73 datasets found
  1. Statistical Function in Excel

    • kaggle.com
    zip
    Updated Feb 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sanjana Murthy (2024). Statistical Function in Excel [Dataset]. https://www.kaggle.com/datasets/sanjanamurthy392/statistical-function
    Explore at:
    zip(1412940 bytes)Available download formats
    Dataset updated
    Feb 7, 2024
    Authors
    Sanjana Murthy
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    This data contains functions like: Sum, Average, Max, Min, Sumif, Sumifs, Count, Countblank, Countifs, Counta, Averageif, Averageifs.

  2. Data from: Excel Templates: A Helpful Tool for Teaching Statistics

    • tandf.figshare.com
    zip
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alejandro Quintela-del-Río; Mario Francisco-Fernández (2023). Excel Templates: A Helpful Tool for Teaching Statistics [Dataset]. http://doi.org/10.6084/m9.figshare.3408052.v2
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Taylor & Francishttps://taylorandfrancis.com/
    Authors
    Alejandro Quintela-del-Río; Mario Francisco-Fernández
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This article describes a free, open-source collection of templates for the popular Excel (2013, and later versions) spreadsheet program. These templates are spreadsheet files that allow easy and intuitive learning and the implementation of practical examples concerning descriptive statistics, random variables, confidence intervals, and hypothesis testing. Although they are designed to be used with Excel, they can also be employed with other free spreadsheet programs (changing some particular formulas). Moreover, we exploit some possibilities of the ActiveX controls of the Excel Developer Menu to perform interactive Gaussian density charts. Finally, it is important to note that they can be often embedded in a web page, so it is not necessary to employ Excel software for their use. These templates have been designed as a useful tool to teach basic statistics and to carry out data analysis even when the students are not familiar with Excel. Additionally, they can be used as a complement to other analytical software packages. They aim to assist students in learning statistics, within an intuitive working environment. Supplementary materials with the Excel templates are available online.

  3. SPORTS_DATA_ANALYSIS_ON_EXCEL

    • kaggle.com
    zip
    Updated Dec 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nil kamal Saha (2024). SPORTS_DATA_ANALYSIS_ON_EXCEL [Dataset]. https://www.kaggle.com/datasets/nilkamalsaha/sports-data-analysis-on-excel
    Explore at:
    zip(1203633 bytes)Available download formats
    Dataset updated
    Dec 12, 2024
    Authors
    Nil kamal Saha
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    PROJECT OBJECTIVE

    We are a part of XYZ Co Pvt Ltd company who is in the business of organizing the sports events at international level. Countries nominate sportsmen from different departments and our team has been given the responsibility to systematize the membership roster and generate different reports as per business requirements.

    Questions (KPIs)

    TASK 1: STANDARDIZING THE DATASET

    • Populate the FULLNAME consisting of the following fields ONLY, in the prescribed format: PREFIX FIRSTNAME LASTNAME.{Note: All UPPERCASE)
    • Get the COUNTRY NAME to which these sportsmen belong to. Make use of LOCATION sheet to get the required data
    • Populate the LANGUAGE_!poken by the sportsmen. Make use of LOCTION sheet to get the required data
    • Generate the EMAIL ADDRESS for those members, who speak English, in the prescribed format :lastname.firstnamel@xyz .org {Note: All lowercase) and for all other members, format should be lastname.firstname@xyz.com (Note: All lowercase)
    • Populate the SPORT LOCATION of the sport played by each player. Make use of SPORT sheet to get the required data

    TASK 2: DATA FORMATING

    • Display MEMBER IDas always 3 digit number {Note: 001,002 ...,D2D,..etc)
    • Format the BIRTHDATE as dd mmm'yyyy (Prescribed format example: 09 May' 1986)
    • Display the units for the WEIGHT column (Prescribed format example: 80 kg)
    • Format the SALARY to show the data In thousands. If SALARY is less than 100,000 then display data with 2 decimal places else display data with one decimal place. In both cases units should be thousands (k) e.g. 87670 -> 87.67 k and 12 250 -> 123.2 k

    TASK 3: SUMMARIZE DATA - PIVOT TABLE (Use SPORTSMEN worksheet after attempting TASK 1) • Create a PIVOT table in the worksheet ANALYSIS, starting at cell B3,with the following details:

    • In COLUMNS; Group : GENDER.
    • In ROWS; Group : COUNTRY (Note: use COUNTRY NAMES).
    • In VALUES; calculate the count of candidates from each COUNTRY and GENDER type, Remove GRAND TOTALs.

    TASK 4: SUMMARIZE DATA - EXCEL FUNCTIONS (Use SPORTSMEN worksheet after attempting TASK 1)

    • Create a SUMMARY table in the worksheet ANALYSIS,starting at cell G4, with the following details:

    • Starting from range RANGE H4; get the distinct GENDER. Use remove duplicates option and transpose the data.
    • Starting from range RANGE GS; get the distinct COUNTRY (Note: use COUNTRY NAMES).
    • In the cross table,get the count of candidates from each COUNTRY and GENDER type.

    TASK 5: GENERATE REPORT - PIVOT TABLE (Use SPORTSMEN worksheet after attempting TASK 1)

    • Create a PIVOT table report in the worksheet REPORT, starting at cell A3, with the following information:

    • Change the report layout to TABULAR form.
    • Remove expand and collapse buttons.
    • Remove GRAND TOTALs.
    • Allow user to filter the data by SPORT LOCATION.

    Process

    • Verify data for any missing values and anomalies, and sort out the same.
    • Made sure data is consistent and clean with respect to data type, data format and values used.
    • Created pivot tables according to the questions asked.
  4. m

    Dataset of development of business during the COVID-19 crisis

    • data.mendeley.com
    • narcis.nl
    Updated Nov 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tatiana N. Litvinova (2020). Dataset of development of business during the COVID-19 crisis [Dataset]. http://doi.org/10.17632/9vvrd34f8t.1
    Explore at:
    Dataset updated
    Nov 9, 2020
    Authors
    Tatiana N. Litvinova
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    To create the dataset, the top 10 countries leading in the incidence of COVID-19 in the world were selected as of October 22, 2020 (on the eve of the second full of pandemics), which are presented in the Global 500 ranking for 2020: USA, India, Brazil, Russia, Spain, France and Mexico. For each of these countries, no more than 10 of the largest transnational corporations included in the Global 500 rating for 2020 and 2019 were selected separately. The arithmetic averages were calculated and the change (increase) in indicators such as profitability and profitability of enterprises, their ranking position (competitiveness), asset value and number of employees. The arithmetic mean values of these indicators for all countries of the sample were found, characterizing the situation in international entrepreneurship as a whole in the context of the COVID-19 crisis in 2020 on the eve of the second wave of the pandemic. The data is collected in a general Microsoft Excel table. Dataset is a unique database that combines COVID-19 statistics and entrepreneurship statistics. The dataset is flexible data that can be supplemented with data from other countries and newer statistics on the COVID-19 pandemic. Due to the fact that the data in the dataset are not ready-made numbers, but formulas, when adding and / or changing the values in the original table at the beginning of the dataset, most of the subsequent tables will be automatically recalculated and the graphs will be updated. This allows the dataset to be used not just as an array of data, but as an analytical tool for automating scientific research on the impact of the COVID-19 pandemic and crisis on international entrepreneurship. The dataset includes not only tabular data, but also charts that provide data visualization. The dataset contains not only actual, but also forecast data on morbidity and mortality from COVID-19 for the period of the second wave of the pandemic in 2020. The forecasts are presented in the form of a normal distribution of predicted values and the probability of their occurrence in practice. This allows for a broad scenario analysis of the impact of the COVID-19 pandemic and crisis on international entrepreneurship, substituting various predicted morbidity and mortality rates in risk assessment tables and obtaining automatically calculated consequences (changes) on the characteristics of international entrepreneurship. It is also possible to substitute the actual values identified in the process and following the results of the second wave of the pandemic to check the reliability of pre-made forecasts and conduct a plan-fact analysis. The dataset contains not only the numerical values of the initial and predicted values of the set of studied indicators, but also their qualitative interpretation, reflecting the presence and level of risks of a pandemic and COVID-19 crisis for international entrepreneurship.

  5. m

    Raw data outputs 1-18

    • bridges.monash.edu
    • researchdata.edu.au
    xlsx
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abbas Salavaty Hosein Abadi; Sara Alaei; Mirana Ramialison; Peter Currie (2023). Raw data outputs 1-18 [Dataset]. http://doi.org/10.26180/21259491.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Monash University
    Authors
    Abbas Salavaty Hosein Abadi; Sara Alaei; Mirana Ramialison; Peter Currie
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Raw data outputs 1-18 Raw data output 1. Differentially expressed genes in AML CSCs compared with GTCs as well as in TCGA AML cancer samples compared with normal ones. This data was generated based on the results of AML microarray and TCGA data analysis. Raw data output 2. Commonly and uniquely differentially expressed genes in AML CSC/GTC microarray and TCGA bulk RNA-seq datasets. This data was generated based on the results of AML microarray and TCGA data analysis. Raw data output 3. Common differentially expressed genes between training and test set samples the microarray dataset. This data was generated based on the results of AML microarray data analysis. Raw data output 4. Detailed information on the samples of the breast cancer microarray dataset (GSE52327) used in this study. Raw data output 5. Differentially expressed genes in breast CSCs compared with GTCs as well as in TCGA BRCA cancer samples compared with normal ones. Raw data output 6. Commonly and uniquely differentially expressed genes in breast cancer CSC/GTC microarray and TCGA BRCA bulk RNA-seq datasets. This data was generated based on the results of breast cancer microarray and TCGA BRCA data analysis. CSC, and GTC are abbreviations of cancer stem cell, and general tumor cell, respectively. Raw data output 7. Differential and common co-expression and protein-protein interaction of genes between CSC and GTC samples. This data was generated based on the results of AML microarray and STRING database-based protein-protein interaction data analysis. CSC, and GTC are abbreviations of cancer stem cell, and general tumor cell, respectively. Raw data output 8. Differentially expressed genes between AML dormant and active CSCs. This data was generated based on the results of AML scRNA-seq data analysis. Raw data output 9. Uniquely expressed genes in dormant or active AML CSCs. This data was generated based on the results of AML scRNA-seq data analysis. Raw data output 10. Intersections between the targeting transcription factors of AML key CSC genes and differentially expressed genes between AML CSCs vs GTCs and between dormant and active AML CSCs or the uniquely expressed genes in either class of CSCs. Raw data output 11. Targeting desirableness score of AML key CSC genes and their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 12. CSC-specific targeting desirableness score of AML key CSC genes and their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 13. The protein-protein interactions between AML key CSC genes with themselves and their targeting transcription factors. This data was generated based on the results of AML microarray and STRING database-based protein-protein interaction data analysis. Raw data output 14. The previously confirmed associations of genes having the highest targeting desirableness and CSC-specific targeting desirableness scores with AML or other cancers’ (stem) cells as well as hematopoietic stem cells. These data were generated based on a PubMed database-based literature mining. Raw data output 15. Drug score of available drugs and bioactive small molecules targeting AML key CSC genes and/or their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 16. CSC-specific drug score of available drugs and bioactive small molecules targeting AML key CSC genes and/or their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 17. Candidate drugs for experimental validation. These drugs were selected based on their respective (CSC-specific) drug scores. CSC is the abbreviation of cancer stem cell. Raw data output 18. Detailed information on the samples of the AML microarray dataset GSE30375 used in this study.

  6. Sorting/selecting data in Excel with VLOOKUP()

    • figshare.com
    xlsx
    Updated Jan 18, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anneke Batenburg (2016). Sorting/selecting data in Excel with VLOOKUP() [Dataset]. http://doi.org/10.6084/m9.figshare.964802.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jan 18, 2016
    Dataset provided by
    Figsharehttp://figshare.com/
    figshare
    Authors
    Anneke Batenburg
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Example of how I use MS Excel's VLOOKUP() function to filter my data.

  7. q

    MS Excel Refresher - Lizards, iguanas, and snakes! Oh my! | Data Nuggets

    • qubeshub.org
    Updated Jan 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristen Kaczynski (2023). MS Excel Refresher - Lizards, iguanas, and snakes! Oh my! | Data Nuggets [Dataset]. http://doi.org/10.25334/NZWH-HQ21
    Explore at:
    Dataset updated
    Jan 13, 2023
    Dataset provided by
    QUBES
    Authors
    Kristen Kaczynski
    Description

    This resource, a MS Excel refresher, extends the level for this Data Nugget. Students are given an Excel workbook with the data and asked to graph and calculate diversity using Excel functions (rather than drawing graphs by hand as in the original data nugget). The data set used is the same. I use this activity in an upper division Environmental Science course for majors that focuses on Restoration Ecology. The simplicity of the data set and the comparisons of reptile diversity among urban, non-urban and urban rehabilitated lend for a great example for doing calculations in spreadsheets.

  8. Scooter Sales - Excel Project

    • kaggle.com
    Updated Jun 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ann Truong (2023). Scooter Sales - Excel Project [Dataset]. https://www.kaggle.com/datasets/bvanntruong/scooter-sales-excel-project
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 8, 2023
    Dataset provided by
    Kaggle
    Authors
    Ann Truong
    Description

    The link for the Excel project to download can be found on GitHub here. It includes the raw data, Pivot Tables, and an interactive dashboard with Pivot Charts and Slicers. The project also includes business questions and the formulas I used to answer. The image below is included for ease. https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F12904052%2F61e460b5f6a1fa73cfaaa33aa8107bd5%2FBusinessQuestions.png?generation=1686190703261971&alt=media" alt=""> The link for the Tableau adjusted dashboard can be found here.

    A screenshot of the interactive Excel dashboard is also included below for ease. https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F12904052%2Fe581f1fce8afc732f7823904da9e4cce%2FScooter%20Dashboard%20Image.png?generation=1686190815608343&alt=media" alt="">

  9. FIRE1102: previous data tables

    • gov.uk
    Updated Oct 18, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Home Office (2018). FIRE1102: previous data tables [Dataset]. https://www.gov.uk/government/statistical-data-sets/fire1102-previous-data-tables
    Explore at:
    Dataset updated
    Oct 18, 2018
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Home Office
    Description

    FIRE1102: Total staff numbers (full time equivalent) by role and fire and rescue authority (17 October 2024)

    https://assets.publishing.service.gov.uk/media/67077dab3b919067bb482f30/fire-statistics-data-tables-fire1102-191023.xlsx">FIRE1102: Total staff numbers (full time equivalent) by role and fire and rescue authority (19 October 2023) (MS Excel Spreadsheet, 472 KB)

    https://assets.publishing.service.gov.uk/media/652d1f486972600014ccf86e/fire-statistics-data-tables-fire1102-201022.xlsx">FIRE1102: Total staff numbers (full time equivalent) by role and fire and rescue authority (20 October 2022) (MS Excel Spreadsheet, 461 KB)

    https://assets.publishing.service.gov.uk/media/634e78c78fa8f5346f4fea45/fire-statistics-data-tables-fire1102-211021.xlsx">FIRE1102: Total staff numbers (full time equivalent) by role and fire and rescue authority (21 October 2021) (MS Excel Spreadsheet, 404 KB)

    https://assets.publishing.service.gov.uk/media/61699a16d3bf7f5601cf3038/fire-statistics-data-tables-fire1102-221020.xlsx">FIRE1102: Total staff numbers (full time equivalent) by role and fire and rescue authority (22 October 2020) (MS Excel Spreadsheet, 348 KB)

    https://assets.publishing.service.gov.uk/media/5f86a5a08fa8f51707a7c1ec/fire-statistics-data-tables-fire1102-311019.xlsx">FIRE1102: Total staff numbers (full time equivalent) by role and fire and rescue authority (31 October 2019) (MS Excel Spreadsheet, 300 KB)

    https://assets.publishing.service.gov.uk/media/5db6ff89ed915d1d02a59fe3/fire-statistics-data-tables-fire1102-181018.xlsx">FIRE1102: Total staff numbers (full time equivalent) by role and fire and rescue authority (18 October 2018) (MS Excel Spreadsheet, 251 KB)

    https://assets.publishing.service.gov.uk/media/5bb4dcc5ed915d076cc2ac66/fire-statistics-data-tables-fire1102.xlsx">FIRE1102: Total staff numbers (full time equivalent) by role and fire and rescue authority (26 October 2017) (MS Excel Spreadsheet, 276 KB)

    Related content

    Fire statistics data tables
    Fire statistics guidance
    Fire statistics

  10. FIRE1125: previous data tables

    • gov.uk
    Updated Oct 22, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Home Office (2020). FIRE1125: previous data tables [Dataset]. https://www.gov.uk/government/statistical-data-sets/fire1125-previous-data-tables
    Explore at:
    Dataset updated
    Oct 22, 2020
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Home Office
    Description

    FIRE1125: Apprentices by age, fire and rescue authority and role (17 October 2024)

    https://assets.publishing.service.gov.uk/media/6707855f080bdf716392f0f6/fire-statistics-data-tables-fire1125-191023.xlsx">FIRE1125: Apprentices by age, fire and rescue authority and role (19 October 2023) (MS Excel Spreadsheet, 404 KB)

    https://assets.publishing.service.gov.uk/media/652d3cc8697260000dccf889/fire-statistics-data-tables-fire1125-201022.xlsx">FIRE1125: Apprentices by age, fire and rescue authority and role (20 October 2022) (MS Excel Spreadsheet, 340 KB)

    https://assets.publishing.service.gov.uk/media/634e85acd3bf7f6183b8578f/fire-statistics-data-tables-fire1125-211021.xlsx">FIRE1125: Apprentices by age, fire and rescue authority and role (21 October 2021) (MS Excel Spreadsheet, 264 KB)

    https://assets.publishing.service.gov.uk/media/616d8899d3bf7f5601cf3064/fire-statistics-data-tables-fire1125-221020.xlsx">FIRE1125: Apprentices by age, fire and rescue authority and role (22 October 2020) (MS Excel Spreadsheet, 214 KB)

    https://assets.publishing.service.gov.uk/media/5f86c638d3bf7f632f6be1c0/fire-statistics-data-tables-fire1125-311019.xlsx">FIRE1125: Apprentices by age, fire and rescue authority and role (31 October 2019) (MS Excel Spreadsheet, 110 KB)

    Related content

    Fire statistics data tables
    Fire statistics guidance
    Fire statistics

  11. Coffee Shop Sales Analysis

    • kaggle.com
    Updated Apr 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Monis Amir (2024). Coffee Shop Sales Analysis [Dataset]. https://www.kaggle.com/datasets/monisamir/coffee-shop-sales-analysis
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 25, 2024
    Dataset provided by
    Kaggle
    Authors
    Monis Amir
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Analyzing Coffee Shop Sales: Excel Insights 📈

    In my first Data Analytics Project, I Discover the secrets of a fictional coffee shop's success with my data-driven analysis. By Analyzing a 5-sheet Excel dataset, I've uncovered valuable sales trends, customer preferences, and insights that can guide future business decisions. 📊☕

    DATA CLEANING 🧹

    • REMOVED DUPLICATES OR IRRELEVANT ENTRIES: Thoroughly eliminated duplicate records and irrelevant data to refine the dataset for analysis.

    • FIXED STRUCTURAL ERRORS: Rectified any inconsistencies or structural issues within the data to ensure uniformity and accuracy.

    • CHECKED FOR DATA CONSISTENCY: Verified the integrity and coherence of the dataset by identifying and resolving any inconsistencies or discrepancies.

    DATA MANIPULATION 🛠️

    • UTILIZED LOOKUPS: Used Excel's lookup functions for efficient data retrieval and analysis.

    • IMPLEMENTED INDEX MATCH: Leveraged the Index Match function to perform advanced data searches and matches.

    • APPLIED SUMIFS FUNCTIONS: Utilized SumIFs to calculate totals based on specified criteria.

    • CALCULATED PROFITS: Used relevant formulas and techniques to determine profit margins and insights from the data.

    PIVOTING THE DATA 𝄜

    • CREATED PIVOT TABLES: Utilized Excel's PivotTable feature to pivot the data for in-depth analysis.

    • FILTERED DATA: Utilized pivot tables to filter and analyze specific subsets of data, enabling focused insights. Specially used in “PEAK HOURS” and “TOP 3 PRODUCTS” charts.

    VISUALIZATION 📊

    • KEY INSIGHTS: Unveiled the grand total sales revenue while also analyzing the average bill per person, offering comprehensive insights into the coffee shop's performance and customer spending habits.

    • SALES TREND ANALYSIS: Used Line chart to compute total sales across various time intervals, revealing valuable insights into evolving sales trends.

    • PEAK HOUR ANALYSIS: Leveraged Clustered Column chart to identify peak sales hours, shedding light on optimal operating times and potential staffing needs.

    • TOP 3 PRODUCTS IDENTIFICATION: Utilized Clustered Bar chart to determine the top three coffee types, facilitating strategic decisions regarding inventory management and marketing focus.

    *I also used a Timeline to visualize chronological data trends and identify key patterns over specific times.

    While it's a significant milestone for me, I recognize that there's always room for growth and improvement. Your feedback and insights are invaluable to me as I continue to refine my skills and tackle future projects. I'm eager to hear your thoughts and suggestions on how I can make my next endeavor even more impactful and insightful.

    THANKS TO: WsCube Tech Mo Chen Alex Freberg

    TOOLS USED: Microsoft Excel

    DataAnalytics #DataAnalyst #ExcelProject #DataVisualization #BusinessIntelligence #SalesAnalysis #DataAnalysis #DataDrivenDecisions

  12. Car Sales Data Analysis using Excel

    • kaggle.com
    zip
    Updated Mar 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Amr Zalat (2025). Car Sales Data Analysis using Excel [Dataset]. https://www.kaggle.com/datasets/amrzalat/car-sales-data-analysis-using-excel
    Explore at:
    zip(114507 bytes)Available download formats
    Dataset updated
    Mar 6, 2025
    Authors
    Amr Zalat
    Description

    This project involves analyzing sales data using Excel to identify key trends and insights. The dataset includes information on sales performance, pricing, and retention rates. Various Excel functions, pivot tables, and charts were utilized to clean, process, and visualize the data effectively.

    Key Insights: ✔ Identified sales trends and patterns. ✔ Calculated retention percentages to assess customer loyalty. ✔ Used pivot tables to summarize sales by category. ✔ Created visual dashboards for easy interpretation.

    This analysis provides valuable business insights that can help optimize sales strategies and improve decision-making.

  13. f

    Excel Data File (A longitudinal examination of executive function, visual...

    • yorksj.figshare.com
    txt
    Updated Jun 23, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jack Brimmell (2022). Excel Data File (A longitudinal examination of executive function, visual attention, and soccer penalty performance) [Dataset]. http://doi.org/10.25421/yorksj.20089349.v2
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jun 23, 2022
    Dataset provided by
    York St John University
    Authors
    Jack Brimmell
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is the Excel file for the PhD study of Jack Brimmell entitled: A longitudinal examination of executive function, visual attention, and soccer penalty performance.

  14. U

    Statistical Abstract of the United States, 2011

    • dataverse-staging.rdmc.unc.edu
    Updated Oct 28, 2011
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UNC Dataverse (2011). Statistical Abstract of the United States, 2011 [Dataset]. https://dataverse-staging.rdmc.unc.edu/dataset.xhtml?persistentId=hdl:1902.29/CD-10849
    Explore at:
    Dataset updated
    Oct 28, 2011
    Dataset provided by
    UNC Dataverse
    License

    https://dataverse-staging.rdmc.unc.edu/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=hdl:1902.29/CD-10849https://dataverse-staging.rdmc.unc.edu/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=hdl:1902.29/CD-10849

    Description

    "The Statistical Abstract of the United States, published since 1878, is the standard summary of statistics on the social, political, and economic organization of the United States. It is designed to serve as a convenient volume for statistical reference and as a guide to other statistical publications and sources. The latter function is served by the introductory text to each section, the source note appearing below each table, and Appendix I, which comprises the Guide to Sources of Statisti cs, the Guide to State Statistical Abstracts, and the Guide to Foreign Statistical Abstracts. The Statistical Abstract sections and tables are compiled into one Adobe PDF named StatAbstract2009.pdf. This PDF is bookmarked by section and by table and can be searched using the Acrobat Search feature. The Statistical Abstract on CD-ROM is best viewed using Adobe Acrobat 5, or any subsequent version of Acrobat or Acrobat Reader. The Statistical Abstract tables and the metropolitan areas tables from Appendix II are available as Excel(.xls or .xlw) spreadsheets. In most cases, these spreadsheet files offer the user direct access to more data than are shown either in the publication or Adobe Acrobat. These files usually contain more years of data, more geographic areas, and/or more categories of subjects than those shown in the Acrobat version. The extensive selection of statistics is provided for the United States, with selected data for regions, divisions, states, metropolitan areas, cities, and foreign countries from reports and records of government and private agencies. Software on the disc can be used to perform full-text searches, view official statistics, open tables as Lotus worksheets or Excel workbooks, and link directly to source agencies and organizations for supporting information. Except as indicated, figures are for the United States as presently constituted. Although emphasis in the Statistical Abstract is primarily given to national data, many tables present data for regions and individual states and a smaller number for metropolitan areas and cities.Statistics for the Commonwealth of Puerto Rico and for island areas of the United States are included in many state tables and are supplemented by information in Section 29. Additional information for states, cities, counties, metropolitan areas, and other small units, as well as more historical data are available in various supplements to the Abstract. Statistics in this edition are generally for the most recent year or period available by summer 2006. Each year over 1,400 tables and charts are reviewed and evaluated; new tables and charts of current interest are added, continuing series are updated, and less timely data are condensed or eliminated. Text notes and appendices are revised as appropriate. This year we have introduced 72 new tables covering a wide range of subject areas. These cover a variety of topics including: learning disability for children, people impacted by the hurricanes in the Gulf Coast area, employees with alternative work arrangements, adult computer and Internet users by selected characteristics, North America cruise industry, women- and minority-owned businesses, and the percentage of the adult population considered to be obese. Some of the annually surveyed topics are population; vital statistics; health and nutrition; education; law enforcement, courts and prison; geography and environment; elections; state and local government; federal government finances and employment; national defense and veterans affairs; social insurance and human services; labor force, employment, and earnings; income, expenditures, and wealth; prices; business enterprise; science and technology; agriculture; natural resources; energy; construction and housing; manufactures; domestic trade and services; transportation; information and communication; banking, finance, and insurance; arts, entertainment, and recreation; accommodation, food services, and other services; foreign commerce and aid; outlying areas; and comparative international statistics." Note to Users: This CD is part of a collection located in the Data Archive of the Odum Institute for Research in Social Science, at the University of North Carolina at Chapel Hill. The collection is located in Room 10, Manning Hall. Users may check the CDs out subscribing to the honor system. Items can be checked out for a period of two weeks. Loan forms are located adjacent to the collection.

  15. P

    Poland Individuals: Using Advanced Functions of Spreadsheet Software: 45-54

    • ceicdata.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, Poland Individuals: Using Advanced Functions of Spreadsheet Software: 45-54 [Dataset]. https://www.ceicdata.com/en/poland/individuals-carrying-out-software-related-activities-by-age/individuals-using-advanced-functions-of-spreadsheet-software-4554
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2015 - Dec 1, 2024
    Area covered
    Poland
    Description

    Poland Individuals: Using Advanced Functions of Spreadsheet Software: 45-54 data was reported at 11.400 % in 2024. This records an increase from the previous number of 8.700 % for 2023. Poland Individuals: Using Advanced Functions of Spreadsheet Software: 45-54 data is updated yearly, averaging 8.700 % from Dec 2015 (Median) to 2024, with 9 observations. The data reached an all-time high of 11.900 % in 2020 and a record low of 5.200 % in 2015. Poland Individuals: Using Advanced Functions of Spreadsheet Software: 45-54 data remains active status in CEIC and is reported by Statistics Poland. The data is categorized under Global Database’s Poland – Table PL.G040: Individuals Carrying Out Software Related Activities: by Age.

  16. Extended 1.0 Dataset of "Concentration and Geospatial Modelling of Health...

    • zenodo.org
    bin, csv, pdf
    Updated Sep 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Peter Domjan; Peter Domjan; Viola Angyal; Viola Angyal; Istvan Vingender; Istvan Vingender (2024). Extended 1.0 Dataset of "Concentration and Geospatial Modelling of Health Development Offices' Accessibility for the Total and Elderly Populations in Hungary" [Dataset]. http://doi.org/10.5281/zenodo.13826993
    Explore at:
    bin, pdf, csvAvailable download formats
    Dataset updated
    Sep 23, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Peter Domjan; Peter Domjan; Viola Angyal; Viola Angyal; Istvan Vingender; Istvan Vingender
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Sep 23, 2024
    Area covered
    Hungary
    Description

    Introduction

    We are enclosing the database used in our research titled "Concentration and Geospatial Modelling of Health Development Offices' Accessibility for the Total and Elderly Populations in Hungary", along with our statistical calculations. For the sake of reproducibility, further information can be found in the file Short_Description_of_Data_Analysis.pdf and Statistical_formulas.pdf

    The sharing of data is part of our aim to strengthen the base of our scientific research. As of March 7, 2024, the detailed submission and analysis of our research findings to a scientific journal has not yet been completed.

    The dataset was expanded on 23rd September 2024 to include SPSS statistical analysis data, a heatmap, and buffer zone analysis around the Health Development Offices (HDOs) created in QGIS software.

    Short Description of Data Analysis and Attached Files (datasets):

    Our research utilised data from 2022, serving as the basis for statistical standardisation. The 2022 Hungarian census provided an objective basis for our analysis, with age group data available at the county level from the Hungarian Central Statistical Office (KSH) website. The 2022 demographic data provided an accurate picture compared to the data available from the 2023 microcensus. The used calculation is based on our standardisation of the 2022 data. For xlsx files, we used MS Excel 2019 (version: 1808, build: 10406.20006) with the SOLVER add-in.

    Hungarian Central Statistical Office served as the data source for population by age group, county, and regions: https://www.ksh.hu/stadat_files/nep/hu/nep0035.html, (accessed 04 Jan. 2024.) with data recorded in MS Excel in the Data_of_demography.xlsx file.

    In 2022, 108 Health Development Offices (HDOs) were operational, and it's noteworthy that no developments have occurred in this area since 2022. The availability of these offices and the demographic data from the Central Statistical Office in Hungary are considered public interest data, freely usable for research purposes without requiring permission.

    The contact details for the Health Development Offices were sourced from the following page (Hungarian National Population Centre (NNK)): https://www.nnk.gov.hu/index.php/efi (n=107). The Semmelweis University Health Development Centre was not listed by NNK, hence it was separately recorded as the 108th HDO. More information about the office can be found here: https://semmelweis.hu/egeszsegfejlesztes/en/ (n=1). (accessed 05 Dec. 2023.)

    Geocoordinates were determined using Google Maps (N=108): https://www.google.com/maps. (accessed 02 Jan. 2024.) Recording of geocoordinates (latitude and longitude according to WGS 84 standard), address data (postal code, town name, street, and house number), and the name of each HDO was carried out in the: Geo_coordinates_and_names_of_Hungarian_Health_Development_Offices.csv file.

    The foundational software for geospatial modelling and display (QGIS 3.34), an open-source software, can be downloaded from:

    https://qgis.org/en/site/forusers/download.html. (accessed 04 Jan. 2024.)

    The HDOs_GeoCoordinates.gpkg QGIS project file contains Hungary's administrative map and the recorded addresses of the HDOs from the

    Geo_coordinates_and_names_of_Hungarian_Health_Development_Offices.csv file,

    imported via .csv file.

    The OpenStreetMap tileset is directly accessible from www.openstreetmap.org in QGIS. (accessed 04 Jan. 2024.)

    The Hungarian county administrative boundaries were downloaded from the following website: https://data2.openstreetmap.hu/hatarok/index.php?admin=6 (accessed 04 Jan. 2024.)

    HDO_Buffers.gpkg is a QGIS project file that includes the administrative map of Hungary, the county boundaries, as well as the HDO offices and their corresponding buffer zones with a radius of 7.5 km.

    Heatmap.gpkg is a QGIS project file that includes the administrative map of Hungary, the county boundaries, as well as the HDO offices and their corresponding heatmap (Kernel Density Estimation).

    A brief description of the statistical formulas applied is included in the Statistical_formulas.pdf.

    Recording of our base data for statistical concentration and diversification measurement was done using MS Excel 2019 (version: 1808, build: 10406.20006) in .xlsx format.

    • Aggregated number of HDOs by county: Number_of_HDOs.xlsx
    • Standardised data (Number of HDOs per 100,000 residents): Standardized_data.xlsx
    • Calculation of the Lorenz curve: Lorenz_curve.xlsx
    • Calculation of the Gini index: Gini_Index.xlsx
    • Calculation of the LQ index: LQ_Index.xlsx
    • Calculation of the Herfindahl-Hirschman Index: Herfindahl_Hirschman_Index.xlsx
    • Calculation of the Entropy index: Entropy_Index.xlsx
    • Regression and correlation analysis calculation: Regression_correlation.xlsx

    Using the SPSS 29.0.1.0 program, we performed the following statistical calculations with the databases Data_HDOs_population_without_outliers.sav and Data_HDOs_population.sav:

    • Regression curve estimation with elderly population and number of HDOs, excluding outlier values (Types of analyzed equations: Linear, Logarithmic, Inverse, Quadratic, Cubic, Compound, Power, S, Growth, Exponential, Logistic, with summary and ANOVA analysis table): Curve_estimation_elderly_without_outlier.spv
    • Pearson correlation table between the total population, elderly population, and number of HDOs per county, excluding outlier values such as Budapest and Pest County: Pearson_Correlation_populations_HDOs_number_without_outliers.spv.
    • Dot diagram including total population and number of HDOs per county, excluding outlier values such as Budapest and Pest Counties: Dot_HDO_total_population_without_outliers.spv.
    • Dot diagram including elderly (64<) population and number of HDOs per county, excluding outlier values such as Budapest and Pest Counties: Dot_HDO_elderly_population_without_outliers.spv
    • Regression curve estimation with total population and number of HDOs, excluding outlier values (Types of analyzed equations: Linear, Logarithmic, Inverse, Quadratic, Cubic, Compound, Power, S, Growth, Exponential, Logistic, with summary and ANOVA analysis table): Curve_estimation_without_outlier.spv
    • Dot diagram including elderly (64<) population and number of HDOs per county: Dot_HDO_elderly_population.spv
    • Dot diagram including total population and number of HDOs per county: Dot_HDO_total_population.spv
    • Pearson correlation table between the total population, elderly population, and number of HDOs per county: Pearson_Correlation_populations_HDOs_number.spv
    • Regression curve estimation with total population and number of HDOs, (Types of analyzed equations: Linear, Logarithmic, Inverse, Quadratic, Cubic, Compound, Power, S, Growth, Exponential, Logistic, with summary and ANOVA analysis table): Curve_estimation_total_population.spv

    For easier readability, the files have been provided in both SPV and PDF formats.

    The translation of these supplementary files into English was completed on 23rd Sept. 2024.

    If you have any further questions regarding the dataset, please contact the corresponding author: domjan.peter@phd.semmelweis.hu

  17. S

    Google Sheets Statistics 2025: Mobile vs Desktop, Education Use & Advanced...

    • sqmagazine.co.uk
    Updated Oct 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SQ Magazine (2025). Google Sheets Statistics 2025: Mobile vs Desktop, Education Use & Advanced Features [Dataset]. https://sqmagazine.co.uk/google-sheets-statistics/
    Explore at:
    Dataset updated
    Oct 8, 2025
    Dataset authored and provided by
    SQ Magazine
    License

    https://sqmagazine.co.uk/privacy-policy/https://sqmagazine.co.uk/privacy-policy/

    Time period covered
    Jan 1, 2024 - Dec 31, 2025
    Area covered
    Global
    Description

    It started as a lightweight alternative to Excel, tucked quietly inside the broader Google ecosystem. But fast-forward to 2025, and Google Sheets isn’t just a spreadsheet tool; it’s a platform reshaping how individuals and businesses collaborate with data. Whether you’re a startup founder tracking KPIs, a school administrator running reports,...

  18. Additional file 1: of Simulation study of activities of daily living...

    • springernature.figshare.com
    application/cdfv2
    Updated Jun 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tsair-Wei Chien; Weir-Sen Lin (2023). Additional file 1: of Simulation study of activities of daily living functions using online computerized adaptive testing [Dataset]. http://doi.org/10.6084/m9.figshare.c.3644072_D2.v1
    Explore at:
    application/cdfv2Available download formats
    Dataset updated
    Jun 3, 2023
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Tsair-Wei Chien; Weir-Sen Lin
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The algorithm for determining Cutpoints and simulating data using MS Excel. (XLS 2362Â kb)

  19. FIRE1111: previous data tables

    • gov.uk
    Updated Oct 18, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Home Office (2018). FIRE1111: previous data tables [Dataset]. https://www.gov.uk/government/statistical-data-sets/fire1111-previous-data-tables
    Explore at:
    Dataset updated
    Oct 18, 2018
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Home Office
    Description

    FIRE1111: Staff leaving fire authorities, by reason and by role, England (17 October 2024)

    https://assets.publishing.service.gov.uk/media/670781693b919067bb482f32/fire-statistics-data-tables-fire1111-191023.xlsx">FIRE1111: Staff leaving fire authorities, by reason and by role, England (19 October 2023) (MS Excel Spreadsheet, 60.9 KB)

    https://assets.publishing.service.gov.uk/media/652d39ab6b6fbf000db756dd/fire-statistics-data-tables-fire1111-201022.xlsx">FIRE1111: Staff leaving fire authorities, by reason and by role, England (20 October 2022) (MS Excel Spreadsheet, 591 KB)

    https://assets.publishing.service.gov.uk/media/634e7e57e90e0731a20e0293/fire-statistics-data-tables-fire1111-211021.xlsx">FIRE1111: Staff leaving fire authorities, by reason and by role, England (21 October 2021) (MS Excel Spreadsheet, 506 KB)

    https://assets.publishing.service.gov.uk/media/616d45bee90e071976488f5f/fire-statistics-data-tables-fire1111-221020.xlsx">FIRE1111: Staff leaving fire authorities, by reason and by role, England (22 October 2020) (MS Excel Spreadsheet, 403 KB)

    https://assets.publishing.service.gov.uk/media/5f86b2add3bf7f6337ea2728/fire-statistics-data-tables-fire1111-311019.xlsx">FIRE1111: Staff leaving fire authorities, by reason and by role, England (31 October 2019) (MS Excel Spreadsheet, 305 KB)

    https://assets.publishing.service.gov.uk/media/5db70841ed915d1d01ae3c17/fire-statistics-data-tables-fire1111-181018.xlsx">FIRE1111: Staff leaving fire authorities, by reason and by role, England (18 October 2018) (MS Excel Spreadsheet, 195 KB)

    https://assets.publishing.service.gov.uk/media/5bbcc0d340f0b6385452223e/fire-statistics-data-tables-fire1111.xlsx">FIRE1111: Staff leaving fire authorities, by reason and by role, England (26 October 2017) (MS Excel Spreadsheet, 184 KB)

    Related content

    Fire statistics data tables
    Fire statistics guidance
    Fire statistics

  20. FIRE1104: previous data tables

    • gov.uk
    Updated Oct 18, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Home Office (2018). FIRE1104: previous data tables [Dataset]. https://www.gov.uk/government/statistical-data-sets/fire1104-previous-data-tables
    Explore at:
    Dataset updated
    Oct 18, 2018
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Home Office
    Description

    FIRE1104: Staff headcount by ethnicity, fire and rescue authority and role (17 October 2024)

    https://assets.publishing.service.gov.uk/media/67077eda366f494ab2e7b611/fire-statistics-data-tables-fire1104-191023.xlsx">FIRE1104: Staff headcount by ethnicity, fire and rescue authority and role (19 October 2023) (MS Excel Spreadsheet, 786 KB)

    https://assets.publishing.service.gov.uk/media/652d23eb6972600014ccf873/fire-statistics-data-tables-fire1104-201022.xlsx">FIRE1104: Staff headcount by ethnicity, fire and rescue authority and role (20 October 2022) (MS Excel Spreadsheet, 1.02 MB)

    https://assets.publishing.service.gov.uk/media/634e7992e90e0731af64677f/fire-statistics-data-tables-fire1104-051121.xlsx">FIRE1104: Staff headcount by ethnicity, fire and rescue authority and role (05 November 2021) (MS Excel Spreadsheet, 1010 KB)

    https://assets.publishing.service.gov.uk/media/61853858d3bf7f5606fcd145/fire-statistics-data-tables-fire1104-211021.xlsx">FIRE1104: Staff headcount by ethnicity, fire and rescue authority and role (21 October 2021) (MS Excel Spreadsheet, 989 KB)

    https://assets.publishing.service.gov.uk/media/6169a0a98fa8f529777ffc0c/fire-statistics-data-tables-fire1104-221020.xlsx">FIRE1104: Staff headcount by ethnicity, fire and rescue authority and role (22 October 2020) (MS Excel Spreadsheet, 926 KB)

    https://assets.publishing.service.gov.uk/media/5f86a888d3bf7f6334bd0576/fire-statistics-data-tables-fire1104-311019.xlsx">FIRE1104: Staff headcount by ethnicity, fire and rescue authority and role (31 October 2019) (MS Excel Spreadsheet, 834 KB)

    https://assets.publishing.service.gov.uk/media/5db7021640f0b637a03ff9eb/fire-statistics-data-tables-fire1104-181018.xlsx">FIRE1104: Staff headcount by ethnicity, fire and rescue authority and role (18 October 2018) (MS Excel Spreadsheet, 665 KB)

    https://assets.publishing.service.gov.uk/media/5bb77498e5274a2228ade88f/fire-statistics-data-tables-fire1104.xlsx">FIRE1104: Staff headcount by ethnicity, fire and rescue authority and role (26 October 2017) (MS Excel Spreadsheet, 504 KB)

    Related content

    Fire statistics data tables
    Fire statistics guidance
    Fire statistics

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Sanjana Murthy (2024). Statistical Function in Excel [Dataset]. https://www.kaggle.com/datasets/sanjanamurthy392/statistical-function
Organization logo

Statistical Function in Excel

Sum, average, max, min, sumif, sumifs, count, countblank, countif, countifs, etc

Explore at:
35 scholarly articles cite this dataset (View in Google Scholar)
zip(1412940 bytes)Available download formats
Dataset updated
Feb 7, 2024
Authors
Sanjana Murthy
License

Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically

Description

This data contains functions like: Sum, Average, Max, Min, Sumif, Sumifs, Count, Countblank, Countifs, Counta, Averageif, Averageifs.

Search
Clear search
Close search
Google apps
Main menu