This Dataset is an updated version of the Amazon review dataset released in 2014. As in the previous version, this dataset includes reviews (ratings, text, helpfulness votes), product metadata (descriptions, category information, price, brand, and image features), and links (also viewed/also bought graphs). In addition, this version provides the following features:
More reviews:
New reviews:
Metadata: - We have added transaction metadata for each review shown on the review page.
If you publish articles based on this dataset, please cite the following paper:
https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy
Access our Trustpilot Reviews Data in CSV Format, offering a comprehensive collection of customer reviews from Trustpilot.
This dataset includes detailed reviews, ratings, and feedback across various industries and businesses. Available in a convenient CSV format, it is ideal for market research, sentiment analysis, and competitive benchmarking.
Leverage this data to gain insights into customer satisfaction, identify trends, and enhance your business strategies. Whether you're analyzing consumer sentiment or conducting competitive analysis, this dataset provides valuable information to support your needs.
The previous review in this series introduced the notion of data description and outlined some of the more common summary measures used to describe a dataset. However, a dataset is typically only of interest for the information it provides regarding the population from which it was drawn. The present review focuses on estimation of population values from a sample.
A November 2021 survey of online users in the United States found that 81 percent of respondents had used Google as a tool to evaluate local businesses in the past 12 months. Yelp was ranked second with over half of respondents using the review platform for such purpose.
These datasets include ratings as well as social (or trust) relationships between users. Data are from LibraryThing (a book review website) and epinions (general consumer reviews).
Metadata includes
reviews
price paid (epinions)
helpfulness votes (librarything)
flags (librarything)
Python scripts
Yearly data of Quality Review ratings from 2005 to 2017
This statistic shows the share of adults who read reviews before watching a movie in the United States as of August 2018, broken down by age group. The findings show that ** percent of respondents aged between 45 and 54 years old said they always read movie reviews before seeing a movie, the largest share amongst all age groups surveyed by the source. Interestingly, the share of respondents who said that they sometimes read a film review before viewing the film is the same for 18 to 24 year olds and those ages 55 or above.
https://brightdata.com/licensehttps://brightdata.com/license
Utilize our Amazon reviews dataset for diverse applications to enrich business strategies and market insights. Analyzing this dataset can aid in understanding customer behavior, product performance, and market trends, empowering organizations to refine their product and marketing strategies. Access the entire dataset or tailor a subset to fit your requirements. Popular use cases include: Product Performance Analysis: Analyze Amazon reviews to assess product performance, uncovering customer satisfaction levels, common issues, and highly praised features to inform product improvements and marketing messages. Customer Behavior Insights: Gain insights into customer behavior, purchasing patterns, and preferences, enabling more personalized marketing and product recommendations. Demand Forecasting: Leverage Amazon reviews to predict future product demand by analyzing historical review data and identifying trends, helping to optimize inventory management and sales strategies. Accessing and analyzing the Amazon reviews dataset supports market strategy optimization by leveraging insights to analyze key market trends and customer preferences, enhancing overall business decision-making.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Air travel is one of the most used ways of transit in our daily lives. So it's no wonder that more and more people are sharing their experiences with airlines and airports using web-based online surveys. This dataset aims to do topic modeling and sentiment analysis on Skytrax (airlinequality.com) and Tripadvisor (tripadvisor.com) postings where there is a lot of interest and engagement from people who have used it or want to use it for airlines.
In 2019, ** percent of UK holidaymakers used online review sites for destination information and accommodation reviews. However fewer respondents (** percent) said that they trusted online reviews to give an accurate reflection.
Large Movie Review Dataset. This is a dataset for binary sentiment classification containing substantially more data than previous benchmark datasets. We provide a set of 25,000 highly polar movie reviews for training, and 25,000 for testing. There is additional unlabeled data for use as well.
To use this dataset:
import tensorflow_datasets as tfds
ds = tfds.load('imdb_reviews', split='train')
for ex in ds.take(4):
print(ex)
See the guide for more informations on tensorflow_datasets.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract: With the e-commerce growth, more people are buying products over the internet. To increase customer satisfaction, merchants provide spaces for product and service reviews. Products with positive reviews attract customers, while products with negative reviews lose customers. Following this idea, some individuals and corporations write fake reviews to promote their products and services or defame their competitors. The difficulty for finding these reviews was in the large amount of information available. One solution is to use data mining techniques and tools, such as the classification function. Exploring this situation, the present work evaluates classification techniques to identify fake reviews about products and services on the Internet. The research also presents a literature systematic review on fake reviews. The research used 8 classification algorithms. The algorithms were trained and tested with a hotels database. The CONCENSO algorithm presented the best result, with 88% in the precision indicator. After the first test, the algorithms classified reviews on another hotels database. To compare the results of this new classification, the Review Skeptic algorithm was used. The SVM and GLMNET algorithms presented the highest convergence with the Review Skeptic algorithm, classifying 83% of reviews with the same result. The research contributes by demonstrating the algorithms ability to understand consumers’ real reviews to products and services on the Internet. Another contribution is to be the pioneer in the investigation of fake reviews in Brazil and in production engineering.
Complaint Statistics of Recent 3 Years Owner of the Intellectual Property Rights for this Dataset: Consumer Council
You can analyze the Yelp's data the OpenWeb Ninja API provides to gain insights into the business world. This includes looking at market trends, identifying popular business categories, reading customer reviews and ratings, and understanding the factors that contribute to business success or failure.
The dataset includes all key business listings data & consumer review data:
Business Type, Description, Categories, Location, Consumer Review Data, Review Rating, Review Reactions, Review Author Information, Licenses, Highlights, and more!
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Hedonic quality adjustment was first introduced in the Consumer Prices Index (CPI) in 2003 for PCs. Since then the use of hedonics has expanded in UK consumer price statistics to include a further five technology products; digital cameras, laptops, mobile phones, pay as you go phones, smartphones and tablet PCs. This article reviews the use of hedonic quality adjustment in consumer price indices in the UK and internationally. It also details the reasons for changing the method of quality adjustment for pay-as-you-go phones and digital cameras, from hedonic adjustment to class mean imputation, from March 2014 onwards. Source agency: Office for National Statistics Designation: National Statistics Language: English Alternative title: Review of hedonic quality adjustment
https://choosealicense.com/licenses/other/https://choosealicense.com/licenses/other/
Amazon Customer Reviews (a.k.a. Product Reviews) is one of Amazons iconic products. In a period of over two decades since the first review in 1995, millions of Amazon customers have contributed over a hundred million reviews to express opinions and describe their experiences regarding products on the Amazon.com website. This makes Amazon Customer Reviews a rich source of information for academic researchers in the fields of Natural Language Processing (NLP), Information Retrieval (IR), and Machine Learning (ML), amongst others. Accordingly, we are releasing this data to further research in multiple disciplines related to understanding customer product experiences. Specifically, this dataset was constructed to represent a sample of customer evaluations and opinions, variation in the perception of a product across geographical regions, and promotional intent or bias in reviews.
Over 130+ million customer reviews are available to researchers as part of this release. The data is available in TSV files in the amazon-reviews-pds S3 bucket in AWS US East Region. Each line in the data files corresponds to an individual review (tab delimited, with no quote and escape characters).
Each Dataset contains the following columns:
Amazon Review 2023 is an updated version of the Amazon Review 2018 dataset. This dataset mainly includes reviews (ratings, text) and item metadata (desc- riptions, category information, price, brand, and images). Compared to the pre- vious versions, the 2023 version features larger size, newer reviews (up to Sep 2023), richer and cleaner meta data, and finer-grained timestamps (from day to milli-second).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
MAGL is proposed to enable adaptive jump over DC control modes.
Released: 22 November 2018 Next Release: February 2019 Frequency of release: Quarterly Coverage: England and Wales
This release includes statistics relating to checks and challenges under the new Check Challenge Appeal (CCA) system used for the 2017 rating list in England.
This release also contains statistics on challenges against, and changes made to, the 2010 rating lists for England and Wales and challenges against the 2017 rating list for Wales only up to 30 September 2018. Statistics on reviews of (changes to) the 2017 rating list for England and Wales are also included.
Note: This release includes a correction of two numbers in Table 2.1 of Checks, Challenges and Changes against the 2017 Local Rating List, England. A production error resulted in an incorrect number of checks registered in September 2018 and an incorrect number of checks registered to date. No other statistics were impacted by this error.
These statistics will be expanded in future releases depending on user needs, and data availability and quality. There will be an update of the full publication in February 2019.
This publication is labelled as “experimental”, consistent with the UK Statistics Authority guidance on new statistical outputs. This helps users to identify those new official statistics that are undergoing evaluation and where we’re actively inviting feedback on their usefulness. Comments, which will help inform future releases, may be sent to statistics@voa.gsi.gov.uk.
The “experimental” classification should not be interpreted as a qualifier of the content itself: all the statistical tables released are based on sound methods and assured quality, consistent with the Code of Practice for official statistics. However, during the “experimental” period the VOA will continue to develop the publication, and so the presentation and content is liable to change. Content may be added to or replaced by equivalent statistics if other forms are found to be more useful or reliable.
Published 22 November 2018
This Dataset is an updated version of the Amazon review dataset released in 2014. As in the previous version, this dataset includes reviews (ratings, text, helpfulness votes), product metadata (descriptions, category information, price, brand, and image features), and links (also viewed/also bought graphs). In addition, this version provides the following features:
More reviews:
New reviews:
Metadata: - We have added transaction metadata for each review shown on the review page.
If you publish articles based on this dataset, please cite the following paper: