100+ datasets found
  1. u

    Amazon review data 2018

    • cseweb.ucsd.edu
    • nijianmo.github.io
    • +1more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UCSD CSE Research Project, Amazon review data 2018 [Dataset]. https://cseweb.ucsd.edu/~jmcauley/datasets/amazon_v2/
    Explore at:
    Dataset authored and provided by
    UCSD CSE Research Project
    Description

    Context

    This Dataset is an updated version of the Amazon review dataset released in 2014. As in the previous version, this dataset includes reviews (ratings, text, helpfulness votes), product metadata (descriptions, category information, price, brand, and image features), and links (also viewed/also bought graphs). In addition, this version provides the following features:

    • More reviews:

      • The total number of reviews is 233.1 million (142.8 million in 2014).
    • New reviews:

      • Current data includes reviews in the range May 1996 - Oct 2018.
    • Metadata: - We have added transaction metadata for each review shown on the review page.

      • Added more detailed metadata of the product landing page.

    Acknowledgements

    If you publish articles based on this dataset, please cite the following paper:

    • Jianmo Ni, Jiacheng Li, Julian McAuley. Justifying recommendations using distantly-labeled reviews and fined-grained aspects. EMNLP, 2019.
  2. Trustpilot reviews data in CSV format

    • crawlfeeds.com
    csv, zip
    Updated May 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Crawl Feeds (2025). Trustpilot reviews data in CSV format [Dataset]. https://crawlfeeds.com/datasets/trustpilot-reviews-data-in-csv-format
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    May 8, 2025
    Dataset authored and provided by
    Crawl Feeds
    License

    https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy

    Description

    Access our Trustpilot Reviews Data in CSV Format, offering a comprehensive collection of customer reviews from Trustpilot.

    This dataset includes detailed reviews, ratings, and feedback across various industries and businesses. Available in a convenient CSV format, it is ideal for market research, sentiment analysis, and competitive benchmarking.

    Leverage this data to gain insights into customer satisfaction, identify trends, and enhance your business strategies. Whether you're analyzing consumer sentiment or conducting competitive analysis, this dataset provides valuable information to support your needs.

  3. d

    Statistics review 2: Samples and populations

    • catalog.data.gov
    • data.virginia.gov
    • +1more
    Updated Jul 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institutes of Health (2025). Statistics review 2: Samples and populations [Dataset]. https://catalog.data.gov/dataset/statistics-review-2-samples-and-populations
    Explore at:
    Dataset updated
    Jul 24, 2025
    Dataset provided by
    National Institutes of Health
    Description

    The previous review in this series introduced the notion of data description and outlined some of the more common summary measures used to describe a dataset. However, a dataset is typically only of interest for the information it provides regarding the population from which it was drawn. The present review focuses on estimation of population values from a sample.

  4. Sites or apps used to evaluate local businesses in the U.S. 2023

    • statista.com
    Updated Feb 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). Sites or apps used to evaluate local businesses in the U.S. 2023 [Dataset]. https://www.statista.com/statistics/315756/local-business-recommendation-methods/
    Explore at:
    Dataset updated
    Feb 15, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2023
    Area covered
    United States
    Description

    A November 2021 survey of online users in the United States found that 81 percent of respondents had used Google as a tool to evaluate local businesses in the past 12 months. Yelp was ranked second with over half of respondents using the review platform for such purpose.

  5. u

    Social Recommendation Data

    • cseweb.ucsd.edu
    json
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UCSD CSE Research Project, Social Recommendation Data [Dataset]. https://cseweb.ucsd.edu/~jmcauley/datasets.html
    Explore at:
    jsonAvailable download formats
    Dataset authored and provided by
    UCSD CSE Research Project
    Description

    These datasets include ratings as well as social (or trust) relationships between users. Data are from LibraryThing (a book review website) and epinions (general consumer reviews).

    Metadata includes

    • reviews

    • price paid (epinions)

    • helpfulness votes (librarything)

    • flags (librarything)

  6. i

    E-commerce Product Reviews Dataset for Hybrid Data Quality Validation

    • ieee-dataport.org
    Updated Aug 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dinesh Eswararaj (2025). E-commerce Product Reviews Dataset for Hybrid Data Quality Validation [Dataset]. https://ieee-dataport.org/documents/e-commerce-product-reviews-dataset-hybrid-data-quality-validation
    Explore at:
    Dataset updated
    Aug 1, 2025
    Authors
    Dinesh Eswararaj
    Description

    Python scripts

  7. d

    2005 - 2017 School Quality Review Ratings

    • catalog.data.gov
    • data.cityofnewyork.us
    • +1more
    Updated Nov 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofnewyork.us (2024). 2005 - 2017 School Quality Review Ratings [Dataset]. https://catalog.data.gov/dataset/2005-2017-school-quality-review-ratings
    Explore at:
    Dataset updated
    Nov 29, 2024
    Dataset provided by
    data.cityofnewyork.us
    Description

    Yearly data of Quality Review ratings from 2005 to 2017

  8. Movie review readers U.S. 2018, by age group

    • statista.com
    Updated Jul 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Movie review readers U.S. 2018, by age group [Dataset]. https://www.statista.com/statistics/899009/reading-reviews-before-viewing-movie-united-states-by-age/
    Explore at:
    Dataset updated
    Jul 11, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Aug 21, 2018
    Area covered
    United States
    Description

    This statistic shows the share of adults who read reviews before watching a movie in the United States as of August 2018, broken down by age group. The findings show that ** percent of respondents aged between 45 and 54 years old said they always read movie reviews before seeing a movie, the largest share amongst all age groups surveyed by the source. Interestingly, the share of respondents who said that they sometimes read a film review before viewing the film is the same for 18 to 24 year olds and those ages 55 or above.

  9. b

    Amazon reviews Dataset

    • brightdata.com
    .json, .csv, .xlsx
    Updated Mar 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2023). Amazon reviews Dataset [Dataset]. https://brightdata.com/products/datasets/amazon/reviews
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset updated
    Mar 21, 2023
    Dataset authored and provided by
    Bright Data
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide
    Description

    Utilize our Amazon reviews dataset for diverse applications to enrich business strategies and market insights. Analyzing this dataset can aid in understanding customer behavior, product performance, and market trends, empowering organizations to refine their product and marketing strategies. Access the entire dataset or tailor a subset to fit your requirements. Popular use cases include: Product Performance Analysis: Analyze Amazon reviews to assess product performance, uncovering customer satisfaction levels, common issues, and highly praised features to inform product improvements and marketing messages. Customer Behavior Insights: Gain insights into customer behavior, purchasing patterns, and preferences, enabling more personalized marketing and product recommendations. Demand Forecasting: Leverage Amazon reviews to predict future product demand by analyzing historical review data and identifying trends, helping to optimize inventory management and sales strategies. Accessing and analyzing the Amazon reviews dataset supports market strategy optimization by leveraging insights to analyze key market trends and customer preferences, enhancing overall business decision-making.

  10. i

    Bangladesh Airlines Sentiment Review Dataset

    • ieee-dataport.org
    Updated Oct 25, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Khan Md Hasib (2022). Bangladesh Airlines Sentiment Review Dataset [Dataset]. https://ieee-dataport.org/documents/bangladesh-airlines-sentiment-review-dataset
    Explore at:
    Dataset updated
    Oct 25, 2022
    Authors
    Khan Md Hasib
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Air travel is one of the most used ways of transit in our daily lives. So it's no wonder that more and more people are sharing their experiences with airlines and airports using web-based online surveys. This dataset aims to do topic modeling and sentiment analysis on Skytrax (airlinequality.com) and Tripadvisor (tripadvisor.com) postings where there is a lot of interest and engagement from people who have used it or want to use it for airlines.

  11. Influence of travel review sites on holiday decision making in the UK...

    • statista.com
    Updated Jul 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Influence of travel review sites on holiday decision making in the UK 2018-2019 [Dataset]. https://www.statista.com/statistics/321500/influence-of-travel-review-sites-on-holiday-decision-making-united-kingdom-uk/
    Explore at:
    Dataset updated
    Jul 8, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2018 - Jan 2019
    Area covered
    United Kingdom
    Description

    In 2019, ** percent of UK holidaymakers used online review sites for destination information and accommodation reviews. However fewer respondents (** percent) said that they trusted online reviews to give an accurate reflection.

  12. T

    imdb_reviews

    • tensorflow.org
    • kaggle.com
    Updated Sep 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). imdb_reviews [Dataset]. https://www.tensorflow.org/datasets/catalog/imdb_reviews
    Explore at:
    Dataset updated
    Sep 20, 2024
    Description

    Large Movie Review Dataset. This is a dataset for binary sentiment classification containing substantially more data than previous benchmark datasets. We provide a set of 25,000 highly polar movie reviews for training, and 25,000 for testing. There is additional unlabeled data for use as well.

    To use this dataset:

    import tensorflow_datasets as tfds
    
    ds = tfds.load('imdb_reviews', split='train')
    for ex in ds.take(4):
     print(ex)
    

    See the guide for more informations on tensorflow_datasets.

  13. f

    Data from: Evaluation of classification techniques for identifying fake...

    • scielo.figshare.com
    jpeg
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andrey Schmidt dos Santos; Luis Felipe Riehs Camargo; Daniel Pacheco Lacerda (2023). Evaluation of classification techniques for identifying fake reviews about products and services on the internet [Dataset]. http://doi.org/10.6084/m9.figshare.14283143.v1
    Explore at:
    jpegAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    SciELO journals
    Authors
    Andrey Schmidt dos Santos; Luis Felipe Riehs Camargo; Daniel Pacheco Lacerda
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Abstract: With the e-commerce growth, more people are buying products over the internet. To increase customer satisfaction, merchants provide spaces for product and service reviews. Products with positive reviews attract customers, while products with negative reviews lose customers. Following this idea, some individuals and corporations write fake reviews to promote their products and services or defame their competitors. The difficulty for finding these reviews was in the large amount of information available. One solution is to use data mining techniques and tools, such as the classification function. Exploring this situation, the present work evaluates classification techniques to identify fake reviews about products and services on the Internet. The research also presents a literature systematic review on fake reviews. The research used 8 classification algorithms. The algorithms were trained and tested with a hotels database. The CONCENSO algorithm presented the best result, with 88% in the precision indicator. After the first test, the algorithms classified reviews on another hotels database. To compare the results of this new classification, the Review Skeptic algorithm was used. The SVM and GLMNET algorithms presented the highest convergence with the Review Skeptic algorithm, classifying 83% of reviews with the same result. The research contributes by demonstrating the algorithms ability to understand consumers’ real reviews to products and services on the Internet. Another contribution is to be the pioneer in the investigation of fake reviews in Brazil and in production engineering.

  14. Complaints Statistics | DATA.GOV.HK

    • data.gov.hk
    Updated Sep 16, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.gov.hk (2020). Complaints Statistics | DATA.GOV.HK [Dataset]. https://data.gov.hk/en-data/dataset/cc-complaints-complaints-statistics
    Explore at:
    Dataset updated
    Sep 16, 2020
    Dataset provided by
    data.gov.hk
    Description

    Complaint Statistics of Recent 3 Years Owner of the Intellectual Property Rights for this Dataset: Consumer Council

  15. d

    Consumer Review Data & Ratings, Business Listings Data from Yelp | Real-Time...

    • datarade.ai
    .json, .csv
    Updated May 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OpenWeb Ninja (2024). Consumer Review Data & Ratings, Business Listings Data from Yelp | Real-Time API [Dataset]. https://datarade.ai/data-products/openweb-ninja-yelp-customer-review-data-ratings-local-bu-openweb-ninja
    Explore at:
    .json, .csvAvailable download formats
    Dataset updated
    May 20, 2024
    Dataset authored and provided by
    OpenWeb Ninja
    Area covered
    Turks and Caicos Islands, Mayotte, Åland Islands, Barbados, Algeria, Côte d'Ivoire, Micronesia (Federated States of), Turkmenistan, Anguilla, Kosovo
    Description

    You can analyze the Yelp's data the OpenWeb Ninja API provides to gain insights into the business world. This includes looking at market trends, identifying popular business categories, reading customer reviews and ratings, and understanding the factors that contribute to business success or failure.

    The dataset includes all key business listings data & consumer review data:

    Business Type, Description, Categories, Location, Consumer Review Data, Review Rating, Review Reactions, Review Author Information, Licenses, Highlights, and more!

  16. Review of hedonic quality adjustment in UK consumer price statistics and...

    • ckan.publishing.service.gov.uk
    Updated Mar 13, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.publishing.service.gov.uk (2014). Review of hedonic quality adjustment in UK consumer price statistics and internationally - Dataset - data.gov.uk [Dataset]. https://ckan.publishing.service.gov.uk/dataset/review_of_hedonic_quality_adjustment_in_uk_consumer_price_statistics_and_internationally
    Explore at:
    Dataset updated
    Mar 13, 2014
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Area covered
    United Kingdom
    Description

    Hedonic quality adjustment was first introduced in the Consumer Prices Index (CPI) in 2003 for PCs. Since then the use of hedonics has expanded in UK consumer price statistics to include a further five technology products; digital cameras, laptops, mobile phones, pay as you go phones, smartphones and tablet PCs. This article reviews the use of hedonic quality adjustment in consumer price indices in the UK and internationally. It also details the reasons for changing the method of quality adjustment for pay-as-you-go phones and digital cameras, from hedonic adjustment to class mean imputation, from March 2014 onwards. Source agency: Office for National Statistics Designation: National Statistics Language: English Alternative title: Review of hedonic quality adjustment

  17. h

    amazon_us_reviews

    • huggingface.co
    • tensorflow.org
    Updated Jun 30, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Polina Kazakova (2023). amazon_us_reviews [Dataset]. https://huggingface.co/datasets/polinaeterna/amazon_us_reviews
    Explore at:
    Dataset updated
    Jun 30, 2023
    Authors
    Polina Kazakova
    License

    https://choosealicense.com/licenses/other/https://choosealicense.com/licenses/other/

    Description

    Amazon Customer Reviews (a.k.a. Product Reviews) is one of Amazons iconic products. In a period of over two decades since the first review in 1995, millions of Amazon customers have contributed over a hundred million reviews to express opinions and describe their experiences regarding products on the Amazon.com website. This makes Amazon Customer Reviews a rich source of information for academic researchers in the fields of Natural Language Processing (NLP), Information Retrieval (IR), and Machine Learning (ML), amongst others. Accordingly, we are releasing this data to further research in multiple disciplines related to understanding customer product experiences. Specifically, this dataset was constructed to represent a sample of customer evaluations and opinions, variation in the perception of a product across geographical regions, and promotional intent or bias in reviews.

    Over 130+ million customer reviews are available to researchers as part of this release. The data is available in TSV files in the amazon-reviews-pds S3 bucket in AWS US East Region. Each line in the data files corresponds to an individual review (tab delimited, with no quote and escape characters).

    Each Dataset contains the following columns:

    • marketplace: 2 letter country code of the marketplace where the review was written.
    • customer_id: Random identifier that can be used to aggregate reviews written by a single author.
    • review_id: The unique ID of the review.
    • product_id: The unique Product ID the review pertains to. In the multilingual dataset the reviews for the same product in different countries can be grouped by the same product_id.
    • product_parent: Random identifier that can be used to aggregate reviews for the same product.
    • product_title: Title of the product.
    • product_category: Broad product category that can be used to group reviews (also used to group the dataset into coherent parts).
    • star_rating: The 1-5 star rating of the review.
    • helpful_votes: Number of helpful votes.
    • total_votes: Number of total votes the review received.
    • vine: Review was written as part of the Vine program.
    • verified_purchase: The review is on a verified purchase.
    • review_headline: The title of the review.
    • review_body: The review text.
    • review_date: The date the review was written.
  18. h

    Amazon-Reviews-2023

    • huggingface.co
    Updated Sep 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    McAuley-Lab (2023). Amazon-Reviews-2023 [Dataset]. https://huggingface.co/datasets/McAuley-Lab/Amazon-Reviews-2023
    Explore at:
    Dataset updated
    Sep 15, 2023
    Dataset authored and provided by
    McAuley-Lab
    Description

    Amazon Review 2023 is an updated version of the Amazon Review 2018 dataset. This dataset mainly includes reviews (ratings, text) and item metadata (desc- riptions, category information, price, brand, and images). Compared to the pre- vious versions, the 2023 version features larger size, newer reviews (up to Sep 2023), richer and cleaner meta data, and finer-grained timestamps (from day to milli-second).

  19. i

    Data for review of submission TII-24-4657

    • ieee-dataport.org
    Updated Jan 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GAO QIU (2025). Data for review of submission TII-24-4657 [Dataset]. https://ieee-dataport.org/documents/data-review-submission-tii-24-4657
    Explore at:
    Dataset updated
    Jan 2, 2025
    Authors
    GAO QIU
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    MAGL is proposed to enable adaptive jump over DC control modes.

  20. Non-domestic rating: challenges and changes, 2017 and 2010 rating lists,...

    • gov.uk
    Updated Nov 22, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Valuation Office Agency (2018). Non-domestic rating: challenges and changes, 2017 and 2010 rating lists, September 2018 (experimental) [Dataset]. https://www.gov.uk/government/statistics/non-domestic-rating-challenges-and-changes-2017-and-2010-rating-lists-september-2018-experimental
    Explore at:
    Dataset updated
    Nov 22, 2018
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Valuation Office Agency
    Description

    Released: 22 November 2018 Next Release: February 2019 Frequency of release: Quarterly Coverage: England and Wales

    This release includes statistics relating to checks and challenges under the new Check Challenge Appeal (CCA) system used for the 2017 rating list in England.

    This release also contains statistics on challenges against, and changes made to, the 2010 rating lists for England and Wales and challenges against the 2017 rating list for Wales only up to 30 September 2018. Statistics on reviews of (changes to) the 2017 rating list for England and Wales are also included.

    Note: This release includes a correction of two numbers in Table 2.1 of Checks, Challenges and Changes against the 2017 Local Rating List, England. A production error resulted in an incorrect number of checks registered in September 2018 and an incorrect number of checks registered to date. No other statistics were impacted by this error.

    These statistics will be expanded in future releases depending on user needs, and data availability and quality. There will be an update of the full publication in February 2019.

    This publication is labelled as “experimental”, consistent with the UK Statistics Authority guidance on new statistical outputs. This helps users to identify those new official statistics that are undergoing evaluation and where we’re actively inviting feedback on their usefulness. Comments, which will help inform future releases, may be sent to statistics@voa.gsi.gov.uk.

    The “experimental” classification should not be interpreted as a qualifier of the content itself: all the statistical tables released are based on sound methods and assured quality, consistent with the Code of Practice for official statistics. However, during the “experimental” period the VOA will continue to develop the publication, and so the presentation and content is liable to change. Content may be added to or replaced by equivalent statistics if other forms are found to be more useful or reliable.

    Published 22 November 2018

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
UCSD CSE Research Project, Amazon review data 2018 [Dataset]. https://cseweb.ucsd.edu/~jmcauley/datasets/amazon_v2/

Amazon review data 2018

Explore at:
90 scholarly articles cite this dataset (View in Google Scholar)
Dataset authored and provided by
UCSD CSE Research Project
Description

Context

This Dataset is an updated version of the Amazon review dataset released in 2014. As in the previous version, this dataset includes reviews (ratings, text, helpfulness votes), product metadata (descriptions, category information, price, brand, and image features), and links (also viewed/also bought graphs). In addition, this version provides the following features:

  • More reviews:

    • The total number of reviews is 233.1 million (142.8 million in 2014).
  • New reviews:

    • Current data includes reviews in the range May 1996 - Oct 2018.
  • Metadata: - We have added transaction metadata for each review shown on the review page.

    • Added more detailed metadata of the product landing page.

Acknowledgements

If you publish articles based on this dataset, please cite the following paper:

  • Jianmo Ni, Jiacheng Li, Julian McAuley. Justifying recommendations using distantly-labeled reviews and fined-grained aspects. EMNLP, 2019.
Search
Clear search
Close search
Google apps
Main menu