100+ datasets found
  1. d

    Statistics review 2: Samples and populations

    • catalog.data.gov
    • data.virginia.gov
    Updated Sep 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institutes of Health (2025). Statistics review 2: Samples and populations [Dataset]. https://catalog.data.gov/dataset/statistics-review-2-samples-and-populations
    Explore at:
    Dataset updated
    Sep 6, 2025
    Dataset provided by
    National Institutes of Health
    Description

    The previous review in this series introduced the notion of data description and outlined some of the more common summary measures used to describe a dataset. However, a dataset is typically only of interest for the information it provides regarding the population from which it was drawn. The present review focuses on estimation of population values from a sample.

  2. Confidence Interval Examples

    • figshare.com
    application/cdfv2
    Updated Jun 28, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Emily Rollinson (2016). Confidence Interval Examples [Dataset]. http://doi.org/10.6084/m9.figshare.3466364.v2
    Explore at:
    application/cdfv2Available download formats
    Dataset updated
    Jun 28, 2016
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Emily Rollinson
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Examples demonstrating how confidence intervals change depending on the level of confidence (90% versus 95% versus 99%) and on the size of the sample (CI for n=20 versus n=10 versus n=2). Developed for BIO211 (Statistics and Data Analysis: A Conceptual Approach) at Stony Brook University in Fall 2015.

  3. example 1 - time series - USD RUB 1 year data

    • kaggle.com
    zip
    Updated Sep 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Denis Andrikov (2024). example 1 - time series - USD RUB 1 year data [Dataset]. https://www.kaggle.com/datasets/denisandrikov/example-1-time-series-usd-rub-1-year-data
    Explore at:
    zip(675 bytes)Available download formats
    Dataset updated
    Sep 19, 2024
    Authors
    Denis Andrikov
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    A simple table time series for school probability and statistics. We have to learn how to investigate data: value via time. What we try to do: - mean: average is the sum of all values divided by the number of values. It is also sometimes referred to as mean. - median is the middle number, when in order. Mode is the most common number. Range is the largest number minus the smallest number. - standard deviation s a measure of how dispersed the data is in relation to the mean.

  4. f

    Descriptive statistics of the sample.

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    Updated Feb 20, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Betancourt, Theresa S.; Norton, Daniel J.; McBain, Ryan; Yasamy, M. Taghi; Morris, Jodi (2013). Descriptive statistics of the sample. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001681885
    Explore at:
    Dataset updated
    Feb 20, 2013
    Authors
    Betancourt, Theresa S.; Norton, Daniel J.; McBain, Ryan; Yasamy, M. Taghi; Morris, Jodi
    Description

    aIncome per capita was measured using mean gross national income (GNI) per capita, Atlas Method, in 2010.

  5. f

    Data from: A Case Study of an Evaluation of Pen-and-Paper Homework and...

    • tandf.figshare.com
    pdf
    Updated May 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristin Lilly; Basil M. Conway (2025). A Case Study of an Evaluation of Pen-and-Paper Homework and Project-Based Learning of Statistical Literacy in an Introductory Statistics Course [Dataset]. http://doi.org/10.6084/m9.figshare.28351452.v1
    Explore at:
    pdfAvailable download formats
    Dataset updated
    May 12, 2025
    Dataset provided by
    Taylor & Francis
    Authors
    Kristin Lilly; Basil M. Conway
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Pen-and-paper homework and project-based learning are both commonly used instructional methods in introductory statistics courses. However, there have been few studies comparing these two methods exclusively. In this case study, each was used in two different sections of the same introductory statistics course at a regional state university. Students’ statistical literacy was measured by exam scores across the course, including the final. The comparison of the two instructional methods includes using descriptive statistics and two-sample t-tests, as well authors’ reflections on the instructional methods. Results indicated that there is no statistically discernible difference between the two instructional methods in the introductory statistics course.

  6. f

    Descriptive statistics of sample, split by counterbalance group.

    • datasetcatalog.nlm.nih.gov
    • figshare.com
    • +1more
    Updated Sep 29, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bingham, Geoffrey P.; Kountouriotis, Georgios K.; Mon-Williams, Mark; Snapp-Childs, Winona; Barber, Sally; Hill, Liam J. B.; Shire, Katy A. (2016). Descriptive statistics of sample, split by counterbalance group. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001821787
    Explore at:
    Dataset updated
    Sep 29, 2016
    Authors
    Bingham, Geoffrey P.; Kountouriotis, Georgios K.; Mon-Williams, Mark; Snapp-Childs, Winona; Barber, Sally; Hill, Liam J. B.; Shire, Katy A.
    Description

    Descriptive statistics of sample, split by counterbalance group.

  7. w

    Synthetic Data for an Imaginary Country, Sample, 2023 - World

    • microdata.worldbank.org
    • nada-demo.ihsn.org
    Updated Jul 7, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Development Data Group, Data Analytics Unit (2023). Synthetic Data for an Imaginary Country, Sample, 2023 - World [Dataset]. https://microdata.worldbank.org/index.php/catalog/5906
    Explore at:
    Dataset updated
    Jul 7, 2023
    Dataset authored and provided by
    Development Data Group, Data Analytics Unit
    Time period covered
    2023
    Area covered
    World
    Description

    Abstract

    The dataset is a relational dataset of 8,000 households households, representing a sample of the population of an imaginary middle-income country. The dataset contains two data files: one with variables at the household level, the other one with variables at the individual level. It includes variables that are typically collected in population censuses (demography, education, occupation, dwelling characteristics, fertility, mortality, and migration) and in household surveys (household expenditure, anthropometric data for children, assets ownership). The data only includes ordinary households (no community households). The dataset was created using REaLTabFormer, a model that leverages deep learning methods. The dataset was created for the purpose of training and simulation and is not intended to be representative of any specific country.

    The full-population dataset (with about 10 million individuals) is also distributed as open data.

    Geographic coverage

    The dataset is a synthetic dataset for an imaginary country. It was created to represent the population of this country by province (equivalent to admin1) and by urban/rural areas of residence.

    Analysis unit

    Household, Individual

    Universe

    The dataset is a fully-synthetic dataset representative of the resident population of ordinary households for an imaginary middle-income country.

    Kind of data

    ssd

    Sampling procedure

    The sample size was set to 8,000 households. The fixed number of households to be selected from each enumeration area was set to 25. In a first stage, the number of enumeration areas to be selected in each stratum was calculated, proportional to the size of each stratum (stratification by geo_1 and urban/rural). Then 25 households were randomly selected within each enumeration area. The R script used to draw the sample is provided as an external resource.

    Mode of data collection

    other

    Research instrument

    The dataset is a synthetic dataset. Although the variables it contains are variables typically collected from sample surveys or population censuses, no questionnaire is available for this dataset. A "fake" questionnaire was however created for the sample dataset extracted from this dataset, to be used as training material.

    Cleaning operations

    The synthetic data generation process included a set of "validators" (consistency checks, based on which synthetic observation were assessed and rejected/replaced when needed). Also, some post-processing was applied to the data to result in the distributed data files.

    Response rate

    This is a synthetic dataset; the "response rate" is 100%.

  8. H

    Political Analysis Using R: Example Code and Data, Plus Data for Practice...

    • dataverse.harvard.edu
    • search.dataone.org
    Updated Apr 28, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jamie Monogan (2020). Political Analysis Using R: Example Code and Data, Plus Data for Practice Problems [Dataset]. http://doi.org/10.7910/DVN/ARKOTI
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 28, 2020
    Dataset provided by
    Harvard Dataverse
    Authors
    Jamie Monogan
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Each R script replicates all of the example code from one chapter from the book. All required data for each script are also uploaded, as are all data used in the practice problems at the end of each chapter. The data are drawn from a wide array of sources, so please cite the original work if you ever use any of these data sets for research purposes.

  9. n

    Census Microdata Samples Project

    • neuinfo.org
    • dknet.org
    • +2more
    Updated Jan 29, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Census Microdata Samples Project [Dataset]. http://identifiers.org/RRID:SCR_008902
    Explore at:
    Dataset updated
    Jan 29, 2022
    Description

    A data set of cross-nationally comparable microdata samples for 15 Economic Commission for Europe (ECE) countries (Bulgaria, Canada, Czech Republic, Estonia, Finland, Hungary, Italy, Latvia, Lithuania, Romania, Russia, Switzerland, Turkey, UK, USA) based on the 1990 national population and housing censuses in countries of Europe and North America to study the social and economic conditions of older persons. These samples have been designed to allow research on a wide range of issues related to aging, as well as on other social phenomena. A common set of nomenclatures and classifications, derived on the basis of a study of census data comparability in Europe and North America, was adopted as a standard for recoding. This series was formerly called Dynamics of Population Aging in ECE Countries. The recommendations regarding the design and size of the samples drawn from the 1990 round of censuses envisaged: (1) drawing individual-based samples of about one million persons; (2) progressive oversampling with age in order to ensure sufficient representation of various categories of older people; and (3) retaining information on all persons co-residing in the sampled individual''''s dwelling unit. Estonia, Latvia and Lithuania provided the entire population over age 50, while Finland sampled it with progressive over-sampling. Canada, Italy, Russia, Turkey, UK, and the US provided samples that had not been drawn specially for this project, and cover the entire population without over-sampling. Given its wide user base, the US 1990 PUMS was not recoded. Instead, PAU offers mapping modules, which recode the PUMS variables into the project''''s classifications, nomenclatures, and coding schemes. Because of the high sampling density, these data cover various small groups of older people; contain as much geographic detail as possible under each country''''s confidentiality requirements; include more extensive information on housing conditions than many other data sources; and provide information for a number of countries whose data were not accessible until recently. Data Availability: Eight of the fifteen participating countries have signed the standard data release agreement making their data available through NACDA/ICPSR (see links below). Hungary and Switzerland require a clearance to be obtained from their national statistical offices for the use of microdata, however the documents signed between the PAU and these countries include clauses stipulating that, in general, all scholars interested in social research will be granted access. Russia requested that certain provisions for archiving the microdata samples be removed from its data release arrangement. The PAU has an agreement with several British scholars to facilitate access to the 1991 UK data through collaborative arrangements. Statistics Canada and the Italian Institute of statistics (ISTAT) provide access to data from Canada and Italy, respectively. * Dates of Study: 1989-1992 * Study Features: International, Minority Oversamples * Sample Size: Approx. 1 million/country Links: * Bulgaria (1992), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/02200 * Czech Republic (1991), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06857 * Estonia (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06780 * Finland (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06797 * Romania (1992), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06900 * Latvia (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/02572 * Lithuania (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/03952 * Turkey (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/03292 * U.S. (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06219

  10. d

    Health and Retirement Study (HRS)

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Damico, Anthony (2023). Health and Retirement Study (HRS) [Dataset]. http://doi.org/10.7910/DVN/ELEKOY
    Explore at:
    Dataset updated
    Nov 21, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Damico, Anthony
    Description

    analyze the health and retirement study (hrs) with r the hrs is the one and only longitudinal survey of american seniors. with a panel starting its third decade, the current pool of respondents includes older folks who have been interviewed every two years as far back as 1992. unlike cross-sectional or shorter panel surveys, respondents keep responding until, well, death d o us part. paid for by the national institute on aging and administered by the university of michigan's institute for social research, if you apply for an interviewer job with them, i hope you like werther's original. figuring out how to analyze this data set might trigger your fight-or-flight synapses if you just start clicking arou nd on michigan's website. instead, read pages numbered 10-17 (pdf pages 12-19) of this introduction pdf and don't touch the data until you understand figure a-3 on that last page. if you start enjoying yourself, here's the whole book. after that, it's time to register for access to the (free) data. keep your username and password handy, you'll need it for the top of the download automation r script. next, look at this data flowchart to get an idea of why the data download page is such a righteous jungle. but wait, good news: umich recently farmed out its data management to the rand corporation, who promptly constructed a giant consolidated file with one record per respondent across the whole panel. oh so beautiful. the rand hrs files make much of the older data and syntax examples obsolete, so when you come across stuff like instructions on how to merge years, you can happily ignore them - rand has done it for you. the health and retirement study only includes noninstitutionalized adults when new respondents get added to the panel (as they were in 1992, 1993, 1998, 2004, and 2010) but once they're in, they're in - respondents have a weight of zero for interview waves when they were nursing home residents; but they're still responding and will continue to contribute to your statistics so long as you're generalizing about a population from a previous wave (for example: it's possible to compute "among all americans who were 50+ years old in 1998, x% lived in nursing homes by 2010"). my source for that 411? page 13 of the design doc. wicked. this new github repository contains five scripts: 1992 - 2010 download HRS microdata.R loop through every year and every file, download, then unzip everything in one big party impor t longitudinal RAND contributed files.R create a SQLite database (.db) on the local disk load the rand, rand-cams, and both rand-family files into the database (.db) in chunks (to prevent overloading ram) longitudinal RAND - analysis examples.R connect to the sql database created by the 'import longitudinal RAND contributed files' program create tw o database-backed complex sample survey object, using a taylor-series linearization design perform a mountain of analysis examples with wave weights from two different points in the panel import example HRS file.R load a fixed-width file using only the sas importation script directly into ram with < a href="http://blog.revolutionanalytics.com/2012/07/importing-public-data-with-sas-instructions-into-r.html">SAScii parse through the IF block at the bottom of the sas importation script, blank out a number of variables save the file as an R data file (.rda) for fast loading later replicate 2002 regression.R connect to the sql database created by the 'import longitudinal RAND contributed files' program create a database-backed complex sample survey object, using a taylor-series linearization design exactly match the final regression shown in this document provided by analysts at RAND as an update of the regression on pdf page B76 of this document . click here to view these five scripts for more detail about the health and retirement study (hrs), visit: michigan's hrs homepage rand's hrs homepage the hrs wikipedia page a running list of publications using hrs notes: exemplary work making it this far. as a reward, here's the detailed codebook for the main rand hrs file. note that rand also creates 'flat files' for every survey wave, but really, most every analysis you c an think of is possible using just the four files imported with the rand importation script above. if you must work with the non-rand files, there's an example of how to import a single hrs (umich-created) file, but if you wish to import more than one, you'll have to write some for loops yourself. confidential to sas, spss, stata, and sudaan users: a tidal wave is coming. you can get water up your nose and be dragged out to sea, or you can grab a surf board. time to transition to r. :D

  11. Z

    Research Methodology Examples

    • nde-dev.biothings.io
    • data.niaid.nih.gov
    Updated Jan 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgios Vlachopoulos (2020). Research Methodology Examples [Dataset]. https://nde-dev.biothings.io/resources?id=zenodo_32889
    Explore at:
    Dataset updated
    Jan 24, 2020
    Dataset authored and provided by
    Georgios Vlachopoulos
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Αρχεία εργασίας για το βιβλίο μεθοδολογία έρευνάς

  12. U

    Example Investigator Collected Data for Students Learning Statistics...

    • dataverse-staging.rdmc.unc.edu
    tsv
    Updated May 5, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cyra Christina Mehta; Cyra Christina Mehta; Renee' H. Moore; Renee' H. Moore (2022). Example Investigator Collected Data for Students Learning Statistics Collaboration Skills [Dataset]. http://doi.org/10.15139/S3/JKLBZF
    Explore at:
    tsv(2825)Available download formats
    Dataset updated
    May 5, 2022
    Dataset provided by
    UNC Dataverse
    Authors
    Cyra Christina Mehta; Cyra Christina Mehta; Renee' H. Moore; Renee' H. Moore
    License

    https://dataverse-staging.rdmc.unc.edu/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.15139/S3/JKLBZFhttps://dataverse-staging.rdmc.unc.edu/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.15139/S3/JKLBZF

    Description

    This Excel file contains example data as would be provided by an investigator to a collaborative statistician to analyze. Data are a permuted and edited version of real data provided to the authors during a statistical collaboration. The data are presented as commonly collected by investigators prior to working with a statistician, including several tabs of data in different domains (Set1, Set2, Demographics), colored cells, merged cells, cells with more than one data type, etc. as well as incomplete data and two systems of ID numbers. The file also includes a tab to link the different ID systems as well as tabs that have a "cleaned" version of the data (REVISEDSet1, REVISEDSet2) that would typically be provided after quality control identified some issues with the data that were then resolved by the investigator.

  13. Descriptive statistics of the sample – complete model variables...

    • figshare.com
    • plos.figshare.com
    xls
    Updated Jun 1, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gabriele Doblhammer; Gerard J. van den Berg; Thomas Fritze (2023). Descriptive statistics of the sample – complete model variables (N = 17,070). [Dataset]. http://doi.org/10.1371/journal.pone.0074915.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Gabriele Doblhammer; Gerard J. van den Berg; Thomas Fritze
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data source: SHARE waves 1, 2, and 4.

  14. Dataset #1: Cross-sectional survey data

    • figshare.com
    txt
    Updated Jul 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Adam Baimel (2023). Dataset #1: Cross-sectional survey data [Dataset]. http://doi.org/10.6084/m9.figshare.23708730.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jul 19, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Adam Baimel
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    N.B. This is not real data. Only here for an example for project templates.

    Project Title: Add title here

    Project Team: Add contact information for research project team members

    Summary: Provide a descriptive summary of the nature of your research project and its aims/focal research questions.

    Relevant publications/outputs: When available, add links to the related publications/outputs from this data.

    Data availability statement: If your data is not linked on figshare directly, provide links to where it is being hosted here (i.e., Open Science Framework, Github, etc.). If your data is not going to be made publicly available, please provide details here as to the conditions under which interested individuals could gain access to the data and how to go about doing so.

    Data collection details: 1. When was your data collected? 2. How were your participants sampled/recruited?

    Sample information: How many and who are your participants? Demographic summaries are helpful additions to this section.

    Research Project Materials: What materials are necessary to fully reproduce your the contents of your dataset? Include a list of all relevant materials (e.g., surveys, interview questions) with a brief description of what is included in each file that should be uploaded alongside your datasets.

    List of relevant datafile(s): If your project produces data that cannot be contained in a single file, list the names of each of the files here with a brief description of what parts of your research project each file is related to.

    Data codebook: What is in each column of your dataset? Provide variable names as they are encoded in your data files, verbatim question associated with each response, response options, details of any post-collection coding that has been done on the raw-response (and whether that's encoded in a separate column).

    Examples available at: https://www.thearda.com/data-archive?fid=PEWMU17 https://www.thearda.com/data-archive?fid=RELLAND14

  15. Big data and business analytics revenue worldwide 2015-2022

    • statista.com
    Updated Aug 17, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2021). Big data and business analytics revenue worldwide 2015-2022 [Dataset]. https://www.statista.com/statistics/551501/worldwide-big-data-business-analytics-revenue/
    Explore at:
    Dataset updated
    Aug 17, 2021
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    The global big data and business analytics (BDA) market was valued at ***** billion U.S. dollars in 2018 and is forecast to grow to ***** billion U.S. dollars by 2021. In 2021, more than half of BDA spending will go towards services. IT services is projected to make up around ** billion U.S. dollars, and business services will account for the remainder. Big data High volume, high velocity and high variety: one or more of these characteristics is used to define big data, the kind of data sets that are too large or too complex for traditional data processing applications. Fast-growing mobile data traffic, cloud computing traffic, as well as the rapid development of technologies such as artificial intelligence (AI) and the Internet of Things (IoT) all contribute to the increasing volume and complexity of data sets. For example, connected IoT devices are projected to generate **** ZBs of data in 2025. Business analytics Advanced analytics tools, such as predictive analytics and data mining, help to extract value from the data and generate business insights. The size of the business intelligence and analytics software application market is forecast to reach around **** billion U.S. dollars in 2022. Growth in this market is driven by a focus on digital transformation, a demand for data visualization dashboards, and an increased adoption of cloud.

  16. i

    Household Health Survey 2012-2013, Economic Research Forum (ERF)...

    • datacatalog.ihsn.org
    • catalog.ihsn.org
    Updated Jun 26, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kurdistan Regional Statistics Office (KRSO) (2017). Household Health Survey 2012-2013, Economic Research Forum (ERF) Harmonization Data - Iraq [Dataset]. https://datacatalog.ihsn.org/catalog/6937
    Explore at:
    Dataset updated
    Jun 26, 2017
    Dataset provided by
    Central Statistical Organization (CSO)
    Kurdistan Regional Statistics Office (KRSO)
    Economic Research Forum
    Time period covered
    2012 - 2013
    Area covered
    Iraq
    Description

    Abstract

    The harmonized data set on health, created and published by the ERF, is a subset of Iraq Household Socio Economic Survey (IHSES) 2012. It was derived from the household, individual and health modules, collected in the context of the above mentioned survey. The sample was then used to create a harmonized health survey, comparable with the Iraq Household Socio Economic Survey (IHSES) 2007 micro data set.

    ----> Overview of the Iraq Household Socio Economic Survey (IHSES) 2012:

    Iraq is considered a leader in household expenditure and income surveys where the first was conducted in 1946 followed by surveys in 1954 and 1961. After the establishment of Central Statistical Organization, household expenditure and income surveys were carried out every 3-5 years in (1971/ 1972, 1976, 1979, 1984/ 1985, 1988, 1993, 2002 / 2007). Implementing the cooperation between CSO and WB, Central Statistical Organization (CSO) and Kurdistan Region Statistics Office (KRSO) launched fieldwork on IHSES on 1/1/2012. The survey was carried out over a full year covering all governorates including those in Kurdistan Region.

    The survey has six main objectives. These objectives are:

    1. Provide data for poverty analysis and measurement and monitor, evaluate and update the implementation Poverty Reduction National Strategy issued in 2009.
    2. Provide comprehensive data system to assess household social and economic conditions and prepare the indicators related to the human development.
    3. Provide data that meet the needs and requirements of national accounts.
    4. Provide detailed indicators on consumption expenditure that serve making decision related to production, consumption, export and import.
    5. Provide detailed indicators on the sources of households and individuals income.
    6. Provide data necessary for formulation of a new consumer price index number.

    The raw survey data provided by the Statistical Office were then harmonized by the Economic Research Forum, to create a comparable version with the 2006/2007 Household Socio Economic Survey in Iraq. Harmonization at this stage only included unifying variables' names, labels and some definitions. See: Iraq 2007 & 2012- Variables Mapping & Availability Matrix.pdf provided in the external resources for further information on the mapping of the original variables on the harmonized ones, in addition to more indications on the variables' availability in both survey years and relevant comments.

    Geographic coverage

    National coverage: Covering a sample of urban, rural and metropolitan areas in all the governorates including those in Kurdistan Region.

    Analysis unit

    1- Household/family. 2- Individual/person.

    Universe

    The survey was carried out over a full year covering all governorates including those in Kurdistan Region.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    ----> Design:

    Sample size was (25488) household for the whole Iraq, 216 households for each district of 118 districts, 2832 clusters each of which includes 9 households distributed on districts and governorates for rural and urban.

    ----> Sample frame:

    Listing and numbering results of 2009-2010 Population and Housing Survey were adopted in all the governorates including Kurdistan Region as a frame to select households, the sample was selected in two stages: Stage 1: Primary sampling unit (blocks) within each stratum (district) for urban and rural were systematically selected with probability proportional to size to reach 2832 units (cluster). Stage two: 9 households from each primary sampling unit were selected to create a cluster, thus the sample size of total survey clusters was 25488 households distributed on the governorates, 216 households in each district.

    ----> Sampling Stages:

    In each district, the sample was selected in two stages: Stage 1: based on 2010 listing and numbering frame 24 sample points were selected within each stratum through systematic sampling with probability proportional to size, in addition to the implicit breakdown urban and rural and geographic breakdown (sub-district, quarter, street, county, village and block). Stage 2: Using households as secondary sampling units, 9 households were selected from each sample point using systematic equal probability sampling. Sampling frames of each stages can be developed based on 2010 building listing and numbering without updating household lists. In some small districts, random selection processes of primary sampling may lead to select less than 24 units therefore a sampling unit is selected more than once , the selection may reach two cluster or more from the same enumeration unit when it is necessary.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    ----> Preparation:

    The questionnaire of 2006 survey was adopted in designing the questionnaire of 2012 survey on which many revisions were made. Two rounds of pre-test were carried out. Revision were made based on the feedback of field work team, World Bank consultants and others, other revisions were made before final version was implemented in a pilot survey in September 2011. After the pilot survey implemented, other revisions were made in based on the challenges and feedbacks emerged during the implementation to implement the final version in the actual survey.

    ----> Questionnaire Parts:

    The questionnaire consists of four parts each with several sections: Part 1: Socio – Economic Data: - Section 1: Household Roster - Section 2: Emigration - Section 3: Food Rations - Section 4: housing - Section 5: education - Section 6: health - Section 7: Physical measurements - Section 8: job seeking and previous job

    Part 2: Monthly, Quarterly and Annual Expenditures: - Section 9: Expenditures on Non – Food Commodities and Services (past 30 days). - Section 10 : Expenditures on Non – Food Commodities and Services (past 90 days). - Section 11: Expenditures on Non – Food Commodities and Services (past 12 months). - Section 12: Expenditures on Non-food Frequent Food Stuff and Commodities (7 days). - Section 12, Table 1: Meals Had Within the Residential Unit. - Section 12, table 2: Number of Persons Participate in the Meals within Household Expenditure Other Than its Members.

    Part 3: Income and Other Data: - Section 13: Job - Section 14: paid jobs - Section 15: Agriculture, forestry and fishing - Section 16: Household non – agricultural projects - Section 17: Income from ownership and transfers - Section 18: Durable goods - Section 19: Loans, advances and subsidies - Section 20: Shocks and strategy of dealing in the households - Section 21: Time use - Section 22: Justice - Section 23: Satisfaction in life - Section 24: Food consumption during past 7 days

    Part 4: Diary of Daily Expenditures: Diary of expenditure is an essential component of this survey. It is left at the household to record all the daily purchases such as expenditures on food and frequent non-food items such as gasoline, newspapers…etc. during 7 days. Two pages were allocated for recording the expenditures of each day, thus the roster will be consists of 14 pages.

    Cleaning operations

    ----> Raw Data:

    Data Editing and Processing: To ensure accuracy and consistency, the data were edited at the following stages: 1. Interviewer: Checks all answers on the household questionnaire, confirming that they are clear and correct. 2. Local Supervisor: Checks to make sure that questions has been correctly completed. 3. Statistical analysis: After exporting data files from excel to SPSS, the Statistical Analysis Unit uses program commands to identify irregular or non-logical values in addition to auditing some variables. 4. World Bank consultants in coordination with the CSO data management team: the World Bank technical consultants use additional programs in SPSS and STAT to examine and correct remaining inconsistencies within the data files. The software detects errors by analyzing questionnaire items according to the expected parameter for each variable.

    ----> Harmonized Data:

    • The SPSS package is used to harmonize the Iraq Household Socio Economic Survey (IHSES) 2007 with Iraq Household Socio Economic Survey (IHSES) 2012.
    • The harmonization process starts with raw data files received from the Statistical Office.
    • A program is generated for each dataset to create harmonized variables.
    • Data is saved on the household and individual level, in SPSS and then converted to STATA, to be disseminated.

    Response rate

    Iraq Household Socio Economic Survey (IHSES) reached a total of 25488 households. Number of households refused to response was 305, response rate was 98.6%. The highest interview rates were in Ninevah and Muthanna (100%) while the lowest rates were in Sulaimaniya (92%).

  17. Descriptive statistics of the sample stratified by sex and race.

    • plos.figshare.com
    xls
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xiang Chen; Kelly Cho; Burton H. Singer; Heping Zhang (2023). Descriptive statistics of the sample stratified by sex and race. [Dataset]. http://doi.org/10.1371/journal.pone.0016002.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Xiang Chen; Kelly Cho; Burton H. Singer; Heping Zhang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Descriptive statistics of the sample stratified by sex and race.

  18. Data from: Evaluating Supplemental Samples in Longitudinal Research:...

    • tandf.figshare.com
    txt
    Updated Feb 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Laura K. Taylor; Xin Tong; Scott E. Maxwell (2024). Evaluating Supplemental Samples in Longitudinal Research: Replacement and Refreshment Approaches [Dataset]. http://doi.org/10.6084/m9.figshare.12162072.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Feb 9, 2024
    Dataset provided by
    Taylor & Francishttps://taylorandfrancis.com/
    Authors
    Laura K. Taylor; Xin Tong; Scott E. Maxwell
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Despite the wide application of longitudinal studies, they are often plagued by missing data and attrition. The majority of methodological approaches focus on participant retention or modern missing data analysis procedures. This paper, however, takes a new approach by examining how researchers may supplement the sample with additional participants. First, refreshment samples use the same selection criteria as the initial study. Second, replacement samples identify auxiliary variables that may help explain patterns of missingness and select new participants based on those characteristics. A simulation study compares these two strategies for a linear growth model with five measurement occasions. Overall, the results suggest that refreshment samples lead to less relative bias, greater relative efficiency, and more acceptable coverage rates than replacement samples or not supplementing the missing participants in any way. Refreshment samples also have high statistical power. The comparative strengths of the refreshment approach are further illustrated through a real data example. These findings have implications for assessing change over time when researching at-risk samples with high levels of permanent attrition.

  19. m

    Example Stata syntax and data construction for negative binomial time series...

    • data.mendeley.com
    Updated Nov 2, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sarah Price (2022). Example Stata syntax and data construction for negative binomial time series regression [Dataset]. http://doi.org/10.17632/3mj526hgzx.2
    Explore at:
    Dataset updated
    Nov 2, 2022
    Authors
    Sarah Price
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    We include Stata syntax (dummy_dataset_create.do) that creates a panel dataset for negative binomial time series regression analyses, as described in our paper "Examining methodology to identify patterns of consulting in primary care for different groups of patients before a diagnosis of cancer: an exemplar applied to oesophagogastric cancer". We also include a sample dataset for clarity (dummy_dataset.dta), and a sample of that data in a spreadsheet (Appendix 2).

    The variables contained therein are defined as follows:

    case: binary variable for case or control status (takes a value of 0 for controls and 1 for cases).

    patid: a unique patient identifier.

    time_period: A count variable denoting the time period. In this example, 0 denotes 10 months before diagnosis with cancer, and 9 denotes the month of diagnosis with cancer,

    ncons: number of consultations per month.

    period0 to period9: 10 unique inflection point variables (one for each month before diagnosis). These are used to test which aggregation period includes the inflection point.

    burden: binary variable denoting membership of one of two multimorbidity burden groups.

    We also include two Stata do-files for analysing the consultation rate, stratified by burden group, using the Maximum likelihood method (1_menbregpaper.do and 2_menbregpaper_bs.do).

    Note: In this example, for demonstration purposes we create a dataset for 10 months leading up to diagnosis. In the paper, we analyse 24 months before diagnosis. Here, we study consultation rates over time, but the method could be used to study any countable event, such as number of prescriptions.

  20. YouTube Dataset of all Data Science Channels🎓🧾

    • kaggle.com
    zip
    Updated Jun 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abhishek0032 (2024). YouTube Dataset of all Data Science Channels🎓🧾 [Dataset]. https://www.kaggle.com/datasets/abhishek0032/youtube-dataset-all-data-scienceanalyst-channels
    Explore at:
    zip(732289 bytes)Available download formats
    Dataset updated
    Jun 21, 2024
    Authors
    Abhishek0032
    Area covered
    YouTube
    Description

    Description: This dataset contains detailed information about videos from various YouTube channels that specialize in data science and analytics. It includes metrics such as views, likes, comments, and publication dates. The dataset consists of 22862 rows, providing a robust sample for analyzing trends in content engagement, popularity of topics over time, and comparison of channels' performance.

    Column Descriptors:

    Channel_Name: The name of the YouTube channel. Title: The title of the video. Published_date: The date when the video was published. Views: The number of views the video has received. Like_count: The number of likes the video has received. Comment_Count: The number of comments on the video.

    This dataset contains information from the following YouTube channels:

    ['sentdex', 'freeCodeCamp.org' ,'CampusX', 'Darshil Parmar',' Keith Galli' ,'Alex The Analyst', 'Socratica' , Krish Naik', 'StatQuest with Josh Starmer', 'Nicholas Renotte', 'Leila Gharani', 'Rob Mulla' ,'Ryan Nolan Data', 'techTFQ', 'Dataquest' ,'WsCube Tech', 'Chandoo', 'Luke Barousse', 'Andrej Karpathy', 'Thu Vu data analytics', 'Guy in a Cube', 'Tableau Tim', 'codebasics', 'DeepLearningAI', 'Rishabh Mishra' 'ExcelIsFun', 'Kevin Stratvert' ' Ken Jee','Kaggle' , 'Tina Huang']

    This dataset can be used for various analyses, including but not limited to:

    Identifying the most popular videos and channels in the data science field.

    Understanding viewer engagement trends over time.

    Comparing the performance of different types of content across multiple channels.

    Performing a comparison between different channels to find the best-performing ones.

    Identifying the best videos to watch for specific topics in data science and analytics.

    Conducting a detailed analysis of your favorite YouTube channel to understand its content strategy and performance.

    Note: The data is current as of the date of extraction and may not reflect real-time changes on YouTube. For any analyses, ensure to consider the date when the data was last updated to maintain accuracy and relevance.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
National Institutes of Health (2025). Statistics review 2: Samples and populations [Dataset]. https://catalog.data.gov/dataset/statistics-review-2-samples-and-populations

Statistics review 2: Samples and populations

Explore at:
Dataset updated
Sep 6, 2025
Dataset provided by
National Institutes of Health
Description

The previous review in this series introduced the notion of data description and outlined some of the more common summary measures used to describe a dataset. However, a dataset is typically only of interest for the information it provides regarding the population from which it was drawn. The present review focuses on estimation of population values from a sample.

Search
Clear search
Close search
Google apps
Main menu