Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This article describes a free, open-source collection of templates for the popular Excel (2013, and later versions) spreadsheet program. These templates are spreadsheet files that allow easy and intuitive learning and the implementation of practical examples concerning descriptive statistics, random variables, confidence intervals, and hypothesis testing. Although they are designed to be used with Excel, they can also be employed with other free spreadsheet programs (changing some particular formulas). Moreover, we exploit some possibilities of the ActiveX controls of the Excel Developer Menu to perform interactive Gaussian density charts. Finally, it is important to note that they can be often embedded in a web page, so it is not necessary to employ Excel software for their use. These templates have been designed as a useful tool to teach basic statistics and to carry out data analysis even when the students are not familiar with Excel. Additionally, they can be used as a complement to other analytical software packages. They aim to assist students in learning statistics, within an intuitive working environment. Supplementary materials with the Excel templates are available online.
Facebook
TwitterAttribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
This data contains functions like: Sum, Average, Max, Min, Sumif, Sumifs, Count, Countblank, Countifs, Counta, Averageif, Averageifs.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
To create the dataset, the top 10 countries leading in the incidence of COVID-19 in the world were selected as of October 22, 2020 (on the eve of the second full of pandemics), which are presented in the Global 500 ranking for 2020: USA, India, Brazil, Russia, Spain, France and Mexico. For each of these countries, no more than 10 of the largest transnational corporations included in the Global 500 rating for 2020 and 2019 were selected separately. The arithmetic averages were calculated and the change (increase) in indicators such as profitability and profitability of enterprises, their ranking position (competitiveness), asset value and number of employees. The arithmetic mean values of these indicators for all countries of the sample were found, characterizing the situation in international entrepreneurship as a whole in the context of the COVID-19 crisis in 2020 on the eve of the second wave of the pandemic. The data is collected in a general Microsoft Excel table. Dataset is a unique database that combines COVID-19 statistics and entrepreneurship statistics. The dataset is flexible data that can be supplemented with data from other countries and newer statistics on the COVID-19 pandemic. Due to the fact that the data in the dataset are not ready-made numbers, but formulas, when adding and / or changing the values in the original table at the beginning of the dataset, most of the subsequent tables will be automatically recalculated and the graphs will be updated. This allows the dataset to be used not just as an array of data, but as an analytical tool for automating scientific research on the impact of the COVID-19 pandemic and crisis on international entrepreneurship. The dataset includes not only tabular data, but also charts that provide data visualization. The dataset contains not only actual, but also forecast data on morbidity and mortality from COVID-19 for the period of the second wave of the pandemic in 2020. The forecasts are presented in the form of a normal distribution of predicted values and the probability of their occurrence in practice. This allows for a broad scenario analysis of the impact of the COVID-19 pandemic and crisis on international entrepreneurship, substituting various predicted morbidity and mortality rates in risk assessment tables and obtaining automatically calculated consequences (changes) on the characteristics of international entrepreneurship. It is also possible to substitute the actual values identified in the process and following the results of the second wave of the pandemic to check the reliability of pre-made forecasts and conduct a plan-fact analysis. The dataset contains not only the numerical values of the initial and predicted values of the set of studied indicators, but also their qualitative interpretation, reflecting the presence and level of risks of a pandemic and COVID-19 crisis for international entrepreneurship.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Example of how I use MS Excel's VLOOKUP() function to filter my data.
Facebook
TwitterThis dataset is a cleaned and preprocessed version of the original Netflix Movies and TV Shows dataset available on Kaggle. All cleaning was done using Microsoft Excel — no programming involved.
🎯 What’s Included: - Cleaned Excel file (standardized columns, proper date format, removed duplicates/missing values) - A separate "formulas_used.txt" file listing all Excel formulas used during cleaning (e.g., TRIM, CLEAN, DATE, SUBSTITUTE, TEXTJOIN, etc.) - Columns like 'date_added' have been properly formatted into DMY structure - Multi-valued columns like 'listed_in' are split for better analysis - Null values replaced with “Unknown” for clarity - Duration field broken into numeric + unit components
🔍 Dataset Purpose: Ideal for beginners and analysts who want to: - Practice data cleaning in Excel - Explore Netflix content trends - Analyze content by type, country, genre, or date added
📁 Original Dataset Credit: The base version was originally published by Shivam Bansal on Kaggle: https://www.kaggle.com/shivamb/netflix-shows
📌 Bonus: You can find a step-by-step cleaning guide and the same dataset on GitHub as well — along with screenshots and formulas documentation.
Facebook
TwitterIn this project, I analysed the employees of an organization located in two distinct countries using Excel. This project covers:
1) How to approach a data analysis project 2) How to systematically clean data 3) Doing EDA with Excel formulas & tables 4) How to use Power Query to combine two datasets 5) Statistical Analysis of data 6) Using formulas like COUNTIFS, SUMIFS, XLOOKUP 7) Making an information finder with your data 8) Male vs. Female Analysis with Pivot tables 9) Calculating Bonuses based on business rules 10) Visual analytics of data with 4 topics 11) Analysing the salary spread (Histograms & Box plots) 12) Relationship between Salary & Rating 13) Staff growth over time - trend analysis 14) Regional Scorecard to compare NZ with India
Including various Excel features such as: 1) Using Tables 2) Working with Power Query 3) Formulas 4) Pivot Tables 5) Conditional formatting 6) Charts 7) Data Validation 8) Keyboard Shortcuts & tricks 9) Dashboard Design
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Raw data outputs 1-18 Raw data output 1. Differentially expressed genes in AML CSCs compared with GTCs as well as in TCGA AML cancer samples compared with normal ones. This data was generated based on the results of AML microarray and TCGA data analysis. Raw data output 2. Commonly and uniquely differentially expressed genes in AML CSC/GTC microarray and TCGA bulk RNA-seq datasets. This data was generated based on the results of AML microarray and TCGA data analysis. Raw data output 3. Common differentially expressed genes between training and test set samples the microarray dataset. This data was generated based on the results of AML microarray data analysis. Raw data output 4. Detailed information on the samples of the breast cancer microarray dataset (GSE52327) used in this study. Raw data output 5. Differentially expressed genes in breast CSCs compared with GTCs as well as in TCGA BRCA cancer samples compared with normal ones. Raw data output 6. Commonly and uniquely differentially expressed genes in breast cancer CSC/GTC microarray and TCGA BRCA bulk RNA-seq datasets. This data was generated based on the results of breast cancer microarray and TCGA BRCA data analysis. CSC, and GTC are abbreviations of cancer stem cell, and general tumor cell, respectively. Raw data output 7. Differential and common co-expression and protein-protein interaction of genes between CSC and GTC samples. This data was generated based on the results of AML microarray and STRING database-based protein-protein interaction data analysis. CSC, and GTC are abbreviations of cancer stem cell, and general tumor cell, respectively. Raw data output 8. Differentially expressed genes between AML dormant and active CSCs. This data was generated based on the results of AML scRNA-seq data analysis. Raw data output 9. Uniquely expressed genes in dormant or active AML CSCs. This data was generated based on the results of AML scRNA-seq data analysis. Raw data output 10. Intersections between the targeting transcription factors of AML key CSC genes and differentially expressed genes between AML CSCs vs GTCs and between dormant and active AML CSCs or the uniquely expressed genes in either class of CSCs. Raw data output 11. Targeting desirableness score of AML key CSC genes and their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 12. CSC-specific targeting desirableness score of AML key CSC genes and their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 13. The protein-protein interactions between AML key CSC genes with themselves and their targeting transcription factors. This data was generated based on the results of AML microarray and STRING database-based protein-protein interaction data analysis. Raw data output 14. The previously confirmed associations of genes having the highest targeting desirableness and CSC-specific targeting desirableness scores with AML or other cancers’ (stem) cells as well as hematopoietic stem cells. These data were generated based on a PubMed database-based literature mining. Raw data output 15. Drug score of available drugs and bioactive small molecules targeting AML key CSC genes and/or their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 16. CSC-specific drug score of available drugs and bioactive small molecules targeting AML key CSC genes and/or their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 17. Candidate drugs for experimental validation. These drugs were selected based on their respective (CSC-specific) drug scores. CSC is the abbreviation of cancer stem cell. Raw data output 18. Detailed information on the samples of the AML microarray dataset GSE30375 used in this study.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Introduction
We are enclosing the database used in our research titled "Concentration and Geospatial Modelling of Health Development Offices' Accessibility for the Total and Elderly Populations in Hungary", along with our statistical calculations. For the sake of reproducibility, further information can be found in the file Short_Description_of_Data_Analysis.pdf and Statistical_formulas.pdf
The sharing of data is part of our aim to strengthen the base of our scientific research. As of March 7, 2024, the detailed submission and analysis of our research findings to a scientific journal has not yet been completed.
The dataset was expanded on 23rd September 2024 to include SPSS statistical analysis data, a heatmap, and buffer zone analysis around the Health Development Offices (HDOs) created in QGIS software.
Short Description of Data Analysis and Attached Files (datasets):
Our research utilised data from 2022, serving as the basis for statistical standardisation. The 2022 Hungarian census provided an objective basis for our analysis, with age group data available at the county level from the Hungarian Central Statistical Office (KSH) website. The 2022 demographic data provided an accurate picture compared to the data available from the 2023 microcensus. The used calculation is based on our standardisation of the 2022 data. For xlsx files, we used MS Excel 2019 (version: 1808, build: 10406.20006) with the SOLVER add-in.
Hungarian Central Statistical Office served as the data source for population by age group, county, and regions: https://www.ksh.hu/stadat_files/nep/hu/nep0035.html, (accessed 04 Jan. 2024.) with data recorded in MS Excel in the Data_of_demography.xlsx file.
In 2022, 108 Health Development Offices (HDOs) were operational, and it's noteworthy that no developments have occurred in this area since 2022. The availability of these offices and the demographic data from the Central Statistical Office in Hungary are considered public interest data, freely usable for research purposes without requiring permission.
The contact details for the Health Development Offices were sourced from the following page (Hungarian National Population Centre (NNK)): https://www.nnk.gov.hu/index.php/efi (n=107). The Semmelweis University Health Development Centre was not listed by NNK, hence it was separately recorded as the 108th HDO. More information about the office can be found here: https://semmelweis.hu/egeszsegfejlesztes/en/ (n=1). (accessed 05 Dec. 2023.)
Geocoordinates were determined using Google Maps (N=108): https://www.google.com/maps. (accessed 02 Jan. 2024.) Recording of geocoordinates (latitude and longitude according to WGS 84 standard), address data (postal code, town name, street, and house number), and the name of each HDO was carried out in the: Geo_coordinates_and_names_of_Hungarian_Health_Development_Offices.csv file.
The foundational software for geospatial modelling and display (QGIS 3.34), an open-source software, can be downloaded from:
https://qgis.org/en/site/forusers/download.html. (accessed 04 Jan. 2024.)
The HDOs_GeoCoordinates.gpkg QGIS project file contains Hungary's administrative map and the recorded addresses of the HDOs from the
Geo_coordinates_and_names_of_Hungarian_Health_Development_Offices.csv file,
imported via .csv file.
The OpenStreetMap tileset is directly accessible from www.openstreetmap.org in QGIS. (accessed 04 Jan. 2024.)
The Hungarian county administrative boundaries were downloaded from the following website: https://data2.openstreetmap.hu/hatarok/index.php?admin=6 (accessed 04 Jan. 2024.)
HDO_Buffers.gpkg is a QGIS project file that includes the administrative map of Hungary, the county boundaries, as well as the HDO offices and their corresponding buffer zones with a radius of 7.5 km.
Heatmap.gpkg is a QGIS project file that includes the administrative map of Hungary, the county boundaries, as well as the HDO offices and their corresponding heatmap (Kernel Density Estimation).
A brief description of the statistical formulas applied is included in the Statistical_formulas.pdf.
Recording of our base data for statistical concentration and diversification measurement was done using MS Excel 2019 (version: 1808, build: 10406.20006) in .xlsx format.
Using the SPSS 29.0.1.0 program, we performed the following statistical calculations with the databases Data_HDOs_population_without_outliers.sav and Data_HDOs_population.sav:
For easier readability, the files have been provided in both SPV and PDF formats.
The translation of these supplementary files into English was completed on 23rd Sept. 2024.
If you have any further questions regarding the dataset, please contact the corresponding author: domjan.peter@phd.semmelweis.hu
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Analyzing Coffee Shop Sales: Excel Insights 📈
In my first Data Analytics Project, I Discover the secrets of a fictional coffee shop's success with my data-driven analysis. By Analyzing a 5-sheet Excel dataset, I've uncovered valuable sales trends, customer preferences, and insights that can guide future business decisions. 📊☕
DATA CLEANING 🧹
• REMOVED DUPLICATES OR IRRELEVANT ENTRIES: Thoroughly eliminated duplicate records and irrelevant data to refine the dataset for analysis.
• FIXED STRUCTURAL ERRORS: Rectified any inconsistencies or structural issues within the data to ensure uniformity and accuracy.
• CHECKED FOR DATA CONSISTENCY: Verified the integrity and coherence of the dataset by identifying and resolving any inconsistencies or discrepancies.
DATA MANIPULATION 🛠️
• UTILIZED LOOKUPS: Used Excel's lookup functions for efficient data retrieval and analysis.
• IMPLEMENTED INDEX MATCH: Leveraged the Index Match function to perform advanced data searches and matches.
• APPLIED SUMIFS FUNCTIONS: Utilized SumIFs to calculate totals based on specified criteria.
• CALCULATED PROFITS: Used relevant formulas and techniques to determine profit margins and insights from the data.
PIVOTING THE DATA 𝄜
• CREATED PIVOT TABLES: Utilized Excel's PivotTable feature to pivot the data for in-depth analysis.
• FILTERED DATA: Utilized pivot tables to filter and analyze specific subsets of data, enabling focused insights. Specially used in “PEAK HOURS” and “TOP 3 PRODUCTS” charts.
VISUALIZATION 📊
• KEY INSIGHTS: Unveiled the grand total sales revenue while also analyzing the average bill per person, offering comprehensive insights into the coffee shop's performance and customer spending habits.
• SALES TREND ANALYSIS: Used Line chart to compute total sales across various time intervals, revealing valuable insights into evolving sales trends.
• PEAK HOUR ANALYSIS: Leveraged Clustered Column chart to identify peak sales hours, shedding light on optimal operating times and potential staffing needs.
• TOP 3 PRODUCTS IDENTIFICATION: Utilized Clustered Bar chart to determine the top three coffee types, facilitating strategic decisions regarding inventory management and marketing focus.
*I also used a Timeline to visualize chronological data trends and identify key patterns over specific times.
While it's a significant milestone for me, I recognize that there's always room for growth and improvement. Your feedback and insights are invaluable to me as I continue to refine my skills and tackle future projects. I'm eager to hear your thoughts and suggestions on how I can make my next endeavor even more impactful and insightful.
THANKS TO: WsCube Tech Mo Chen Alex Freberg
TOOLS USED: Microsoft Excel
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The hectares of habitat protected and the number of adults and children fed in one year were calculated for each of the six crop types for Canada and United States. The calculations were based on the 50th centile of the cumulative frequency distributions of change in crop yield due to pesticide treatment for each crop type. An editable interactive table was created using Microsoft Excel that would allow individuals to determine how pesticide treatment in their selected jurisdiction (province in Canada or state in the United States) and crop translates into habitat saved, calories produced, and mouths fed. This table allows the user to choose the country (Canada or United States), whether to include the organic agriculture correction factor, their state or province of interest, crop, and whether a young child, adolescent child, adult women, or adult man is being fed. The table will then calculate the hectares of habitat saved, added number of calories produced (kcal), the number of individual fed in one day, and the number of individual fed in one year. Due to the variability in yield results between crops and studies, the Excel user form allows individuals to set whichever yield increase they anticipate observing or use the 50th centile of yield increase from the cumulative frequency distribution for each crop.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is the Excel file for the PhD study of Jack Brimmell entitled: A longitudinal examination of executive function, visual attention, and soccer penalty performance.
Facebook
TwitterThe link for the Excel project to download can be found on GitHub here.
It includes the raw data, Pivot Tables, and an interactive dashboard with Pivot Charts and Slicers. The project also includes business questions and the formulas I used to answer. The image below is included for ease.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F12904052%2F61e460b5f6a1fa73cfaaa33aa8107bd5%2FBusinessQuestions.png?generation=1686190703261971&alt=media" alt="">
The link for the Tableau adjusted dashboard can be found here.
A screenshot of the interactive Excel dashboard is also included below for ease.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F12904052%2Fe581f1fce8afc732f7823904da9e4cce%2FScooter%20Dashboard%20Image.png?generation=1686190815608343&alt=media" alt="">
Facebook
TwitterThis resource, a MS Excel refresher, extends the level for this Data Nugget. Students are given an Excel workbook with the data and asked to graph and calculate diversity using Excel functions (rather than drawing graphs by hand as in the original data nugget). The data set used is the same. I use this activity in an upper division Environmental Science course for majors that focuses on Restoration Ecology. The simplicity of the data set and the comparisons of reptile diversity among urban, non-urban and urban rehabilitated lend for a great example for doing calculations in spreadsheets.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Excel sheets in order: The sheet entitled “Hens Original Data” contains the results of an experiment conducted to study the response of laying hens during initial phase of egg production subjected to different intakes of dietary threonine. The sheet entitled “Simulated data & fitting values” contains the 10 simulated data sets that were generated using a standard procedure of random number generator. The predicted values obtained by the new three-parameter and conventional four-parameter logistic models were also appeared in this sheet. (XLSX)
Facebook
TwitterSpreadsheet from the paper entitled: Revisiting a Statistical Shortcoming when Fitting the Langmuir Model to Sorption Data by C.H. Bolster, Journal of Environmental Quality, 2008, 37:1986-1992. Spreadsheet has been modified to make a correction to the calculation of E for weighted data. (3/18/2010). Sorption models are commonly used for describing solute and metal sorption to soils. When fitting sorption models to sorption data, however, the user must be aware that certain statistical limitations exist with both linear and nonlinear versions of the models. Ongoing research at the Animal Waste Management Research Unit of the USDA-ARS addresses the effect of these statistical limitations on fitting phosphorus sorption data with various sorption models. This research was originally part of the former USDA-ARS National Program 206: Manure and By-product Utilization. Resources in this dataset:Resource Title: Modified Langmuir Equation Spreadsheet. File Name: Web Page, url: https://www.ars.usda.gov/research/software/download/?softwareid=205&modecode=50-40-05-00 download page
Facebook
Twitterhttps://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
According to our latest research, the global Spreadsheet Formula Generation market size reached USD 1.27 billion in 2024, reflecting robust adoption across key industries. The market is projected to expand at a CAGR of 16.3% from 2025 to 2033, reaching a forecasted value of USD 4.06 billion by 2033. This accelerated growth is driven by the increasing integration of intelligent automation, data analytics, and artificial intelligence into business workflows, which significantly enhances productivity and accuracy in spreadsheet management. As organizations continue to digitize and optimize their operations, the demand for automated formula generation tools in spreadsheets is poised to surge, underpinned by the need for error reduction, time savings, and improved data-driven decision-making.
One of the primary growth factors for the Spreadsheet Formula Generation market is the rising complexity and volume of data handled by enterprises globally. Businesses are increasingly relying on spreadsheets for financial modeling, reporting, forecasting, and analytics, which necessitates advanced tools to automate formula creation and minimize human error. The proliferation of cloud-based solutions and the integration of AI-powered assistants within spreadsheet platforms have transformed traditional workflows. These advancements enable users to generate complex formulas with natural language inputs, reducing the learning curve and empowering non-technical users to harness sophisticated data analysis capabilities. As organizations seek to optimize operational efficiency and accuracy, the adoption of spreadsheet formula generation solutions is expected to become a strategic imperative across sectors.
Another significant driver is the ongoing digital transformation across industries such as finance, healthcare, education, and retail. In the financial sector, for instance, the need for real-time data processing and reporting has led to the widespread use of automated spreadsheet tools that can generate and audit formulas at scale. Similarly, in healthcare and education, the ability to manage large datasets and derive actionable insights from them is critical. Spreadsheet formula generation solutions address these needs by automating repetitive tasks, ensuring data integrity, and facilitating compliance with regulatory standards. The growing emphasis on data-driven decision-making and the need to streamline business processes are further accelerating market growth, as organizations recognize the value of automation in maintaining a competitive edge.
The market is also benefiting from the rapid adoption of cloud-based deployment models, which offer scalability, flexibility, and cost-effectiveness. Cloud-based spreadsheet formula generation tools enable real-time collaboration, seamless integration with other business applications, and enhanced security features. This is particularly valuable for small and medium enterprises (SMEs) that require affordable yet powerful solutions to manage their data workflows. The increasing availability of API-driven platforms and the rise of low-code/no-code development environments are democratizing access to advanced spreadsheet functionalities, allowing businesses of all sizes to leverage automation in their daily operations. As digital transformation initiatives continue to gain momentum, the demand for intelligent spreadsheet formula generation solutions is anticipated to witness sustained growth.
From a regional perspective, North America currently leads the Spreadsheet Formula Generation market, driven by high digital adoption rates, strong presence of technology vendors, and robust investments in AI and automation. Europe follows closely, supported by stringent data governance regulations and a focus on operational efficiency across industries. The Asia Pacific region is emerging as a high-growth market, fueled by rapid economic development, expanding IT infrastructure, and increasing adoption of cloud-based solutions. Latin America and the Middle East & Africa are also witnessing steady growth, albeit at a slower pace, as organizations in these regions gradually embrace digital transformation. Regional market dynamics are influenced by factors such as regulatory environments, industry-specific requirements, and the maturity of digital ecosystems, shaping the adoption patterns of spreadsheet formula generation solutions globally.
The Component segment of the Spreadsheet Formul
Facebook
TwitterAn excel file containing the following on the seasons 1998 to 2021: -Personal stats of drivers (championship finishes, wins/season, total wins, podiums, points, fastest laps and pole positions) -Championship stats (drivers and teams, with colours, and their championship positions at the end of each season) -Table with the wins per circuit per year (also with colours) and the wins per team per year
This dataset was mainly made for fun / nice looking visualization so first open it in excel to see the colours as well. If you want to use it for more complex purposes, I would recommend to do some data-prepping
Facebook
TwitterExcel spreadsheet contain raw data extracted from manuscripts to calculate the infection rate (IR), stepwise dissemination rate (SDR), cumulative dissemination rate (CDR), stepwise transmission rate (STR) and cumulative transmission rate (CTR) presented in Table 5.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Modified equations of state (EoS) of forsterite, wadsleyite, ringwoodite, akimotoite, bridgmanite and post-perovskite based on the Helmholtz free energy are described using Microsoft Excel spreadsheets. The equations of state were set up by joint analysis of reference experimental data and can be used to calculate thermodynamic and thermoelastic parameters and P–V–T properties of the Mg-silicates. We used Visual Basic for Applications module in Microsoft Excel and presented a simultaneous calculation of full set of thermodynamic and thermoelastic functions using only T–P and T–V data as input parameters. Phase transitions in the MgSiO3–MgO system play an important role in the interpretation of the seismic boundaries of the upper Earth’s mantle and in the D″ layer. Therefore, proposed EoSes of silicates in the MgSiO3–MgO system have clear geophysical implications. The developed software will be interesting to specialists who are engaged to study the mantle mineralogy and Earth’s interior.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The algorithm for determining Cutpoints and simulating data using MS Excel. (XLS 2362Â kb)
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This article describes a free, open-source collection of templates for the popular Excel (2013, and later versions) spreadsheet program. These templates are spreadsheet files that allow easy and intuitive learning and the implementation of practical examples concerning descriptive statistics, random variables, confidence intervals, and hypothesis testing. Although they are designed to be used with Excel, they can also be employed with other free spreadsheet programs (changing some particular formulas). Moreover, we exploit some possibilities of the ActiveX controls of the Excel Developer Menu to perform interactive Gaussian density charts. Finally, it is important to note that they can be often embedded in a web page, so it is not necessary to employ Excel software for their use. These templates have been designed as a useful tool to teach basic statistics and to carry out data analysis even when the students are not familiar with Excel. Additionally, they can be used as a complement to other analytical software packages. They aim to assist students in learning statistics, within an intuitive working environment. Supplementary materials with the Excel templates are available online.