This graph shows the population of the U.S. by race and ethnic group from 2000 to 2023. In 2023, there were around 21.39 million people of Asian origin living in the United States. A ranking of the most spoken languages across the world can be accessed here. U.S. populationCurrently, the white population makes up the vast majority of the United States’ population, accounting for some 252.07 million people in 2023. This ethnicity group contributes to the highest share of the population in every region, but is especially noticeable in the Midwestern region. The Black or African American resident population totaled 45.76 million people in the same year. The overall population in the United States is expected to increase annually from 2022, with the 320.92 million people in 2015 expected to rise to 341.69 million people by 2027. Thus, population densities have also increased, totaling 36.3 inhabitants per square kilometer as of 2021. Despite being one of the most populous countries in the world, following China and India, the United States is not even among the top 150 most densely populated countries due to its large land mass. Monaco is the most densely populated country in the world and has a population density of 24,621.5 inhabitants per square kilometer as of 2021. As population numbers in the U.S. continues to grow, the Hispanic population has also seen a similar trend from 35.7 million inhabitants in the country in 2000 to some 62.65 million inhabitants in 2021. This growing population group is a significant source of population growth in the country due to both high immigration and birth rates. The United States is one of the most racially diverse countries in the world.
In 2023, **** percent of Black people living in the United States were living below the poverty line, compared to *** percent of white people. That year, the total poverty rate in the U.S. across all races and ethnicities was **** percent. Poverty in the United States Single people in the United States making less than ****** U.S. dollars a year and families of four making less than ****** U.S. dollars a year are considered to be below the poverty line. Women and children are more likely to suffer from poverty, due to women staying home more often than men to take care of children, and women suffering from the gender wage gap. Not only are women and children more likely to be affected, racial minorities are as well due to the discrimination they face. Poverty data Despite being one of the wealthiest nations in the world, the United States had the third highest poverty rate out of all OECD countries in 2019. However, the United States' poverty rate has been fluctuating since 1990, but has been decreasing since 2014. The average median household income in the U.S. has remained somewhat consistent since 1990, but has recently increased since 2014 until a slight decrease in 2020, potentially due to the pandemic. The state that had the highest number of people living below the poverty line in 2020 was California.
This map shows the percentage of people who identify as something other than non-Hispanic white throughout the US according to the most current American Community Survey. The pattern is shown by states, counties, and Census tracts. Zoom or search for anywhere in the US to see a local pattern. Click on an area to learn more. Filter to your area and save a new version of the map to use for your own mapping purposes.The Arcade expression used was: 100 - B03002_calc_pctNHWhiteE, which is simply 100 minus the percent of population who identifies as non-Hispanic white. The data is from the U.S. Census Bureau's American Community Survey (ACS). The figures in this map update automatically annually when the newest estimates are released by ACS. For more detailed metadata, visit the ArcGIS Living Atlas Layer: ACS Race and Hispanic Origin Variables - Boundaries.The data on race were derived from answers to the question on race that was asked of individuals in the United States. The Census Bureau collects racial data in accordance with guidelines provided by the U.S. Office of Management and Budget (OMB), and these data are based on self-identification. The racial categories included in the census questionnaire generally reflect a social definition of race recognized in this country and not an attempt to define race biologically, anthropologically, or genetically. The categories represent a social-political construct designed for collecting data on the race and ethnicity of broad population groups in this country, and are not anthropologically or scientifically based. Learn more here.Other maps of interest:American Indian or Alaska Native Population in the US (Current ACS)Asian Population in the US (Current ACS)Black or African American Population in the US (Current ACS)Hawaiian or Other Pacific Islander Population in the US (Current ACS)Hispanic or Latino Population in the US (Current ACS) (some people prefer Latinx)Population who are Some Other Race in the US (Current ACS)Population who are Two or More Races in the US (Current ACS) (some people prefer mixed race or multiracial)White Population in the US (Current ACS)Race in the US by Dot DensityWhat is the most common race/ethnicity?
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Population Level - Black or African American (LNU00000006) from Jan 1972 to Jun 2025 about African-American, civilian, population, and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of London by race. It includes the population of London across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of London across relevant racial categories.
Key observations
The percent distribution of London population by race (across all racial categories recognized by the U.S. Census Bureau): 91.78% are white, 2.40% are Black or African American, 0.12% are American Indian and Alaska Native, 1.70% are Asian, 0.14% are some other race and 3.87% are multiracial.
https://i.neilsberg.com/ch/london-oh-population-by-race.jpeg" alt="London population by race">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for London Population by Race & Ethnicity. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Ethel by race. It includes the population of Ethel across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of Ethel across relevant racial categories.
Key observations
The percent distribution of Ethel population by race (across all racial categories recognized by the U.S. Census Bureau): 74.40% are white, 25% are Black or African American and 0.60% are multiracial.
https://i.neilsberg.com/ch/ethel-ms-population-by-race.jpeg" alt="Ethel population by race">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Ethel Population by Race & Ethnicity. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Grand Rapids by race. It includes the population of Grand Rapids across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of Grand Rapids across relevant racial categories.
Key observations
The percent distribution of Grand Rapids population by race (across all racial categories recognized by the U.S. Census Bureau): 95.06% are white, 1.06% are Black or African American, 0.39% are Asian, 0.19% are some other race and 3.29% are multiracial.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Grand Rapids Population by Race & Ethnicity. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Salt Lake City by race. It includes the population of Salt Lake City across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of Salt Lake City across relevant racial categories.
Key observations
The percent distribution of Salt Lake City population by race (across all racial categories recognized by the U.S. Census Bureau): 70.50% are white, 2.73% are Black or African American, 1.18% are American Indian and Alaska Native, 5.35% are Asian, 1.44% are Native Hawaiian and other Pacific Islander, 9.22% are some other race and 9.57% are multiracial.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Salt Lake City Population by Race & Ethnicity. You can refer the same here
Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
Biometric Attack Dataset, Black People
The similar dataset that includes all ethnicities - Anti Spoofing Real Dataset
The dataset for face anti spoofing and face recognition includes images and videos of black people. The dataset helps in enchancing the performance of the model by providing wider range of data for a specific ethnic group. The videos were gathered by capturing faces of genuine individuals presenting spoofs, using facial presentations. Our dataset proposes… See the full description on the dataset page: https://huggingface.co/datasets/TrainingDataPro/black-people-liveness-detection-video-dataset.
Section 95 of the Criminal Justice Act 1991 requires the Government to publish statistical data to assess whether any discrimination exists in how the CJS treats individuals based on their ethnicity.
These statistics are used by policy makers, the agencies who comprise the CJS and others (e.g. academics, interested bodies) to monitor differences between ethnic groups, and to highlight areas where practitioners and others may wish to undertake more in-depth analysis. The identification of differences should not be equated with discrimination as there are many reasons why apparent disparities may exist. The main findings are:
The 2012/13 Crime Survey for England and Wales shows that adults from self-identified Mixed, Black and Asian ethnic groups were more at risk of being a victim of personal crime than adults from the White ethnic group. This has been consistent since 2008/09 for adults from a Mixed or Black ethnic group; and since 2010/11 for adults from an Asian ethnic group. Adults from a Mixed ethnic group had the highest risk of being a victim of personal crime in each year between 2008/09 and 2012/13.
Homicide is a rare event, therefore, homicide victims data are presented aggregated in three-year periods in order to be able to analyse the data by ethnic appearance. The most recent period for which data are available is 2009/10 to 2011/12.
The overall number of homicides has decreased over the past three three-year periods. The number of homicide victims of White and Other ethnic appearance decreased during each of these three-year periods. However the number of victims of Black ethnic appearance increased in 2006/07 to 2008/09 before falling again in 2009/10 to 2011/12.
For those homicides where there is a known suspect, the majority of victims were of the same ethnic group as the principal suspect. However, the relationship between victim and principal suspect varied across ethnic groups. In the three-year period from 2009/10 to 2011/12, for victims of White ethnic appearance the largest proportion of principal suspects were from the victim’s own family; for victims of Black ethnic appearance, the largest proportion of principal suspects were a friend or acquaintance of the victim; while for victims of Asian ethnic appearance, the largest proportion of principal suspects were strangers.
Homicide by sharp instrument was the most common method of killing for victims of White, Black and Asian ethnic appearance in the three most recent three-year periods. However, for homicide victims of White ethnic appearance hitting and kicking represented the second most common method of killing compared with shooting for victims of Black ethnic appearance, and other methods of killing for victims of Asian ethnic appearance.
In 2011/12, a person aged ten or older (the age of criminal responsibility), who self-identified as belonging to the Black ethnic group was six times more likely than a White person to be stopped and searched under section 1 (s1) of the Police and Criminal Evidence Act 1984 and other legislation in England and Wales; persons from the Asian or Mixed ethnic group were just over two times more likely to be stopped and searched than a White person.
Despite an increase across all ethnic groups in the number of stops and searches conducted under s1 powers between 2007/08 and 2011/12, the number of resultant arrests decreased across most ethnic groups. Just under one in ten stop and searches in 2011/12 under s1 powers resulted in an arrest in the White and Black self-identified ethnic groups, compared with 12% in 2007/08. The proportion of resultant arrests has been consistently lower for the Asian self-identified ethnic group.
In 2011/12, for those aged 10 or older, a Black person was nearly three times more likely to be arrested per 1,000 population than a White person, while a person from the Mixed ethnic group was twice as likely. There was no difference in the rate of arrests between Asian and White persons.
The number of arrests decreased in each year between 2008/09 and 2011/12, consistent with a downward trend in police recorded crime since 2004/05. Overall, the number of arrests decreased for all ethnic groups between 2008/09 and 2011/12, however arrests of suspects from the Black, Asian and Mixed ethnic groups peaked in 2010/11.
Arrests for drug offences and sexual offences increased for suspects in all ethnic groups except the Chinese or Other ethnic group between 2008/09 and 2011/12. In addition, there were increases in arrests for burglary, robbery and the other offences category for suspects from the Black and Asian ethnic groups.
The use of out of court disposals (Penalty Notices for Disorder and caution
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Homeownership Rates by Race and Ethnicity: Black Alone in the United States (BOAAAHORUSQ156N) from Q1 1994 to Q1 2025 about homeownership, African-American, rate, and USA.
In 2024, more than ** percent of people employed in the motion picture and video industries in the United States identified as white. About one out of ten employees identified as Black or African American. That same year, almost ********** of employees in the U.S. film industry were male.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of West Virginia by race. It includes the population of West Virginia across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of West Virginia across relevant racial categories.
Key observations
The percent distribution of West Virginia population by race (across all racial categories recognized by the U.S. Census Bureau): 91.43% are white, 3.41% are Black or African American, 0.10% are American Indian and Alaska Native, 0.76% are Asian, 0.04% are Native Hawaiian and other Pacific Islander, 0.53% are some other race and 3.73% are multiracial.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for West Virginia Population by Race & Ethnicity. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Arkansas County by race. It includes the population of Arkansas County across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of Arkansas County across relevant racial categories.
Key observations
The percent distribution of Arkansas County population by race (across all racial categories recognized by the U.S. Census Bureau): 70.45% are white, 25.75% are Black or African American, 0.10% are American Indian and Alaska Native, 0.08% are Asian, 0.67% are some other race and 2.95% are multiracial.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Arkansas County Population by Race & Ethnicity. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Russia town by race. It includes the population of Russia town across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of Russia town across relevant racial categories.
Key observations
The percent distribution of Russia town population by race (across all racial categories recognized by the U.S. Census Bureau): 93.32% are white, 1.53% are Black or African American, 1.36% are American Indian and Alaska Native, 0.25% are Asian and 3.55% are multiracial.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Russia town Population by Race & Ethnicity. You can refer the same here
In the fiscal year of 2019, 21.39 percent of active-duty enlisted women were of Hispanic origin. The total number of active duty military personnel in 2019 amounted to 1.3 million people.
Ethnicities in the United States The United States is known around the world for the diversity of its population. The Census recognizes six different racial and ethnic categories: White American, Native American and Alaska Native, Asian American, Black or African American, Native Hawaiian and Other Pacific Islander. People of Hispanic or Latino origin are classified as a racially diverse ethnicity.
The largest part of the population, about 61.3 percent, is composed of White Americans. The largest minority in the country are Hispanics with a share of 17.8 percent of the population, followed by Black or African Americans with 13.3 percent. Life in the U.S. and ethnicity However, life in the United States seems to be rather different depending on the race or ethnicity that you belong to. For instance: In 2019, native Hawaiians and other Pacific Islanders had the highest birth rate of 58 per 1,000 women, while the birth rae of white alone, non Hispanic women was 49 children per 1,000 women.
The Black population living in the United States has the highest poverty rate with of all Census races and ethnicities in the United States. About 19.5 percent of the Black population was living with an income lower than the 2020 poverty threshold. The Asian population has the smallest poverty rate in the United States, with about 8.1 percent living in poverty.
The median annual family income in the United States in 2020 earned by Black families was about 57,476 U.S. dollars, while the average family income earned by the Asian population was about 109,448 U.S. dollars. This is more than 25,000 U.S. dollars higher than the U.S. average family income, which was 84,008 U.S. dollars.
Race distribution : Asians, Caucasians, black people
Gender distribution : gender balance
Age distribution : ranging from teenager to the elderly, the middle-aged and young people are the majorities
Collecting environment : including indoor and outdoor scenes
Data diversity : different shooting heights, different ages, different light conditions, different collecting environment, clothes in different seasons, multiple human poses
Device : cameras
Data format : the data format is .jpg/mp4, the annotation file format is .json, the camera parameter file format is .json, the point cloud file format is .pcd
Accuracy : based on the accuracy of the poses, the accuracy exceeds 97%;the accuracy of labels of gender, race, age, collecting environment and clothes are more than 97%
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Congress by race. It includes the population of Congress across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of Congress across relevant racial categories.
Key observations
The percent distribution of Congress population by race (across all racial categories recognized by the U.S. Census Bureau): 96.51% are white and 3.49% are multiracial.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Congress Population by Race & Ethnicity. You can refer the same here
Biennial statistics on the representation of Black, Asian and Minority Ethnic groups as victims, suspects, offenders and employees in the Criminal Justice System.
These reports are released by the Ministry of Justice and produced in accordance with arrangements approved by the UK Statistics Authority.
This report provides information about how members of Black, Asian and Minority Ethnic (BME) Groups in England and Wales were represented in the Criminal Justice System (CJS) in the most recent year for which data were available, and, wherever possible, across the last five years. Section 95 of the Criminal Justice Act 1991 requires the Government to publish statistical data to assess whether any discrimination exists in how the CJS treats people based on their race.
These statistics are used by policy makers, the agencies who comprise the CJS and others to monitor differences between ethnic groups and where practitioners and others may wish to undertake more in-depth analysis. The identification of differences should not be equated with discrimination as there are many reasons why apparent disparities may exist.
The most recent data on victims showed differences in the risks of crime between ethnic groups and, for homicides, in the relationship between victims and offenders. Overall, the number of racist incidents and racially or religiously aggravated offences recorded by the police had decreased over the last five years. Key Points:
Per 1,000 population, higher rates of s1 Stop and Searches were recorded for all BME groups (except for Chinese or Other) than for the White group. While there were decreases across the last five years in the overall number of arrests and in arrests of White people, arrests of those in the Black and Asian group increased.
Data on out of court disposals and court proceedings show some differences in the sanctions issued to people of differing ethnicity and also in sentence lengths. These differences are likely to relate to a range of factors including variations in the types of offences committed and the plea entered, and should therefore be treated with caution. Key points:
Racial disparities arise across many vital areas of American life, including employment, health, and interpersonal treatment. For example, 1 in 3 Black children live in poverty (vs. 1 in 9 White children) and on average, Black Americans live 4 fewer years than White Americans. Which disparity is more likely to spark reduction efforts? We find that highlighting disparities in health-related (vs. economic) outcomes spurs greater social media engagement and support for disparity-mitigating policy. Further, reading about racial health disparities elicits greater support for action (e.g., protesting) than economic or belonging-based disparities. This occurs, in part, because people view health disparities as violating morally-sacred values which enhances perceived injustice. This work elucidates which manifestations of racial inequality are most likely to prompt Americans to action., The data from Studies 1a, 1b, 3, 4a, and 4b were collected via online platfroms (i.e., Mturk.com, Prolific Academic, and NORC’s AmeriSpeak Panel). All analyses were run in R with the R code provided (title: Health_Disparities_Syntax.R)., , # Highlighting Health Consequences of Racial Disparities Sparks Support for Action
There are a total of 5 datasets available (Studies 1a, 1b, 3, 4a, 4b) each collected by the researchers from online survey platforms. All data files are .sav files. We recommed using SPSS or RStudio to work with the data. We provide our code using RStudio and a codebook with the name of all variables in each dataset.
Study 1a and Study 1b utilized a within-subjects experimental design (S1a: N=191; S1b, preregistered: N=337, 50% White participants, 50% Black participants) where samples of U.S. citizens recruited from MTurk.com and Prolific Academic read nine examples of racial disparities, three each from the domains of health, economics, and belonging. After each example, participants reported whether the disparity was unjust and fair (reverse-coded; 2-items averaged to create a perceived injustice scale). Participants also indicated their agreement (1=s...
This graph shows the population of the U.S. by race and ethnic group from 2000 to 2023. In 2023, there were around 21.39 million people of Asian origin living in the United States. A ranking of the most spoken languages across the world can be accessed here. U.S. populationCurrently, the white population makes up the vast majority of the United States’ population, accounting for some 252.07 million people in 2023. This ethnicity group contributes to the highest share of the population in every region, but is especially noticeable in the Midwestern region. The Black or African American resident population totaled 45.76 million people in the same year. The overall population in the United States is expected to increase annually from 2022, with the 320.92 million people in 2015 expected to rise to 341.69 million people by 2027. Thus, population densities have also increased, totaling 36.3 inhabitants per square kilometer as of 2021. Despite being one of the most populous countries in the world, following China and India, the United States is not even among the top 150 most densely populated countries due to its large land mass. Monaco is the most densely populated country in the world and has a population density of 24,621.5 inhabitants per square kilometer as of 2021. As population numbers in the U.S. continues to grow, the Hispanic population has also seen a similar trend from 35.7 million inhabitants in the country in 2000 to some 62.65 million inhabitants in 2021. This growing population group is a significant source of population growth in the country due to both high immigration and birth rates. The United States is one of the most racially diverse countries in the world.