Facebook
TwitterThis is digital research data corresponding to the manuscript, Reinhart, K.O., Vermeire, L.T. Precipitation Manipulation Experiments May Be Confounded by Water Source. J Soil Sci Plant Nutr (2023). https://doi.org/10.1007/s42729-023-01298-0 Files for a 3x2x2 factorial field experiment and water quality data used to create Table 1. Data for the experiment were used for the statistical analysis and generation of summary statistics for Figure 2. Purpose: This study aims to investigate the consequences of performing precipitation manipulation experiments with mineralized water in place of rainwater (i.e. demineralized water). Limited attention has been paid to the effects of water mineralization on plant and soil properties, even when the experiments are in a rainfed context. Methods: We conducted a 6-yr experiment with a gradient in spring rainfall (70, 100, and 130% of ambient). We tested effects of rainfall treatments on plant biomass and six soil properties and interpreted the confounding effects of dissolved solids in irrigation water. Results: Rainfall treatments affected all response variables. Sulfate was the most common dissolved solid in irrigation water and was 41 times more abundant in irrigated (i.e. 130% of ambient) than other plots. Soils of irrigated plots also had elevated iron (16.5 µg × 10 cm-2 × 60-d vs 8.9) and pH (7.0 vs 6.8). The rainfall gradient also had a nonlinear (hump-shaped) effect on plant available phosphorus (P). Plant and microbial biomasses are often limited by and positively associated with available P, suggesting the predicted positive linear relationship between plant biomass and P was confounded by additions of mineralized water. In other words, the unexpected nonlinear relationship was likely driven by components of mineralized irrigation water (i.e. calcium, iron) and/or shifts in soil pH that immobilized P. Conclusions: Our results suggest robust precipitation manipulation experiments should either capture rainwater when possible (or use demineralized water) or consider the confounding effects of mineralized water on plant and soil properties. Resources in this dataset: Resource Title: Readme file- Data dictionary File Name: README.txt Resource Description: File contains data dictionary to accompany data files for a research study. Resource Title: 3x2x2 factorial dataset.csv File Name: 3x2x2 factorial dataset.csv Resource Description: Dataset is for a 3x2x2 factorial field experiment (factors: rainfall variability, mowing seasons, mowing intensity) conducted in northern mixed-grass prairie vegetation in eastern Montana, USA. Data include activity of 5 plant available nutrients, soil pH, and plant biomass metrics. Data from 2018. Resource Title: water quality dataset.csv File Name: water quality dataset.csv Resource Description: Water properties (pH and common dissolved solids) of samples from Yellowstone River collected near Miles City, Montana. Data extracted from Rinella MJ, Muscha JM, Reinhart KO, Petersen MK (2021) Water quality for livestock in northern Great Plains rangelands. Rangeland Ecol. Manage. 75: 29-34.
Facebook
TwitterExperiment 1 means and statistics for age and baseline assessments indicating experimental conditions did not differ.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset represents the results of the experimentation of a method for evaluating semantic similarity between concepts in a taxonomy. The method is based on the information-theoretic approach and allows senses of concepts in a given context to be considered. Relevance of senses is calculated in terms of semantic relatedness with the compared concepts. In a previous work [9], the adopted semantic relatedness method was the one described in [10], while in this work we also adopted the ones described in [11], [12], [13], [14], [15], and [16].
We applied our proposal by extending 7 methods for computing semantic similarity in a taxonomy, selected from the literature. The methods considered in the experiment are referred to as R[2], W&P[3], L[4], J&C[5], P&S[6], A[7], and A&M[8]
The experiment was run on the well-known Miller and Charles benchmark dataset [1] for assessing semantic similarity.
The results are organized in seven folders, each with the results related to one of the above semantic relatedness methods. In each folder there is a set of files, each referring to one pair of the Miller and Charles dataset. In fact, for each pair of concepts, all the 28 pairs are considered as possible different contexts.
REFERENCES [1] Miller G.A., Charles W.G. 1991. Contextual correlates of semantic similarity. Language and Cognitive Processes 6(1). [2] Resnik P. 1995. Using Information Content to Evaluate Semantic Similarity in a Taxonomy. Int. Joint Conf. on Artificial Intelligence, Montreal. [3] Wu Z., Palmer M. 1994. Verb semantics and lexical selection. 32nd Annual Meeting of the Associations for Computational Linguistics. [4] Lin D. 1998. An Information-Theoretic Definition of Similarity. Int. Conf. on Machine Learning. [5] Jiang J.J., Conrath D.W. 1997. Semantic Similarity Based on Corpus Statistics and Lexical Taxonomy. Inter. Conf. Research on Computational Linguistics. [6] Pirrò G. 2009. A Semantic Similarity Metric Combining Features and Intrinsic Information Content. Data Knowl. Eng, 68(11). [7] Adhikari A., Dutta B., Dutta A., Mondal D., Singh S. 2018. An intrinsic information content-based semantic similarity measure considering the disjoint common subsumers of concepts of an ontology. J. Assoc. Inf. Sci. Technol. 69(8). [8] Adhikari A., Singh S., Mondal D., Dutta B., Dutta A. 2016. A Novel Information Theoretic Framework for Finding Semantic Similarity in WordNet. CoRR, arXiv:1607.05422, abs/1607.05422. [9] Formica A., Taglino F. 2021. An Enriched Information-Theoretic Definition of Semantic Similarity in a Taxonomy. IEEE Access, vol. 9. [10] Information Content-based approach [Schuhmacher and Ponzetto, 2014]. [11] Linked Data Semantic Distance (LDSD) [Passant, 2010]. [12] Wikipedia Link-based Measure (WLM ) [Witten and Milne, 2008]; [13] Linked Open Data Description Overlap-based approach (LODDO) [Zhou et al. 2012] [14] Exclusivity-based [Hulpuş et al 2015] [15] ASRMP [El Vaigh et al. 2020] [16] LDSDGN [Piao and Breslin, 2016]
Facebook
TwitterThis data collection contains all the data used in our learning question classification experiments, which has question class definitions, the training and testing question sets, examples of preprocessing the questions, feature definition scripts and examples of semantically related word features.
ABBR - 'abbreviation': expression abbreviated, etc. DESC - 'description and abstract concepts': manner of an action, description of sth. etc. ENTY - 'entities': animals, colors, events, food, etc. HUM - 'human beings': a group or organization of persons, an individual, etc. LOC - 'locations': cities, countries, etc. NUM - 'numeric values': postcodes, dates, speed,temperature, etc
https://cogcomp.seas.upenn.edu/Data/QA/QC/ https://github.com/Tony607/Keras-Text-Transfer-Learning/blob/master/README.md
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset is for the study of task decomposition effects in time estimation: the role of future boundaries and thought focus, and supplementary materials. Due to the previous research on the impact of task decomposition on time estimation, the role of time factors was often overlooked. For example, with the same decomposition, people subjectively set different time boundaries when facing difficult and easy tasks. Therefore, taking into account the time factor is bound to improve and integrate the research conclusions of decomposition effects. Based on this, we studied the impact of task decomposition and future boundaries on time estimation. Experiment 1 passed 2 (task decomposition/no decomposition) × Design an inter subject experiment with/without future boundaries, using the expected paradigm to measure the time estimation of participants; Experiment 2 further manipulates the time range of future boundaries based on Experiment 1, using 2 (task decomposition/non decomposition) × 3 (future boundaries of longer/shorter/medium range) inter subject experimental design, using expected paradigm to measure time estimation of subjects; On the basis of Experiment 2, Experiment 3 further verified the mechanism of the influence of the time range of future boundaries under decomposition conditions on time estimation. Through a single factor inter subject experimental design, a thinking focus scale was used to measure the thinking focus of participants under longer and shorter boundary conditions. Through the above experiments and measurements, we have obtained the following dataset. Experiment 1 Table Data Column Label Meaning: Task decomposition into grouped variables: 0 represents decomposition; 1 indicates no decomposition The future boundary is a grouping variable: 0 represents existence; 1 means it does not exist Zsco01: Standard score for estimating total task time A logarithm: The logarithmic value of the estimated time for all tasks Experiment 2 Table Data Column Label Meaning: The future boundary is a grouping variable: 7 represents shorter, 8 represents medium, and 9 represents longer The remaining data labels are the same as Experiment 1 Experiment 3 Table Data Column Label Meaning: Zplan represents the standard score for the focus plan score Zbar represents the standard score for attention barriers The future boundary is a grouping variable: 0 represents shorter, 1 represents longer
Facebook
TwitterField Name Data Type Description
Statefp Number US Census Bureau unique identifier of the state
Countyfp Number US Census Bureau unique identifier of the county
Countynm Text County name
Tractce Number US Census Bureau unique identifier of the census tract
Geoid Number US Census Bureau unique identifier of the state + county + census tract
Aland Number US Census Bureau defined land area of the census tract
Awater Number US Census Bureau defined water area of the census tract
Asqmi Number Area calculated in square miles from the Aland
MSSAid Text ID of the Medical Service Study Area (MSSA) the census tract belongs to
MSSAnm Text Name of the Medical Service Study Area (MSSA) the census tract belongs to
Definition Text Type of MSSA, possible values are urban, rural and frontier.
TotalPovPop Number US Census Bureau total population for whom poverty status is determined of the census tract, taken from the 2020 ACS 5 YR S1701
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Vitamin D insufficiency appears to be prevalent in SLE patients. Multiple factors potentially contribute to lower vitamin D levels, including limited sun exposure, the use of sunscreen, darker skin complexion, aging, obesity, specific medical conditions, and certain medications. The study aims to assess the risk factors associated with low vitamin D levels in SLE patients in the southern part of Bangladesh, a region noted for a high prevalence of SLE. The research additionally investigates the possible correlation between vitamin D and the SLEDAI score, seeking to understand the potential benefits of vitamin D in enhancing disease outcomes for SLE patients. The study incorporates a dataset consisting of 50 patients from the southern part of Bangladesh and evaluates their clinical and demographic data. An initial exploratory data analysis is conducted to gain insights into the data, which includes calculating means and standard deviations, performing correlation analysis, and generating heat maps. Relevant inferential statistical tests, such as the Student’s t-test, are also employed. In the machine learning part of the analysis, this study utilizes supervised learning algorithms, specifically Linear Regression (LR) and Random Forest (RF). To optimize the hyperparameters of the RF model and mitigate the risk of overfitting given the small dataset, a 3-Fold cross-validation strategy is implemented. The study also calculates bootstrapped confidence intervals to provide robust uncertainty estimates and further validate the approach. A comprehensive feature importance analysis is carried out using RF feature importance, permutation-based feature importance, and SHAP values. The LR model yields an RMSE of 4.83 (CI: 2.70, 6.76) and MAE of 3.86 (CI: 2.06, 5.86), whereas the RF model achieves better results, with an RMSE of 2.98 (CI: 2.16, 3.76) and MAE of 2.68 (CI: 1.83,3.52). Both models identify Hb, CRP, ESR, and age as significant contributors to vitamin D level predictions. Despite the lack of a significant association between SLEDAI and vitamin D in the statistical analysis, the machine learning models suggest a potential nonlinear dependency of vitamin D on SLEDAI. These findings highlight the importance of these factors in managing vitamin D levels in SLE patients. The study concludes that there is a high prevalence of vitamin D insufficiency in SLE patients. Although a direct linear correlation between the SLEDAI score and vitamin D levels is not observed, machine learning models suggest the possibility of a nonlinear relationship. Furthermore, factors such as Hb, CRP, ESR, and age are identified as more significant in predicting vitamin D levels. Thus, the study suggests that monitoring these factors may be advantageous in managing vitamin D levels in SLE patients. Given the immunological nature of SLE, the potential role of vitamin D in SLE disease activity could be substantial. Therefore, it underscores the need for further large-scale studies to corroborate this hypothesis.
Facebook
TwitterAttribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
The National Transit Map - Routes dataset was compiled on June 02, 2025 from the Bureau of Transportation Statistics (BTS) and is part of the U.S. Department of Transportation (USDOT)/Bureau of Transportation Statistics (BTS) National Transportation Atlas Database (NTAD). The National Transit Map (NTM) is a nationwide catalog of fixed-guideway and fixed-route transit service in America. It is compiled using General Transit Feed Specification (GTFS) Schedule data. The NTM Routes dataset shows transit routes, which is a group of trips that are displayed to riders as a single service. To display the route alignment and trips for each route, this dataset combines the following GTFS files: routes.txt, trips.txt, and shapes.txt. The GTFS Schedule documentation is available at, https://gtfs.org/schedule/. To improve the spatial accuracy of the NTM Routes, the Bureau of Transportation Statistics (BTS) adjusts transit routes using context from the submitted GTFS source data and/or from other publicly available information about the transit service. A data dictionary, or other source of attribute information, is accessible at https://doi.org/10.21949/1529048
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Coups d'Ètat are important events in the life of a country. They constitute an important subset of irregular transfers of political power that can have significant and enduring consequences for national well-being. There are only a limited number of datasets available to study these events (Powell and Thyne 2011, Marshall and Marshall 2019). Seeking to facilitate research on post-WWII coups by compiling a more comprehensive list and categorization of these events, the Cline Center for Advanced Social Research (previously the Cline Center for Democracy) initiated the Coup d’État Project as part of its Societal Infrastructures and Development (SID) project. More specifically, this dataset identifies the outcomes of coup events (i.e., realized, unrealized, or conspiracy) the type of actor(s) who initiated the coup (i.e., military, rebels, etc.), as well as the fate of the deposed leader. Version 2.1.3 adds 19 additional coup events to the data set, corrects the date of a coup in Tunisia, and reclassifies an attempted coup in Brazil in December 2022 to a conspiracy. Version 2.1.2 added 6 additional coup events that occurred in 2022 and updated the coding of an attempted coup event in Kazakhstan in January 2022. Version 2.1.1 corrected a mistake in version 2.1.0, where the designation of “dissident coup” had been dropped in error for coup_id: 00201062021. Version 2.1.1 fixed this omission by marking the case as both a dissident coup and an auto-coup. Version 2.1.0 added 36 cases to the data set and removed two cases from the v2.0.0 data. This update also added actor coding for 46 coup events and added executive outcomes to 18 events from version 2.0.0. A few other changes were made to correct inconsistencies in the coup ID variable and the date of the event. Version 2.0.0 improved several aspects of the previous version (v1.0.0) and incorporated additional source material to include: • Reconciling missing event data • Removing events with irreconcilable event dates • Removing events with insufficient sourcing (each event needs at least two sources) • Removing events that were inaccurately coded as coup events • Removing variables that fell below the threshold of inter-coder reliability required by the project • Removing the spreadsheet ‘CoupInventory.xls’ because of inadequate attribution and citations in the event summaries • Extending the period covered from 1945-2005 to 1945-2019 • Adding events from Powell and Thyne’s Coup Data (Powell and Thyne, 2011)
Items in this Dataset 1. Cline Center Coup d'État Codebook v.2.1.3 Codebook.pdf - This 15-page document describes the Cline Center Coup d’État Project dataset. The first section of this codebook provides a summary of the different versions of the data. The second section provides a succinct definition of a coup d’état used by the Coup d'État Project and an overview of the categories used to differentiate the wide array of events that meet the project's definition. It also defines coup outcomes. The third section describes the methodology used to produce the data. Revised February 2024 2. Coup Data v2.1.3.csv - This CSV (Comma Separated Values) file contains all of the coup event data from the Cline Center Coup d’État Project. It contains 29 variables and 1000 observations. Revised February 2024 3. Source Document v2.1.3.pdf - This 325-page document provides the sources used for each of the coup events identified in this dataset. Please use the value in the coup_id variable to identify the sources used to identify that particular event. Revised February 2024 4. README.md - This file contains useful information for the user about the dataset. It is a text file written in markdown language. Revised February 2024
Citation Guidelines 1. To cite the codebook (or any other documentation associated with the Cline Center Coup d’État Project Dataset) please use the following citation: Peyton, Buddy, Joseph Bajjalieh, Dan Shalmon, Michael Martin, Jonathan Bonaguro, and Scott Althaus. 2024. “Cline Center Coup d’État Project Dataset Codebook”. Cline Center Coup d’État Project Dataset. Cline Center for Advanced Social Research. V.2.1.3. February 27. University of Illinois Urbana-Champaign. doi: 10.13012/B2IDB-9651987_V7 2. To cite data from the Cline Center Coup d’État Project Dataset please use the following citation (filling in the correct date of access): Peyton, Buddy, Joseph Bajjalieh, Dan Shalmon, Michael Martin, Jonathan Bonaguro, and Emilio Soto. 2024. Cline Center Coup d’État Project Dataset. Cline Center for Advanced Social Research. V.2.1.3. February 27. University of Illinois Urbana-Champaign. doi: 10.13012/B2IDB-9651987_V7
Facebook
TwitterThis dataset consists of unlabeled data representing various data points collected from different sources and domains. The dataset serves as a blank canvas for unsupervised learning experiments, allowing for the exploration of patterns, clusters, and hidden insights through various data analysis techniques. Researchers and data enthusiasts can use this dataset to develop and test unsupervised learning algorithms, identify underlying structures, and gain a deeper understanding of data without predefined labels.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains data collected during a study ("Towards High-Value Datasets determination for data-driven development: a systematic literature review") conducted by Anastasija Nikiforova (University of Tartu), Nina Rizun, Magdalena Ciesielska (Gdańsk University of Technology), Charalampos Alexopoulos (University of the Aegean) and Andrea Miletič (University of Zagreb) It being made public both to act as supplementary data for "Towards High-Value Datasets determination for data-driven development: a systematic literature review" paper (pre-print is available in Open Access here -> https://arxiv.org/abs/2305.10234) and in order for other researchers to use these data in their own work.
The protocol is intended for the Systematic Literature review on the topic of High-value Datasets with the aim to gather information on how the topic of High-value datasets (HVD) and their determination has been reflected in the literature over the years and what has been found by these studies to date, incl. the indicators used in them, involved stakeholders, data-related aspects, and frameworks. The data in this dataset were collected in the result of the SLR over Scopus, Web of Science, and Digital Government Research library (DGRL) in 2023.
Methodology
To understand how HVD determination has been reflected in the literature over the years and what has been found by these studies to date, all relevant literature covering this topic has been studied. To this end, the SLR was carried out to by searching digital libraries covered by Scopus, Web of Science (WoS), Digital Government Research library (DGRL).
These databases were queried for keywords ("open data" OR "open government data") AND ("high-value data*" OR "high value data*"), which were applied to the article title, keywords, and abstract to limit the number of papers to those, where these objects were primary research objects rather than mentioned in the body, e.g., as a future work. After deduplication, 11 articles were found unique and were further checked for relevance. As a result, a total of 9 articles were further examined. Each study was independently examined by at least two authors.
To attain the objective of our study, we developed the protocol, where the information on each selected study was collected in four categories: (1) descriptive information, (2) approach- and research design- related information, (3) quality-related information, (4) HVD determination-related information.
Test procedure Each study was independently examined by at least two authors, where after the in-depth examination of the full-text of the article, the structured protocol has been filled for each study. The structure of the survey is available in the supplementary file available (see Protocol_HVD_SLR.odt, Protocol_HVD_SLR.docx) The data collected for each study by two researchers were then synthesized in one final version by the third researcher.
Description of the data in this data set
Protocol_HVD_SLR provides the structure of the protocol Spreadsheets #1 provides the filled protocol for relevant studies. Spreadsheet#2 provides the list of results after the search over three indexing databases, i.e. before filtering out irrelevant studies
The information on each selected study was collected in four categories: (1) descriptive information, (2) approach- and research design- related information, (3) quality-related information, (4) HVD determination-related information
Descriptive information
1) Article number - a study number, corresponding to the study number assigned in an Excel worksheet
2) Complete reference - the complete source information to refer to the study
3) Year of publication - the year in which the study was published
4) Journal article / conference paper / book chapter - the type of the paper -{journal article, conference paper, book chapter}
5) DOI / Website- a link to the website where the study can be found
6) Number of citations - the number of citations of the article in Google Scholar, Scopus, Web of Science
7) Availability in OA - availability of an article in the Open Access
8) Keywords - keywords of the paper as indicated by the authors
9) Relevance for this study - what is the relevance level of the article for this study? {high / medium / low}
Approach- and research design-related information 10) Objective / RQ - the research objective / aim, established research questions 11) Research method (including unit of analysis) - the methods used to collect data, including the unit of analy-sis (country, organisation, specific unit that has been ana-lysed, e.g., the number of use-cases, scope of the SLR etc.) 12) Contributions - the contributions of the study 13) Method - whether the study uses a qualitative, quantitative, or mixed methods approach? 14) Availability of the underlying research data- whether there is a reference to the publicly available underly-ing research data e.g., transcriptions of interviews, collected data, or explanation why these data are not shared? 15) Period under investigation - period (or moment) in which the study was conducted 16) Use of theory / theoretical concepts / approaches - does the study mention any theory / theoretical concepts / approaches? If any theory is mentioned, how is theory used in the study?
Quality- and relevance- related information
17) Quality concerns - whether there are any quality concerns (e.g., limited infor-mation about the research methods used)?
18) Primary research object - is the HVD a primary research object in the study? (primary - the paper is focused around the HVD determination, sec-ondary - mentioned but not studied (e.g., as part of discus-sion, future work etc.))
HVD determination-related information
19) HVD definition and type of value - how is the HVD defined in the article and / or any other equivalent term?
20) HVD indicators - what are the indicators to identify HVD? How were they identified? (components & relationships, “input -> output")
21) A framework for HVD determination - is there a framework presented for HVD identification? What components does it consist of and what are the rela-tionships between these components? (detailed description)
22) Stakeholders and their roles - what stakeholders or actors does HVD determination in-volve? What are their roles?
23) Data - what data do HVD cover?
24) Level (if relevant) - what is the level of the HVD determination covered in the article? (e.g., city, regional, national, international)
Format of the file .xls, .csv (for the first spreadsheet only), .odt, .docx
Licenses or restrictions CC-BY
For more info, see README.txt
Facebook
TwitterThe Delta Neighborhood Physical Activity Study was an observational study designed to assess characteristics of neighborhood built environments associated with physical activity. It was an ancillary study to the Delta Healthy Sprouts Project and therefore included towns and neighborhoods in which Delta Healthy Sprouts participants resided. The 12 towns were located in the Lower Mississippi Delta region of Mississippi. Data were collected via electronic surveys between August 2016 and September 2017 using the Rural Active Living Assessment (RALA) tools and the Community Park Audit Tool (CPAT). Scale scores for the RALA Programs and Policies Assessment and the Town-Wide Assessment were computed using the scoring algorithms provided for these tools via SAS software programming. The Street Segment Assessment and CPAT do not have associated scoring algorithms and therefore no scores are provided for them. Because the towns were not randomly selected and the sample size is small, the data may not be generalizable to all rural towns in the Lower Mississippi Delta region of Mississippi. Dataset one contains data collected with the RALA Programs and Policies Assessment (PPA) tool. Dataset two contains data collected with the RALA Town-Wide Assessment (TWA) tool. Dataset three contains data collected with the RALA Street Segment Assessment (SSA) tool. Dataset four contains data collected with the Community Park Audit Tool (CPAT). [Note : title changed 9/4/2020 to reflect study name] Resources in this dataset:Resource Title: Dataset One RALA PPA Data Dictionary. File Name: RALA PPA Data Dictionary.csvResource Description: Data dictionary for dataset one collected using the RALA PPA tool.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel Resource Title: Dataset Two RALA TWA Data Dictionary. File Name: RALA TWA Data Dictionary.csvResource Description: Data dictionary for dataset two collected using the RALA TWA tool.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel Resource Title: Dataset Three RALA SSA Data Dictionary. File Name: RALA SSA Data Dictionary.csvResource Description: Data dictionary for dataset three collected using the RALA SSA tool.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel Resource Title: Dataset Four CPAT Data Dictionary. File Name: CPAT Data Dictionary.csvResource Description: Data dictionary for dataset four collected using the CPAT.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel Resource Title: Dataset One RALA PPA. File Name: RALA PPA Data.csvResource Description: Data collected using the RALA PPA tool.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel Resource Title: Dataset Two RALA TWA. File Name: RALA TWA Data.csvResource Description: Data collected using the RALA TWA tool.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel Resource Title: Dataset Three RALA SSA. File Name: RALA SSA Data.csvResource Description: Data collected using the RALA SSA tool.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel Resource Title: Dataset Four CPAT. File Name: CPAT Data.csvResource Description: Data collected using the CPAT.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel Resource Title: Data Dictionary. File Name: DataDictionary_RALA_PPA_SSA_TWA_CPAT.csvResource Description: This is a combined data dictionary from each of the 4 dataset files in this set.
Facebook
TwitterThe overall objective of the Statewide Commercial Baseline research was to understand the existing commercial building stock in New York State and associated energy use, including the means of energy using equipment. This dataset provides all characteristics that are presented as averages, such as the average square footage of businesses or the average cooling capacity of split systems. All supporting summary statistics are also provided. For more information, see the Final Report at https://www.nyserda.ny.gov/About/Publications/Building-Stock-and-Potential-Studies/Commercial-Statewide-Baseline-Study The New York State Energy Research and Development Authority (NYSERDA) offers objective information and analysis, innovative programs, technical expertise, and support to help New Yorkers increase energy efficiency, save money, use renewable energy, and reduce reliance on fossil fuels. To learn more about NYSERDA’s programs, visit https://nyserda.ny.gov or follow us on X, Facebook, YouTube, or Instagram.
Facebook
TwitterDisplays traffic study flow count data maintained by Seattle Department of Transportation.Users can utilize following definition query for traffic count study data for a particular year. Note-ENTER YEAR is the particular year of interest.Definition Query: STDY_YEAR=ENTER YEAR AND FLOWMAP = 'Y'Refresh: Weekly
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The CIFAR-10 and CIFAR-100 datasets are labeled subsets of the 80 million tiny images dataset. CIFAR-10 and CIFAR-100 were created by Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. (Sadly, the 80 million tiny images dataset has been thrown into the memory hole by its authors. Spotting the doublethink which was used to justify its erasure is left as an exercise for the reader.)
The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images per class. There are 50000 training images and 10000 test images.
The dataset is divided into five training batches and one test batch, each with 10000 images. The test batch contains exactly 1000 randomly-selected images from each class. The training batches contain the remaining images in random order, but some training batches may contain more images from one class than another. Between them, the training batches contain exactly 5000 images from each class.
The classes are completely mutually exclusive. There is no overlap between automobiles and trucks. "Automobile" includes sedans, SUVs, things of that sort. "Truck" includes only big trucks. Neither includes pickup trucks.
Baseline results You can find some baseline replicable results on this dataset on the project page for cuda-convnet. These results were obtained with a convolutional neural network. Briefly, they are 18% test error without data augmentation and 11% with. Additionally, Jasper Snoek has a new paper in which he used Bayesian hyperparameter optimization to find nice settings of the weight decay and other hyperparameters, which allowed him to obtain a test error rate of 15% (without data augmentation) using the architecture of the net that got 18%.
Other results Rodrigo Benenson has collected results on CIFAR-10/100 and other datasets on his website; click here to view.
Dataset layout Python / Matlab versions I will describe the layout of the Python version of the dataset. The layout of the Matlab version is identical.
The archive contains the files data_batch_1, data_batch_2, ..., data_batch_5, as well as test_batch. Each of these files is a Python "pickled" object produced with cPickle. Here is a python2 routine which will open such a file and return a dictionary:
python
def unpickle(file):
import cPickle
with open(file, 'rb') as fo:
dict = cPickle.load(fo)
return dict
And a python3 version:
def unpickle(file):
import pickle
with open(file, 'rb') as fo:
dict = pickle.load(fo, encoding='bytes')
return dict
Loaded in this way, each of the batch files contains a dictionary with the following elements:
data -- a 10000x3072 numpy array of uint8s. Each row of the array stores a 32x32 colour image. The first 1024 entries contain the red channel values, the next 1024 the green, and the final 1024 the blue. The image is stored in row-major order, so that the first 32 entries of the array are the red channel values of the first row of the image.
labels -- a list of 10000 numbers in the range 0-9. The number at index i indicates the label of the ith image in the array data.
The dataset contains another file, called batches.meta. It too contains a Python dictionary object. It has the following entries: label_names -- a 10-element list which gives meaningful names to the numeric labels in the labels array described above. For example, label_names[0] == "airplane", label_names[1] == "automobile", etc. Binary version The binary version contains the files data_batch_1.bin, data_batch_2.bin, ..., data_batch_5.bin, as well as test_batch.bin. Each of these files is formatted as follows: <1 x label><3072 x pixel> ... <1 x label><3072 x pixel> In other words, the first byte is the label of the first image, which is a number in the range 0-9. The next 3072 bytes are the values of the pixels of the image. The first 1024 bytes are the red channel values, the next 1024 the green, and the final 1024 the blue. The values are stored in row-major order, so the first 32 bytes are the red channel values of the first row of the image.
Each file contains 10000 such 3073-byte "rows" of images, although there is nothing delimiting the rows. Therefore each file should be exactly 30730000 bytes long.
There is another file, called batches.meta.txt. This is an ASCII file that maps numeric labels in the range 0-9 to meaningful class names. It is merely a list of the 10 class names, one per row. The class name on row i corresponds to numeric label i.
The CIFAR-100 dataset This dataset is just like the CIFAR-10, except it has 100 classes containing 600 images each. There are 500 training images and 100 testing images per class. The 100 classes in the CIFAR-100 are grouped into 20 superclasses. Each image comes with a "fine" label (the class to which it belongs) and a "coarse" label (the superclass to which it belongs). Her...
Facebook
TwitterTecplot (ascii) and matlab files are posted here for the Static pressure coefficient data sets. To download all of the data in either tecplot format or matlab format, you can go to https://c3.nasa.gov/dashlink/resources/485/ Please consult the documentation found on this page under Support/Documentation for information regarding variable definition, data processing, etc.
Facebook
TwitterERA-Interim represents a major undertaking by ECMWF (European Centre for Medium-Range Weather Forecasts) to produce a reanalysis with an improved atmospheric model and assimilation system which replaces those used in ERA-40, particularly for the data-rich 1990s and 2000s, and to be continued as an ECMWF Climate Data Assimilation System (ECDAS) until superseded by a new extended reanalysis. Preliminary runs indicated that several of the inaccuracies exhibited by ERA-40 such as too-strong precipitation over oceans from the early 1990s onwards and a too-strong Brewer-Dobson circulation in the stratosphere, were eliminated or significantly reduced. Production of ERA-Interim, from 1989 onwards, began in summer of 2006. (The period 1979-1988 was prepended in 2011.)
Through systematic increases of computing power, 4-dimensional variational assimilation (4D-Var) became feasible and part of ECMWF operations since 1997, paving the way to base ERA-Interim on 4D-Var (rather than 3D-Var as in ERA-40). Enhanced computing power also allowed horizontal resolution to be increased from T159 (N80, nominally 1.125 degrees for ERA-40) to T255 (N128, nominally 0.703125 degrees), and the latest cycle of the atmospheric model (IFS CY31r1 and CY31r2) to be used, taking advantage of improved model physics. ERA-interim retains the same 60 model levels used for ERA-40 with the highest level being 0.1 hectopascal. In addition, data assimilation of ERA-Interim also benefits from quality control that draws on experience from ERA-40 and JRA-25, variational bias correction of satellite radiance data, and more extensive use of radiances with an improved fast radiative transfer model.
ERA-Interim uses sets of observations and boundary forcing fields acquired for ERA-40 through 2001, and from ECMWF operations thereafter. Noteworthy exceptions include new ERS (European Remote Sensing Satellite) altimeter wave heights, EUMETSAT (European Organisation for the Exploitation...
Facebook
TwitterThis data dictionary supplements the Abstracting and Imaging Project Areas dataset and explains codes and how each area was created.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Dataset population: Persons working or studying
Travel to place of work or study, means of
'Public transport' and 'car or van availability' are a different statistic to the 2001 Census.
Scotland excludes some 4 and 5-year-olds (a total of 11,876) who were reported as being in full-time education but for whom no information on their place of study or method of travel to study was provided.
Facebook
TwitterThis is an update to the MSSA geometries and demographics to reflect the new 2020 Census tract data. The Medical Service Study Area (MSSA) polygon layer represents the best fit mapping of all new 2020 California census tract boundaries to the original 2010 census tract boundaries used in the construction of the original 2010 MSSA file. Each of the state's new 9,129 census tracts was assigned to one of the previously established medical service study areas (excluding tracts with no land area), as identified in this data layer. The MSSA Census tract data is aggregated by HCAI, to create this MSSA data layer. This represents the final re-mapping of 2020 Census tracts to the original 2010 MSSA geometries. The 2010 MSSA were based on U.S. Census 2010 data and public meetings held throughout California.
Facebook
TwitterThis is digital research data corresponding to the manuscript, Reinhart, K.O., Vermeire, L.T. Precipitation Manipulation Experiments May Be Confounded by Water Source. J Soil Sci Plant Nutr (2023). https://doi.org/10.1007/s42729-023-01298-0 Files for a 3x2x2 factorial field experiment and water quality data used to create Table 1. Data for the experiment were used for the statistical analysis and generation of summary statistics for Figure 2. Purpose: This study aims to investigate the consequences of performing precipitation manipulation experiments with mineralized water in place of rainwater (i.e. demineralized water). Limited attention has been paid to the effects of water mineralization on plant and soil properties, even when the experiments are in a rainfed context. Methods: We conducted a 6-yr experiment with a gradient in spring rainfall (70, 100, and 130% of ambient). We tested effects of rainfall treatments on plant biomass and six soil properties and interpreted the confounding effects of dissolved solids in irrigation water. Results: Rainfall treatments affected all response variables. Sulfate was the most common dissolved solid in irrigation water and was 41 times more abundant in irrigated (i.e. 130% of ambient) than other plots. Soils of irrigated plots also had elevated iron (16.5 µg × 10 cm-2 × 60-d vs 8.9) and pH (7.0 vs 6.8). The rainfall gradient also had a nonlinear (hump-shaped) effect on plant available phosphorus (P). Plant and microbial biomasses are often limited by and positively associated with available P, suggesting the predicted positive linear relationship between plant biomass and P was confounded by additions of mineralized water. In other words, the unexpected nonlinear relationship was likely driven by components of mineralized irrigation water (i.e. calcium, iron) and/or shifts in soil pH that immobilized P. Conclusions: Our results suggest robust precipitation manipulation experiments should either capture rainwater when possible (or use demineralized water) or consider the confounding effects of mineralized water on plant and soil properties. Resources in this dataset: Resource Title: Readme file- Data dictionary File Name: README.txt Resource Description: File contains data dictionary to accompany data files for a research study. Resource Title: 3x2x2 factorial dataset.csv File Name: 3x2x2 factorial dataset.csv Resource Description: Dataset is for a 3x2x2 factorial field experiment (factors: rainfall variability, mowing seasons, mowing intensity) conducted in northern mixed-grass prairie vegetation in eastern Montana, USA. Data include activity of 5 plant available nutrients, soil pH, and plant biomass metrics. Data from 2018. Resource Title: water quality dataset.csv File Name: water quality dataset.csv Resource Description: Water properties (pH and common dissolved solids) of samples from Yellowstone River collected near Miles City, Montana. Data extracted from Rinella MJ, Muscha JM, Reinhart KO, Petersen MK (2021) Water quality for livestock in northern Great Plains rangelands. Rangeland Ecol. Manage. 75: 29-34.