your needs.

  5. Google Play Store Datasets

    • brightdata.com
    .json, .csv, .xlsx
    Updated Apr 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2024). Google Play Store Datasets [Dataset]. https://brightdata.com/products/datasets/google-play-store
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset updated
    Apr 11, 2024
    Dataset authored and provided by
    Bright Datahttps://brightdata.com/
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide
    Description

    This dataset encompasses a wide-ranging collection of Google Play applications, providing a holistic view of the diverse ecosystem within the platform. It includes information on various attributes such as the title, developer, monetization features, images, app descriptions, data safety measures, user ratings, number of reviews, star rating distributions, user feedback, recent updates, related applications by the same developer, content ratings, estimated downloads, and timestamps. By aggregating this data, the dataset offers researchers, developers, and analysts an extensive resource to explore and analyze trends, patterns, and dynamics within the Google Play Store. Researchers can utilize this dataset to conduct comprehensive studies on user behavior, market trends, and the impact of various factors on app success. Developers can leverage the insights derived from this dataset to inform their app development strategies, improve user engagement, and optimize monetization techniques. Analysts can employ the dataset to identify emerging trends, assess the performance of different categories of applications, and gain valuable insights into consumer preferences. Overall, this dataset serves as a valuable tool for understanding the broader landscape of the Google Play Store and unlocking actionable insights for various stakeholders in the mobile app industry.

  6. d

    Google Play Store Apps / Games Data, Android Apps Data, Consumer Review...

    • datarade.ai
    .json, .csv
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OpenWeb Ninja, Google Play Store Apps / Games Data, Android Apps Data, Consumer Review Data, Top Charts | Real-Time API [Dataset]. https://datarade.ai/data-products/openweb-ninja-google-play-store-data-android-apps-games-openweb-ninja
    Explore at:
    .json, .csvAvailable download formats
    Dataset authored and provided by
    OpenWeb Ninja
    Area covered
    Netherlands, Bermuda, Christmas Island, Azerbaijan, Nicaragua, Mali, Finland, Korea (Republic of), Macedonia (the former Yugoslav Republic of), Guam
    Description

    Use the OpenWeb Ninja Google Play App Store Data API to access comprehensive data on Google Play Store, including Android Apps / Games, reviews, top charts, search, and more. Our extensive dataset provides over 40 app store data points, enabling you to gain deep insights into the market.

    The App Store Data dataset includes all key app details:

    App Name, Description, Rating, Photos, Downloads, Version Information, App Size, Permissions, Developer and Contact Information, Consumer Review Data.

  7. Annual number of global mobile app downloads 2016-2023

    • statista.com
    Updated Jan 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Annual number of global mobile app downloads 2016-2023 [Dataset]. https://www.statista.com/statistics/271644/worldwide-free-and-paid-mobile-app-store-downloads/
    Explore at:
    Dataset updated
    Jan 29, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    While the number of downloads kept increasing between 2016 to 2022. However, in 2023, the global app downloads stagnated, reaching 257 billion downloads and experienced only a one percent year-over-year increase.

    The app market Mobile apps are projected to generate more than 613 billion U.S. dollars in revenues in 2025, with mobile games making up the biggest revenue share among all app categories. In 2020, gaming and video made up the largest shares of the mobile content market for the year. The ePublishing and education sectors still saw a limited market for their mobile content, despite the increase in apps usage brought by the COVID-19 pandemic disrupting regular school system settings.

    App monetization: a changing landscape As an indispensable part of the smartphone experience, the largest number of apps in the major app stores are free to download. However, in recent years, the growth of global consumer spending on apps has shown users’ healthy appetite for premium services or paid app content. In the second quarter of 2021, Android consumers have spent an average of 5.31 U.S. dollars per handset, after peaking in the last quarter of 2020 reaching an average of 10.6 U.S. dollars per mobile device. As of September 2021, the number of paid apps has shrunk to make up only six percent and four percent of the total numbers in the Apple App Store and the Google Play Store, respectively. In comparison, apps offering subscription plans are becoming increasingly popular in the monetization landscape. In 2020, the leading subscription apps in the Apple App Store generated more than 10 million U.S. dollars in global revenues.

  8. Z

    Dataset used for "A Recommender System of Buggy App Checkers for App Store...

    • data.niaid.nih.gov
    Updated Jun 28, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Martin Monperrus (2021). Dataset used for "A Recommender System of Buggy App Checkers for App Store Moderators" [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_5034291
    Explore at:
    Dataset updated
    Jun 28, 2021
    Dataset provided by
    Maria Gomez
    Lionel Seinturier
    Romain Rouvoy
    Martin Monperrus
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is the dataset used for paper: "A Recommender System of Buggy App Checkers for App Store Moderators", published on the International Conference on Mobile Software Engineering and Systems (MOBILESoft) in 2015.

    Dataset Collection We built a dataset that consists of a random sample of Android app metadata and user reviews available on the Google Play Store on January and March 2014. Since the Google Play Store is continuously evolving (adding, removing and/or updating apps), we updated the dataset twice. The dataset D1 contains available apps in the Google Play Store in January 2014. Then, we created a new snapshot (D2) of the Google Play Store in March 2014.

    The apps belong to the 27 different categories defined by Google (at the time of writing the paper), and the 4 predefined subcategories (free, paid, new_free, and new_paid). For each category-subcategory pair (e.g. tools-free, tools-paid, sports-new_free, etc.), we collected a maximum of 500 samples, resulting in a median number of 1.978 apps per category.

    For each app, we retrieved the following metadata: name, package, creator, version code, version name, number of downloads, size, upload date, star rating, star counting, and the set of permission requests.

    In addition, for each app, we collected up to a maximum of the latest 500 reviews posted by users in the Google Play Store. For each review, we retrieved its metadata: title, description, device, and version of the app. None of these fields were mandatory, thus several reviews lack some of these details. From all the reviews attached to an app, we only considered the reviews associated with the latest version of the app —i.e., we discarded unversioned and old-versioned reviews. Thus, resulting in a corpus of 1,402,717 reviews (2014 Jan.).

    Dataset Stats Some stats about the datasets:

    • D1 (Jan. 2014) contains 38,781 apps requesting 7,826 different permissions, and 1,402,717 user reviews.

    • D2 (Mar. 2014) contains 46,644 apps and 9,319 different permission requests, and 1,361,319 user reviews.

    Additional stats about the datasets are available here.

    Dataset Description To store the dataset, we created a graph database with Neo4j. This dataset therefore consists of a graph describing the apps as nodes and edges. We chose a graph database because the graph visualization helps to identify connections among data (e.g., clusters of apps sharing similar sets of permission requests).

    In particular, our dataset graph contains six types of nodes: - APP nodes containing metadata of each app, - PERMISSION nodes describing permission types, - CATEGORY nodes describing app categories, - SUBCATEGORY nodes describing app subcategories, - USER_REVIEW nodes storing user reviews. - TOPIC topics mined from user reviews (using LDA).

    Furthermore, there are five types of relationships between APP nodes and each of the remaining nodes:

    • USES_PERMISSION relationships between APP and PERMISSION nodes
    • HAS_REVIEW between APP and USER_REVIEW nodes
    • HAS_TOPIC between USER_REVIEW and TOPIC nodes
    • BELONGS_TO_CATEGORY between APP and CATEGORY nodes
    • BELONGS_TO_SUBCATEGORY between APP and SUBCATEGORY nodes

    Dataset Files Info

    Neo4j 2.0 Databases

    googlePlayDB1-Jan2014_neo4j_2_0.rar

    googlePlayDB2-Mar2014_neo4j_2_0.rar We provide two Neo4j databases containing the 2 snapshots of the Google Play Store (January and March 2014). These are the original databases created for the paper. The databases were created with Neo4j 2.0. In particular with the tool version 'Neo4j 2.0.0-M06 Community Edition' (latest version available at the time of implementing the paper in 2014).

    Neo4j 3.5 Databases

    googlePlayDB1-Jan2014_neo4j_3_5_28.rar

    googlePlayDB2-Mar2014_neo4j_3_5_28.rar Currently, the version Neo4j 2.0 is deprecated and it is not available for download in the official Neo4j Download Center. We have migrated the original databases (Neo4j 2.0) to Neo4j 3.5.28. The databases can be opened with the tool version: 'Neo4j Community Edition 3.5.28'. The tool can be downloaded from the official Neo4j Donwload page.

      In order to open the databases with more recent versions of Neo4j, the databases must be first migrated to the corresponding version. Instructions about the migration process can be found in the Neo4j Migration Guide.
    
      First time the Neo4j database is connected, it could request credentials. The username and pasword are: neo4j/neo4j
    
  9. UK House Price Index: data downloads March 2025

    • gov.uk
    Updated May 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    HM Land Registry (2025). UK House Price Index: data downloads March 2025 [Dataset]. https://www.gov.uk/government/statistical-data-sets/uk-house-price-index-data-downloads-march-2025
    Explore at:
    Dataset updated
    May 21, 2025
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    HM Land Registry
    Area covered
    United Kingdom
    Description

    The UK House Price Index is a National Statistic.

    Create your report

    Download the full UK House Price Index data below, or use our tool to https://landregistry.data.gov.uk/app/ukhpi?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=tool&utm_term=9.30_21_05_25" class="govuk-link">create your own bespoke reports.

    Download the data

    Datasets are available as CSV files. Find out about republishing and making use of the data.

    Full file

    This file includes a derived back series for the new UK HPI. Under the UK HPI, data is available from 1995 for England and Wales, 2004 for Scotland and 2005 for Northern Ireland. A longer back series has been derived by using the historic path of the Office for National Statistics HPI to construct a series back to 1968.

    Download the full UK HPI background file:

    Individual attributes files

    If you are interested in a specific attribute, we have separated them into these CSV files:

  10. d

    Year, Month and Payment Application-wise UPI Apps Transaction Statistics

    • dataful.in
    Updated Aug 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataful (Factly) (2025). Year, Month and Payment Application-wise UPI Apps Transaction Statistics [Dataset]. https://dataful.in/datasets/413
    Explore at:
    application/x-parquet, xlsx, csvAvailable download formats
    Dataset updated
    Aug 11, 2025
    Dataset authored and provided by
    Dataful (Factly)
    License

    https://dataful.in/terms-and-conditionshttps://dataful.in/terms-and-conditions

    Area covered
    India
    Variables measured
    UPI Transaction Volumes, UPI Transaction Values,
    Description

    The dataset contains year, month and payment application-wise UPI Apps Transaction Statistics like Customer Initiated Transactions, B2C Transactions, B2B Transactions and On-us Transactions Note: 1) Unified Payments Interface(UPI) is an instant real-time payment system developed by National Payments Corporation of India. The interface facilitates inter-bank peer-to-peer and person-to-merchant transactions 2) From January 2021 onwards, ‚On-us Transactions‚ in UPI that are not processed and settled through the UPI Central System is shown under ‚ On-us Transactions column 3) Apps which has volume less than 10,000 is included under‚ Other Apps. 4) App volume in table is basis the Payer App logic, i.e the financial transaction is attributed to the PSP in UPI on the Payer's side. 5) BHIM Volume is inclusive of *99# volume. 6) For WhatsApp, Maximum registered user base of hundred (100) million in UPI

  11. d

    ICA261 - Individuals aged 16 years and over who downloaded services from...

    • datasalsa.com
    csv, json-stat, px +1
    Updated Jan 2, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central Statistics Office (2025). ICA261 - Individuals aged 16 years and over who downloaded services from websites or apps during the last 3 months [Dataset]. https://datasalsa.com/dataset/?catalogue=data.gov.ie&name=ica261-6-years-and-over-who-downloaded-services-from-websites-or-apps-during-the-last-3-months-9208
    Explore at:
    px, xlsx, csv, json-statAvailable download formats
    Dataset updated
    Jan 2, 2025
    Dataset authored and provided by
    Central Statistics Office
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jul 29, 2025
    Description

    ICA261 - Individuals aged 16 years and over who downloaded services from websites or apps during the last 3 months. Published by Central Statistics Office. Available under the license Creative Commons Attribution 4.0 (CC-BY-4.0).Individuals aged 16 years and over who downloaded services from websites or apps during the last 3 months...

  12. Data from: AndroCT: Ten Years of App Call Traces in Android

    • zenodo.org
    • explore.openaire.eu
    application/gzip, txt
    Updated Mar 7, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wen Li; Xiaoqin Fu; Haipeng Cai; Haipeng Cai; Wen Li; Xiaoqin Fu (2022). AndroCT: Ten Years of App Call Traces in Android [Dataset]. http://doi.org/10.5281/zenodo.4470320
    Explore at:
    application/gzip, txtAvailable download formats
    Dataset updated
    Mar 7, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Wen Li; Xiaoqin Fu; Haipeng Cai; Haipeng Cai; Wen Li; Xiaoqin Fu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    A large-scale dataset on the dynamic profiles based on function calls of 35,974 benign and malicious Android apps from 10 historical years (2010 through 2019). Function calls are a commonly used means to model program behaviors, which may contribute to various code analysis approaches to assuring software correctness, reliability, and security. In particular, our dataset includes dynamic profiles of each app resulting from the same-length of time (10 mins) of being exercised by randomly generated inputs on both emulator and real device, enabling interesting and useful app analysis that reason about app behaviors in an evolutionary perspective while informing the differences of app behaviors on different run-time hardware platforms. Since we have 20 yearly datasets associated with 35,974 unique Android apps across the 10 years, profiling these apps took 12,000 hours. Considering the costs of filtering out apps that were originally sampled but that we were unable to profile (due to various reasons such as broken APKs, not being executable because of incompatibility issues, not instrumentable, etc.), we took over two years to produce all these traces. We hope to save future researchers' time in producing such a set of dynamic data to enable their empirical and technical work.

    ==================

    Thanks for your interest in our dataset. Collecting this dataset took tremendous computational and human effort. Thus, please observe the following restrictions in using our dataset:

    - Do not redistribute this dataset without our consent.
    - Do not make commercial usage of this dataset.
    - Get a faculty, or someone in a permanent position, to agree and commit to these conditions.
    - When publishing your work that uses our dataset, please cite the following MSR 2021 data paper.


    @inproceedings{AndroidCT,
    title = {AndroCT: Ten Years of App Call Traces in Android},
    author = {Wen Li, Xiaoqin Fu, and Haipeng Cai},
    booktitle = {The 18th International Conference on Mining Software Repositories (MSR 2021), Data Showcase Track},
    year = {2021},
    }

  13. Data from: Hall-of-Apps: The Top Android Apps Metadata Archive

    • zenodo.org
    • data.niaid.nih.gov
    bz2, zip
    Updated Mar 20, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Laura Bello-Jiménez; Laura Bello-Jiménez; Camilo Escobar-Velásquez; Camilo Escobar-Velásquez; Anamaria Mojica-Hanke; Anamaria Mojica-Hanke; Santiago Cortés-Fernandéz; Santiago Cortés-Fernandéz; Mario Linares-Vásquez; Mario Linares-Vásquez (2020). Hall-of-Apps: The Top Android Apps Metadata Archive [Dataset]. http://doi.org/10.5281/zenodo.3653367
    Explore at:
    zip, bz2Available download formats
    Dataset updated
    Mar 20, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Laura Bello-Jiménez; Laura Bello-Jiménez; Camilo Escobar-Velásquez; Camilo Escobar-Velásquez; Anamaria Mojica-Hanke; Anamaria Mojica-Hanke; Santiago Cortés-Fernandéz; Santiago Cortés-Fernandéz; Mario Linares-Vásquez; Mario Linares-Vásquez
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    The amount of Android apps available for download is constantly increasing, exerting a continuous pressure on developers to publish outstanding apps. Google Play (GP) is the default distribution channel for Android apps, which provides mobile app users with metrics to identify and report apps quality such as rating, amount of downloads, previous users comments, etc. In addition to those metrics, GP presents a set of top charts that highlight the outstanding apps in different categories. Both metrics and top app charts help developers to identify whether their development decisions are well valued by the community. Therefore, app presence in these top charts is a valuable information when understanding the features of top-apps. In this paper we present Hall-of-Apps, a dataset containing top charts' apps metadata extracted (weekly) from GP, for 4 different countries, during 30 weeks. The data is presented as (i) raw HTML files, (ii) a MongoDB database with all the information contained in app's HTML files (e.g., app description, category, general rating, etc.), and (iii) data visualizations built with the D3.js framework. A first characterization of the data along with the urls to retrieve it can be found in our online appendix: https://thesoftwaredesignlab.github.io/hall-of-apps-tools/

  14. Z

    User Feedback Dataset from the Top 15 Downloaded Mobile Applications

    • data.niaid.nih.gov
    • zenodo.org
    Updated Nov 24, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Asnawi, Mohammad Hamid (2023). User Feedback Dataset from the Top 15 Downloaded Mobile Applications [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_10204231
    Explore at:
    Dataset updated
    Nov 24, 2023
    Dataset provided by
    hendrawati, Triyani
    Pravitasari, Anindya Apriliyanti
    Asnawi, Mohammad Hamid
    Herawan, Tutut
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset comprises user feedback data collected from 15 globally acclaimed mobile applications, spanning diverse categories. The included applications are among the most downloaded worldwide, providing a rich and varied source for analysis. The dataset is particularly suitable for Natural Language Processing (NLP) applications, such as text classification and topic modeling. List of Included Applications:

    TikTok Instagram Facebook WhatsApp Telegram Zoom Snapchat Facebook Messenger Capcut Spotify YouTube HBO Max Cash App Subway Surfers Roblox Data Columns and Descriptions: Data Columns and Descriptions:

    review_id: Unique identifiers for each user feedback/application review. content: User-generated feedback/review in text format. score: Rating or star given by the user. TU_count: Number of likes/thumbs up (TU) received for the review. app_id: Unique identifier for each application. app_name: Name of the application. RC_ver: Version of the app when the review was created (RC). Terms of Use: This dataset is open access for scientific research and non-commercial purposes. Users are required to acknowledge the authors' work and, in the case of scientific publication, cite the most appropriate reference: M. H. Asnawi, A. A. Pravitasari, T. Herawan, and T. Hendrawati, "The Combination of Contextualized Topic Model and MPNet for User Feedback Topic Modeling," in IEEE Access, vol. 11, pp. 130272-130286, 2023, doi: 10.1109/ACCESS.2023.3332644.

    Researchers and analysts are encouraged to explore this dataset for insights into user sentiments, preferences, and trends across these top mobile applications. If you have any questions or need further information, feel free to contact the dataset authors.

  15. d

    Transit Bus App

    • catalog.data.gov
    • data.virginia.gov
    • +1more
    Updated Sep 2, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Loudoun GIS (2022). Transit Bus App [Dataset]. https://catalog.data.gov/dataset/transit-bus-app-e4ee1
    Explore at:
    Dataset updated
    Sep 2, 2022
    Dataset provided by
    Loudoun GIS
    Description

    Transit is a mobile app packed with features that helps you plan a trip on Loudoun County Transit buses. Real time bus tracking and information, service alerts and trip planners are some of the many useful features that make this app the favorite for transportation services.Download Transit app to your device for free and set your favorite routes to begin receiving notifications and real-time bus information.Transit Support

  16. f

    Data from: Testing of Mobile Applications in the Wild: A Large-Scale...

    • figshare.com
    txt
    Updated Mar 25, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fabiano Pecorelli (2020). Testing of Mobile Applications in the Wild: A Large-Scale Empirical Study on Android Apps [Dataset]. http://doi.org/10.6084/m9.figshare.9980672.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Mar 25, 2020
    Dataset provided by
    figshare
    Authors
    Fabiano Pecorelli
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Nowadays, mobile applications (a.k.a., apps) are used by over two billion users for every type of need, including social and emergency connectivity. Their pervasiveness in today world has inspired the software testing research community in devising approaches to allow developers to better test their apps and improve the quality of the tests being developed. In spite of this research effort, we still notice a lack of empirical analyses aiming at assessing the actual quality of test cases manually developed by mobile developers: this perspective could provide evidence-based findings on the future research directions in the field as well as on the current status of testing in the wild. As such, we performed a large-scale empirical study targeting 1,780 open-source Android apps and aiming at assessing (1) the extent to which these apps are actually tested, (2) how well-designed are the available tests, and (3) what is their effectiveness. The key results of our study show that mobile developers still tend not to properly test their apps, possibly because of time to market requirements. Furthermore, we discovered that the test cases of the considered apps have a low (i) design quality, both in terms of test code metrics and test smells, and (ii) effectiveness when considering code coverage as well as assertion density.

  17. Statewide Crop Mapping

    • data.cnra.ca.gov
    • data.ca.gov
    • +3more
    data, gdb, html +3
    Updated Mar 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Water Resources (2025). Statewide Crop Mapping [Dataset]. https://data.cnra.ca.gov/dataset/statewide-crop-mapping
    Explore at:
    zip(88308707), shp(126828193), zip(94630663), zip(189880202), rest service, shp(126548912), gdb(86655350), gdb(76631083), gdb(85891531), zip(144060723), shp(107610538), gdb(86886429), zip(140021333), html, data, zip(169400976), zip(159870566), zip(179113742), zip(98690638)Available download formats
    Dataset updated
    Mar 3, 2025
    Dataset authored and provided by
    California Department of Water Resourceshttp://www.water.ca.gov/
    Description

    NOTICE TO PROVISIONAL 2023 LAND USE DATA USERS: Please note that on December 6, 2024 the Department of Water Resources (DWR) published the Provisional 2023 Statewide Crop Mapping dataset. The link for the shapefile format of the data mistakenly linked to the wrong dataset. The link was updated with the appropriate data on January 27, 2025. If you downloaded the Provisional 2023 Statewide Crop Mapping dataset in shapefile format between December 6, 2024 and January 27, we encourage you to redownload the data. The Map Service and Geodatabase formats were correct as posted on December 06, 2024.

    Thank you for your interest in DWR land use datasets.

    The California Department of Water Resources (DWR) has been collecting land use data throughout the state and using it to develop agricultural water use estimates for statewide and regional planning purposes, including water use projections, water use efficiency evaluations, groundwater model developments, climate change mitigation and adaptations, and water transfers. These data are essential for regional analysis and decision making, which has become increasingly important as DWR and other state agencies seek to address resource management issues, regulatory compliances, environmental impacts, ecosystem services, urban and economic development, and other issues. Increased availability of digital satellite imagery, aerial photography, and new analytical tools make remote sensing-based land use surveys possible at a field scale that is comparable to that of DWR’s historical on the ground field surveys. Current technologies allow accurate large-scale crop and land use identifications to be performed at desired time increments and make possible more frequent and comprehensive statewide land use information. Responding to this need, DWR sought expertise and support for identifying crop types and other land uses and quantifying crop acreages statewide using remotely sensed imagery and associated analytical techniques. Currently, Statewide Crop Maps are available for the Water Years 2014, 2016, 2018- 2022 and PROVISIONALLY for 2023.

    Historic County Land Use Surveys spanning 1986 - 2015 may also be accessed using the CADWR Land Use Data Viewer: https://gis.water.ca.gov/app/CADWRLandUseViewer.

    For Regional Land Use Surveys follow: https://data.cnra.ca.gov/dataset/region-land-use-surveys.

    For County Land Use Surveys follow: https://data.cnra.ca.gov/dataset/county-land-use-surveys.

    For a collection of ArcGIS Web Applications that provide information on the DWR Land Use Program and our data products in various formats, visit the DWR Land Use Gallery: https://storymaps.arcgis.com/collections/dd14ceff7d754e85ab9c7ec84fb8790a.

    Recommended citation for DWR land use data: California Department of Water Resources. (Water Year for the data). Statewide Crop Mapping—California Natural Resources Agency Open Data. Retrieved “Month Day, YEAR,” from https://data.cnra.ca.gov/dataset/statewide-crop-mapping.

  18. m

    User Reviews of BCA Mobile App from Google Play Store (December 2023 - June...

    • data.mendeley.com
    Updated Jun 14, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Martinus Juan Prasetyo (2024). User Reviews of BCA Mobile App from Google Play Store (December 2023 - June 2024) [Dataset]. http://doi.org/10.17632/mvshyj7g67.1
    Explore at:
    Dataset updated
    Jun 14, 2024
    Authors
    Martinus Juan Prasetyo
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset comprises 10,000 user reviews of the BCA Mobile app collected from the Google Play Store between December 24, 2023, and June 12, 2024. Each review includes the user's name, the rating they provided (ranging from 1 to 5 stars), the timestamp of when the review was created, and the text content of the review. The dataset is in Indonesian and focuses on feedback from users in Indonesia. This data can be used to perform sentiment analysis, understand user experiences, identify common issues, and assess the overall performance of the BCA Mobile app during the specified timeframe. The reviews are sorted based on the newest first, providing the latest feedback at the top.

  19. Network Traffic Android Malware

    • kaggle.com
    zip
    Updated Sep 12, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Christian Urcuqui (2019). Network Traffic Android Malware [Dataset]. https://www.kaggle.com/datasets/xwolf12/network-traffic-android-malware
    Explore at:
    zip(116603 bytes)Available download formats
    Dataset updated
    Sep 12, 2019
    Authors
    Christian Urcuqui
    Description

    Introduction

    Android is one of the most used mobile operating systems worldwide. Due to its technological impact, its open-source code and the possibility of installing applications from third parties without any central control, Android has recently become a malware target. Even if it includes security mechanisms, the last news about malicious activities and Android´s vulnerabilities point to the importance of continuing the development of methods and frameworks to improve its security.

    To prevent malware attacks, researches and developers have proposed different security solutions, applying static analysis, dynamic analysis, and artificial intelligence. Indeed, data science has become a promising area in cybersecurity, since analytical models based on data allow for the discovery of insights that can help to predict malicious activities.

    In this work, we propose to consider some network layer features as the basis for machine learning models that can successfully detect malware applications, using open datasets from the research community.

    Content

    This dataset is based on another dataset (DroidCollector) where you can get all the network traffic in pcap files, in our research we preprocessed the files in order to get network features that are illustrated in the next article:

    López, C. C. U., Villarreal, J. S. D., Belalcazar, A. F. P., Cadavid, A. N., & Cely, J. G. D. (2018, May). Features to Detect Android Malware. In 2018 IEEE Colombian Conference on Communications and Computing (COLCOM) (pp. 1-6). IEEE.

    Acknowledgements

    Cao, D., Wang, S., Li, Q., Cheny, Z., Yan, Q., Peng, L., & Yang, B. (2016, August). DroidCollector: A High Performance Framework for High Quality Android Traffic Collection. In Trustcom/BigDataSE/I SPA, 2016 IEEE (pp. 1753-1758). IEEE

  20. A

    ‘Playstore Analysis’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Nov 12, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2021). ‘Playstore Analysis’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-playstore-analysis-2b2d/41638844/?iid=022-994&v=presentation
    Explore at:
    Dataset updated
    Nov 12, 2021
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Playstore Analysis’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/madhav000/playstore-analysis on 30 September 2021.

    --- Dataset description provided by original source is as follows ---

    Google Play Store team had launched a new feature wherein, certain apps that are promising, are boosted in visibility. The boost will manifest in multiple ways including higher priority in recommendations sections (“Similar apps”, “You might also like”, “New and updated games”). These will also get a boost in search results visibility. This feature will help bring more attention to newer apps that have the potential.

    Analysis to be done:

    The problem is to identify the apps that are going to be good for Google to promote. App ratings, which are provided by the customers, is always a great indicator of the goodness of the app. The problem reduces to: predict which apps will have high ratings.

    Problem Statement:

    Google Play Store team is about to launch a new feature wherein, certain apps that are promising, are boosted in visibility. The boost will manifest in multiple ways including higher priority in recommendations sections (“Similar apps”, “You might also like”, “New and updated games”). These will also get a boost in search results visibility. This feature will help bring more attention to newer apps that have the potential.

    Content:

    Dataset: Google Play Store data (“googleplaystore.csv”)

    Fields in the data: App: Application name Category: Category to which the app belongs Rating: Overall user rating of the app Reviews: Number of user reviews for the app Size: Size of the app Installs: Number of user downloads/installs for the app Type: Paid or Free Price: Price of the app Content Rating: Age group the app is targeted at - Children / Mature 21+ / Adult Genres: An app can belong to multiple genres (apart from its main category). For example, a musical family game will belong to Music, Game, Family genres. Last Updated: Date when the app was last updated on Play Store Current Ver: Current version of the app available on Play Store Android Ver: Minimum required Android version

    --- Original source retains full ownership of the source dataset ---

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Business of Apps (2025). App Downloads Data (2025) [Dataset]. https://www.businessofapps.com/data/app-statistics/

App Downloads Data (2025)

Explore at:
190 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Aug 1, 2025
Dataset authored and provided by
Business of Apps
License

Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically

Description

App Download Key StatisticsApp and Game DownloadsiOS App and Game DownloadsGoogle Play App and Game DownloadsGame DownloadsiOS Game DownloadsGoogle Play Game DownloadsApp DownloadsiOS App...

Search
Clear search
Close search
Google apps
Main menu