68 datasets found
  1. Data from: Precipitation manipulation experiments may be confounded by water...

    • catalog.data.gov
    • datasets.ai
    • +2more
    Updated Apr 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agricultural Research Service (2025). Data from: Precipitation manipulation experiments may be confounded by water source [Dataset]. https://catalog.data.gov/dataset/data-from-precipitation-manipulation-experiments-may-be-confounded-by-water-source-7d7bc
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    Agricultural Research Servicehttps://www.ars.usda.gov/
    Description

    This is digital research data corresponding to the manuscript, Reinhart, K.O., Vermeire, L.T. Precipitation Manipulation Experiments May Be Confounded by Water Source. J Soil Sci Plant Nutr (2023). https://doi.org/10.1007/s42729-023-01298-0 Files for a 3x2x2 factorial field experiment and water quality data used to create Table 1. Data for the experiment were used for the statistical analysis and generation of summary statistics for Figure 2. Purpose: This study aims to investigate the consequences of performing precipitation manipulation experiments with mineralized water in place of rainwater (i.e. demineralized water). Limited attention has been paid to the effects of water mineralization on plant and soil properties, even when the experiments are in a rainfed context. Methods: We conducted a 6-yr experiment with a gradient in spring rainfall (70, 100, and 130% of ambient). We tested effects of rainfall treatments on plant biomass and six soil properties and interpreted the confounding effects of dissolved solids in irrigation water. Results: Rainfall treatments affected all response variables. Sulfate was the most common dissolved solid in irrigation water and was 41 times more abundant in irrigated (i.e. 130% of ambient) than other plots. Soils of irrigated plots also had elevated iron (16.5 µg × 10 cm-2 × 60-d vs 8.9) and pH (7.0 vs 6.8). The rainfall gradient also had a nonlinear (hump-shaped) effect on plant available phosphorus (P). Plant and microbial biomasses are often limited by and positively associated with available P, suggesting the predicted positive linear relationship between plant biomass and P was confounded by additions of mineralized water. In other words, the unexpected nonlinear relationship was likely driven by components of mineralized irrigation water (i.e. calcium, iron) and/or shifts in soil pH that immobilized P. Conclusions: Our results suggest robust precipitation manipulation experiments should either capture rainwater when possible (or use demineralized water) or consider the confounding effects of mineralized water on plant and soil properties. Resources in this dataset: Resource Title: Readme file- Data dictionary File Name: README.txt Resource Description: File contains data dictionary to accompany data files for a research study. Resource Title: 3x2x2 factorial dataset.csv File Name: 3x2x2 factorial dataset.csv Resource Description: Dataset is for a 3x2x2 factorial field experiment (factors: rainfall variability, mowing seasons, mowing intensity) conducted in northern mixed-grass prairie vegetation in eastern Montana, USA. Data include activity of 5 plant available nutrients, soil pH, and plant biomass metrics. Data from 2018. Resource Title: water quality dataset.csv File Name: water quality dataset.csv Resource Description: Water properties (pH and common dissolved solids) of samples from Yellowstone River collected near Miles City, Montana. Data extracted from Rinella MJ, Muscha JM, Reinhart KO, Petersen MK (2021) Water quality for livestock in northern Great Plains rangelands. Rangeland Ecol. Manage. 75: 29-34.

  2. f

    Experiment 1 means and statistics for age and baseline assessments...

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    Updated Feb 20, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kilford, Emma J.; Holmes, Emily A.; James, Ella L.; Deeprose, Catherine (2013). Experiment 1 means and statistics for age and baseline assessments indicating experimental conditions did not differ. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001637152
    Explore at:
    Dataset updated
    Feb 20, 2013
    Authors
    Kilford, Emma J.; Holmes, Emily A.; James, Ella L.; Deeprose, Catherine
    Description

    Experiment 1 means and statistics for age and baseline assessments indicating experimental conditions did not differ.

  3. m

    Semantic Similarity with Concept Senses: new Experiment

    • data.mendeley.com
    Updated Oct 24, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Francesco Taglino (2022). Semantic Similarity with Concept Senses: new Experiment [Dataset]. http://doi.org/10.17632/v2bwh7z8kj.1
    Explore at:
    Dataset updated
    Oct 24, 2022
    Authors
    Francesco Taglino
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset represents the results of the experimentation of a method for evaluating semantic similarity between concepts in a taxonomy. The method is based on the information-theoretic approach and allows senses of concepts in a given context to be considered. Relevance of senses is calculated in terms of semantic relatedness with the compared concepts. In a previous work [9], the adopted semantic relatedness method was the one described in [10], while in this work we also adopted the ones described in [11], [12], [13], [14], [15], and [16].

    We applied our proposal by extending 7 methods for computing semantic similarity in a taxonomy, selected from the literature. The methods considered in the experiment are referred to as R[2], W&P[3], L[4], J&C[5], P&S[6], A[7], and A&M[8]

    The experiment was run on the well-known Miller and Charles benchmark dataset [1] for assessing semantic similarity.

    The results are organized in seven folders, each with the results related to one of the above semantic relatedness methods. In each folder there is a set of files, each referring to one pair of the Miller and Charles dataset. In fact, for each pair of concepts, all the 28 pairs are considered as possible different contexts.

    REFERENCES [1] Miller G.A., Charles W.G. 1991. Contextual correlates of semantic similarity. Language and Cognitive Processes 6(1). [2] Resnik P. 1995. Using Information Content to Evaluate Semantic Similarity in a Taxonomy. Int. Joint Conf. on Artificial Intelligence, Montreal. [3] Wu Z., Palmer M. 1994. Verb semantics and lexical selection. 32nd Annual Meeting of the Associations for Computational Linguistics. [4] Lin D. 1998. An Information-Theoretic Definition of Similarity. Int. Conf. on Machine Learning. [5] Jiang J.J., Conrath D.W. 1997. Semantic Similarity Based on Corpus Statistics and Lexical Taxonomy. Inter. Conf. Research on Computational Linguistics. [6] Pirrò G. 2009. A Semantic Similarity Metric Combining Features and Intrinsic Information Content. Data Knowl. Eng, 68(11). [7] Adhikari A., Dutta B., Dutta A., Mondal D., Singh S. 2018. An intrinsic information content-based semantic similarity measure considering the disjoint common subsumers of concepts of an ontology. J. Assoc. Inf. Sci. Technol. 69(8). [8] Adhikari A., Singh S., Mondal D., Dutta B., Dutta A. 2016. A Novel Information Theoretic Framework for Finding Semantic Similarity in WordNet. CoRR, arXiv:1607.05422, abs/1607.05422. [9] Formica A., Taglino F. 2021. An Enriched Information-Theoretic Definition of Semantic Similarity in a Taxonomy. IEEE Access, vol. 9. [10] Information Content-based approach [Schuhmacher and Ponzetto, 2014]. [11] Linked Data Semantic Distance (LDSD) [Passant, 2010]. [12] Wikipedia Link-based Measure (WLM ) [Witten and Milne, 2008]; [13] Linked Open Data Description Overlap-based approach (LODDO) [Zhou et al. 2012] [14] Exclusivity-based [Hulpuş et al 2015] [15] ASRMP [El Vaigh et al. 2020] [16] LDSDGN [Piao and Breslin, 2016]

  4. Experimental Data for Question Classification

    • kaggle.com
    zip
    Updated Jan 9, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    JunYu (2019). Experimental Data for Question Classification [Dataset]. https://www.kaggle.com/owen1226/textsdata
    Explore at:
    zip(127653 bytes)Available download formats
    Dataset updated
    Jan 9, 2019
    Authors
    JunYu
    Description

    Context

    This data collection contains all the data used in our learning question classification experiments, which has question class definitions, the training and testing question sets, examples of preprocessing the questions, feature definition scripts and examples of semantically related word features.

    Content

    ABBR - 'abbreviation': expression abbreviated, etc. DESC - 'description and abstract concepts': manner of an action, description of sth. etc. ENTY - 'entities': animals, colors, events, food, etc. HUM - 'human beings': a group or organization of persons, an individual, etc. LOC - 'locations': cities, countries, etc. NUM - 'numeric values': postcodes, dates, speed,temperature, etc

    Acknowledgements

    https://cogcomp.seas.upenn.edu/Data/QA/QC/ https://github.com/Tony607/Keras-Text-Transfer-Learning/blob/master/README.md

  5. S

    Data set on Task unpacking effects in time estimation: The role of future...

    • scidb.cn
    Updated Dec 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shizifu; xia bi qi; Liu Xin (2023). Data set on Task unpacking effects in time estimation: The role of future boundaries and thought focus [Dataset]. http://doi.org/10.57760/sciencedb.j00052.00202
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 1, 2023
    Dataset provided by
    Science Data Bank
    Authors
    Shizifu; xia bi qi; Liu Xin
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This dataset is for the study of task decomposition effects in time estimation: the role of future boundaries and thought focus, and supplementary materials. Due to the previous research on the impact of task decomposition on time estimation, the role of time factors was often overlooked. For example, with the same decomposition, people subjectively set different time boundaries when facing difficult and easy tasks. Therefore, taking into account the time factor is bound to improve and integrate the research conclusions of decomposition effects. Based on this, we studied the impact of task decomposition and future boundaries on time estimation. Experiment 1 passed 2 (task decomposition/no decomposition) × Design an inter subject experiment with/without future boundaries, using the expected paradigm to measure the time estimation of participants; Experiment 2 further manipulates the time range of future boundaries based on Experiment 1, using 2 (task decomposition/non decomposition) × 3 (future boundaries of longer/shorter/medium range) inter subject experimental design, using expected paradigm to measure time estimation of subjects; On the basis of Experiment 2, Experiment 3 further verified the mechanism of the influence of the time range of future boundaries under decomposition conditions on time estimation. Through a single factor inter subject experimental design, a thinking focus scale was used to measure the thinking focus of participants under longer and shorter boundary conditions. Through the above experiments and measurements, we have obtained the following dataset. Experiment 1 Table Data Column Label Meaning: Task decomposition into grouped variables: 0 represents decomposition; 1 indicates no decomposition The future boundary is a grouping variable: 0 represents existence; 1 means it does not exist Zsco01: Standard score for estimating total task time A logarithm: The logarithmic value of the estimated time for all tasks Experiment 2 Table Data Column Label Meaning: The future boundary is a grouping variable: 7 represents shorter, 8 represents medium, and 9 represents longer The remaining data labels are the same as Experiment 1 Experiment 3 Table Data Column Label Meaning: Zplan represents the standard score for the focus plan score Zbar represents the standard score for attention barriers The future boundary is a grouping variable: 0 represents shorter, 1 represents longer

  6. a

    Medical Service Study Area Data Dictionary

    • hub.arcgis.com
    • data.chhs.ca.gov
    • +4more
    Updated Sep 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CA Department of Health Care Access and Information (2024). Medical Service Study Area Data Dictionary [Dataset]. https://hub.arcgis.com/datasets/e51a052257b646b9bfbc052df8728b50
    Explore at:
    Dataset updated
    Sep 5, 2024
    Dataset authored and provided by
    CA Department of Health Care Access and Information
    Description

    Field Name Data Type Description

    Statefp Number US Census Bureau unique identifier of the state

    Countyfp Number US Census Bureau unique identifier of the county

    Countynm Text County name

    Tractce Number US Census Bureau unique identifier of the census tract

    Geoid Number US Census Bureau unique identifier of the state + county + census tract

    Aland Number US Census Bureau defined land area of the census tract

    Awater Number US Census Bureau defined water area of the census tract

    Asqmi Number Area calculated in square miles from the Aland

    MSSAid Text ID of the Medical Service Study Area (MSSA) the census tract belongs to

    MSSAnm Text Name of the Medical Service Study Area (MSSA) the census tract belongs to

    Definition Text Type of MSSA, possible values are urban, rural and frontier.

    TotalPovPop Number US Census Bureau total population for whom poverty status is determined of the census tract, taken from the 2020 ACS 5 YR S1701

  7. f

    Descriptive statistics.

    • plos.figshare.com
    xls
    Updated Oct 31, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mrinal Saha; Aparna Deb; Imtiaz Sultan; Sujat Paul; Jishan Ahmed; Goutam Saha (2023). Descriptive statistics. [Dataset]. http://doi.org/10.1371/journal.pgph.0002475.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Oct 31, 2023
    Dataset provided by
    PLOS Global Public Health
    Authors
    Mrinal Saha; Aparna Deb; Imtiaz Sultan; Sujat Paul; Jishan Ahmed; Goutam Saha
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Vitamin D insufficiency appears to be prevalent in SLE patients. Multiple factors potentially contribute to lower vitamin D levels, including limited sun exposure, the use of sunscreen, darker skin complexion, aging, obesity, specific medical conditions, and certain medications. The study aims to assess the risk factors associated with low vitamin D levels in SLE patients in the southern part of Bangladesh, a region noted for a high prevalence of SLE. The research additionally investigates the possible correlation between vitamin D and the SLEDAI score, seeking to understand the potential benefits of vitamin D in enhancing disease outcomes for SLE patients. The study incorporates a dataset consisting of 50 patients from the southern part of Bangladesh and evaluates their clinical and demographic data. An initial exploratory data analysis is conducted to gain insights into the data, which includes calculating means and standard deviations, performing correlation analysis, and generating heat maps. Relevant inferential statistical tests, such as the Student’s t-test, are also employed. In the machine learning part of the analysis, this study utilizes supervised learning algorithms, specifically Linear Regression (LR) and Random Forest (RF). To optimize the hyperparameters of the RF model and mitigate the risk of overfitting given the small dataset, a 3-Fold cross-validation strategy is implemented. The study also calculates bootstrapped confidence intervals to provide robust uncertainty estimates and further validate the approach. A comprehensive feature importance analysis is carried out using RF feature importance, permutation-based feature importance, and SHAP values. The LR model yields an RMSE of 4.83 (CI: 2.70, 6.76) and MAE of 3.86 (CI: 2.06, 5.86), whereas the RF model achieves better results, with an RMSE of 2.98 (CI: 2.16, 3.76) and MAE of 2.68 (CI: 1.83,3.52). Both models identify Hb, CRP, ESR, and age as significant contributors to vitamin D level predictions. Despite the lack of a significant association between SLEDAI and vitamin D in the statistical analysis, the machine learning models suggest a potential nonlinear dependency of vitamin D on SLEDAI. These findings highlight the importance of these factors in managing vitamin D levels in SLE patients. The study concludes that there is a high prevalence of vitamin D insufficiency in SLE patients. Although a direct linear correlation between the SLEDAI score and vitamin D levels is not observed, machine learning models suggest the possibility of a nonlinear relationship. Furthermore, factors such as Hb, CRP, ESR, and age are identified as more significant in predicting vitamin D levels. Thus, the study suggests that monitoring these factors may be advantageous in managing vitamin D levels in SLE patients. Given the immunological nature of SLE, the potential role of vitamin D in SLE disease activity could be substantial. Therefore, it underscores the need for further large-scale studies to corroborate this hypothesis.

  8. a

    NTAD Metadata Data Dictionary External Link Test

    • hub.arcgis.com
    Updated Aug 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Transportation: ArcGIS Online (2025). NTAD Metadata Data Dictionary External Link Test [Dataset]. https://hub.arcgis.com/datasets/a0dd55c959c44c39b33b55da19a6ba6d
    Explore at:
    Dataset updated
    Aug 1, 2025
    Dataset authored and provided by
    U.S. Department of Transportation: ArcGIS Online
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Area covered
    Description

    The National Transit Map - Routes dataset was compiled on June 02, 2025 from the Bureau of Transportation Statistics (BTS) and is part of the U.S. Department of Transportation (USDOT)/Bureau of Transportation Statistics (BTS) National Transportation Atlas Database (NTAD). The National Transit Map (NTM) is a nationwide catalog of fixed-guideway and fixed-route transit service in America. It is compiled using General Transit Feed Specification (GTFS) Schedule data. The NTM Routes dataset shows transit routes, which is a group of trips that are displayed to riders as a single service. To display the route alignment and trips for each route, this dataset combines the following GTFS files: routes.txt, trips.txt, and shapes.txt. The GTFS Schedule documentation is available at, https://gtfs.org/schedule/. To improve the spatial accuracy of the NTM Routes, the Bureau of Transportation Statistics (BTS) adjusts transit routes using context from the submitted GTFS source data and/or from other publicly available information about the transit service. A data dictionary, or other source of attribute information, is accessible at https://doi.org/10.21949/1529048

  9. I

    Cline Center Coup d’État Project Dataset

    • databank.illinois.edu
    Updated May 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Buddy Peyton; Joseph Bajjalieh; Dan Shalmon; Michael Martin; Emilio Soto (2025). Cline Center Coup d’État Project Dataset [Dataset]. http://doi.org/10.13012/B2IDB-9651987_V7
    Explore at:
    Dataset updated
    May 11, 2025
    Authors
    Buddy Peyton; Joseph Bajjalieh; Dan Shalmon; Michael Martin; Emilio Soto
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Coups d'Ètat are important events in the life of a country. They constitute an important subset of irregular transfers of political power that can have significant and enduring consequences for national well-being. There are only a limited number of datasets available to study these events (Powell and Thyne 2011, Marshall and Marshall 2019). Seeking to facilitate research on post-WWII coups by compiling a more comprehensive list and categorization of these events, the Cline Center for Advanced Social Research (previously the Cline Center for Democracy) initiated the Coup d’État Project as part of its Societal Infrastructures and Development (SID) project. More specifically, this dataset identifies the outcomes of coup events (i.e., realized, unrealized, or conspiracy) the type of actor(s) who initiated the coup (i.e., military, rebels, etc.), as well as the fate of the deposed leader. Version 2.1.3 adds 19 additional coup events to the data set, corrects the date of a coup in Tunisia, and reclassifies an attempted coup in Brazil in December 2022 to a conspiracy. Version 2.1.2 added 6 additional coup events that occurred in 2022 and updated the coding of an attempted coup event in Kazakhstan in January 2022. Version 2.1.1 corrected a mistake in version 2.1.0, where the designation of “dissident coup” had been dropped in error for coup_id: 00201062021. Version 2.1.1 fixed this omission by marking the case as both a dissident coup and an auto-coup. Version 2.1.0 added 36 cases to the data set and removed two cases from the v2.0.0 data. This update also added actor coding for 46 coup events and added executive outcomes to 18 events from version 2.0.0. A few other changes were made to correct inconsistencies in the coup ID variable and the date of the event. Version 2.0.0 improved several aspects of the previous version (v1.0.0) and incorporated additional source material to include: • Reconciling missing event data • Removing events with irreconcilable event dates • Removing events with insufficient sourcing (each event needs at least two sources) • Removing events that were inaccurately coded as coup events • Removing variables that fell below the threshold of inter-coder reliability required by the project • Removing the spreadsheet ‘CoupInventory.xls’ because of inadequate attribution and citations in the event summaries • Extending the period covered from 1945-2005 to 1945-2019 • Adding events from Powell and Thyne’s Coup Data (Powell and Thyne, 2011)
    Items in this Dataset 1. Cline Center Coup d'État Codebook v.2.1.3 Codebook.pdf - This 15-page document describes the Cline Center Coup d’État Project dataset. The first section of this codebook provides a summary of the different versions of the data. The second section provides a succinct definition of a coup d’état used by the Coup d'État Project and an overview of the categories used to differentiate the wide array of events that meet the project's definition. It also defines coup outcomes. The third section describes the methodology used to produce the data. Revised February 2024 2. Coup Data v2.1.3.csv - This CSV (Comma Separated Values) file contains all of the coup event data from the Cline Center Coup d’État Project. It contains 29 variables and 1000 observations. Revised February 2024 3. Source Document v2.1.3.pdf - This 325-page document provides the sources used for each of the coup events identified in this dataset. Please use the value in the coup_id variable to identify the sources used to identify that particular event. Revised February 2024 4. README.md - This file contains useful information for the user about the dataset. It is a text file written in markdown language. Revised February 2024
    Citation Guidelines 1. To cite the codebook (or any other documentation associated with the Cline Center Coup d’État Project Dataset) please use the following citation: Peyton, Buddy, Joseph Bajjalieh, Dan Shalmon, Michael Martin, Jonathan Bonaguro, and Scott Althaus. 2024. “Cline Center Coup d’État Project Dataset Codebook”. Cline Center Coup d’État Project Dataset. Cline Center for Advanced Social Research. V.2.1.3. February 27. University of Illinois Urbana-Champaign. doi: 10.13012/B2IDB-9651987_V7 2. To cite data from the Cline Center Coup d’État Project Dataset please use the following citation (filling in the correct date of access): Peyton, Buddy, Joseph Bajjalieh, Dan Shalmon, Michael Martin, Jonathan Bonaguro, and Emilio Soto. 2024. Cline Center Coup d’État Project Dataset. Cline Center for Advanced Social Research. V.2.1.3. February 27. University of Illinois Urbana-Champaign. doi: 10.13012/B2IDB-9651987_V7

  10. Unlabelled dataset

    • kaggle.com
    zip
    Updated Oct 29, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ahmed Ali (2023). Unlabelled dataset [Dataset]. https://www.kaggle.com/datasets/ahmedaliraja/unlabelled-dataset/versions/1
    Explore at:
    zip(763 bytes)Available download formats
    Dataset updated
    Oct 29, 2023
    Authors
    Ahmed Ali
    Description

    This dataset consists of unlabeled data representing various data points collected from different sources and domains. The dataset serves as a blank canvas for unsupervised learning experiments, allowing for the exploration of patterns, clusters, and hidden insights through various data analysis techniques. Researchers and data enthusiasts can use this dataset to develop and test unsupervised learning algorithms, identify underlying structures, and gain a deeper understanding of data without predefined labels.

  11. Z

    Dataset: A Systematic Literature Review on the topic of High-value datasets

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jun 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anastasija Nikiforova; Nina Rizun; Magdalena Ciesielska; Charalampos Alexopoulos; Andrea Miletič (2023). Dataset: A Systematic Literature Review on the topic of High-value datasets [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7944424
    Explore at:
    Dataset updated
    Jun 23, 2023
    Dataset provided by
    Gdańsk University of Technology
    University of Zagreb
    University of Tartu
    University of the Aegean
    Authors
    Anastasija Nikiforova; Nina Rizun; Magdalena Ciesielska; Charalampos Alexopoulos; Andrea Miletič
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains data collected during a study ("Towards High-Value Datasets determination for data-driven development: a systematic literature review") conducted by Anastasija Nikiforova (University of Tartu), Nina Rizun, Magdalena Ciesielska (Gdańsk University of Technology), Charalampos Alexopoulos (University of the Aegean) and Andrea Miletič (University of Zagreb) It being made public both to act as supplementary data for "Towards High-Value Datasets determination for data-driven development: a systematic literature review" paper (pre-print is available in Open Access here -> https://arxiv.org/abs/2305.10234) and in order for other researchers to use these data in their own work.

    The protocol is intended for the Systematic Literature review on the topic of High-value Datasets with the aim to gather information on how the topic of High-value datasets (HVD) and their determination has been reflected in the literature over the years and what has been found by these studies to date, incl. the indicators used in them, involved stakeholders, data-related aspects, and frameworks. The data in this dataset were collected in the result of the SLR over Scopus, Web of Science, and Digital Government Research library (DGRL) in 2023.

    Methodology

    To understand how HVD determination has been reflected in the literature over the years and what has been found by these studies to date, all relevant literature covering this topic has been studied. To this end, the SLR was carried out to by searching digital libraries covered by Scopus, Web of Science (WoS), Digital Government Research library (DGRL).

    These databases were queried for keywords ("open data" OR "open government data") AND ("high-value data*" OR "high value data*"), which were applied to the article title, keywords, and abstract to limit the number of papers to those, where these objects were primary research objects rather than mentioned in the body, e.g., as a future work. After deduplication, 11 articles were found unique and were further checked for relevance. As a result, a total of 9 articles were further examined. Each study was independently examined by at least two authors.

    To attain the objective of our study, we developed the protocol, where the information on each selected study was collected in four categories: (1) descriptive information, (2) approach- and research design- related information, (3) quality-related information, (4) HVD determination-related information.

    Test procedure Each study was independently examined by at least two authors, where after the in-depth examination of the full-text of the article, the structured protocol has been filled for each study. The structure of the survey is available in the supplementary file available (see Protocol_HVD_SLR.odt, Protocol_HVD_SLR.docx) The data collected for each study by two researchers were then synthesized in one final version by the third researcher.

    Description of the data in this data set

    Protocol_HVD_SLR provides the structure of the protocol Spreadsheets #1 provides the filled protocol for relevant studies. Spreadsheet#2 provides the list of results after the search over three indexing databases, i.e. before filtering out irrelevant studies

    The information on each selected study was collected in four categories: (1) descriptive information, (2) approach- and research design- related information, (3) quality-related information, (4) HVD determination-related information

    Descriptive information
    1) Article number - a study number, corresponding to the study number assigned in an Excel worksheet 2) Complete reference - the complete source information to refer to the study 3) Year of publication - the year in which the study was published 4) Journal article / conference paper / book chapter - the type of the paper -{journal article, conference paper, book chapter} 5) DOI / Website- a link to the website where the study can be found 6) Number of citations - the number of citations of the article in Google Scholar, Scopus, Web of Science 7) Availability in OA - availability of an article in the Open Access 8) Keywords - keywords of the paper as indicated by the authors 9) Relevance for this study - what is the relevance level of the article for this study? {high / medium / low}

    Approach- and research design-related information 10) Objective / RQ - the research objective / aim, established research questions 11) Research method (including unit of analysis) - the methods used to collect data, including the unit of analy-sis (country, organisation, specific unit that has been ana-lysed, e.g., the number of use-cases, scope of the SLR etc.) 12) Contributions - the contributions of the study 13) Method - whether the study uses a qualitative, quantitative, or mixed methods approach? 14) Availability of the underlying research data- whether there is a reference to the publicly available underly-ing research data e.g., transcriptions of interviews, collected data, or explanation why these data are not shared? 15) Period under investigation - period (or moment) in which the study was conducted 16) Use of theory / theoretical concepts / approaches - does the study mention any theory / theoretical concepts / approaches? If any theory is mentioned, how is theory used in the study?

    Quality- and relevance- related information
    17) Quality concerns - whether there are any quality concerns (e.g., limited infor-mation about the research methods used)? 18) Primary research object - is the HVD a primary research object in the study? (primary - the paper is focused around the HVD determination, sec-ondary - mentioned but not studied (e.g., as part of discus-sion, future work etc.))

    HVD determination-related information
    19) HVD definition and type of value - how is the HVD defined in the article and / or any other equivalent term? 20) HVD indicators - what are the indicators to identify HVD? How were they identified? (components & relationships, “input -> output") 21) A framework for HVD determination - is there a framework presented for HVD identification? What components does it consist of and what are the rela-tionships between these components? (detailed description) 22) Stakeholders and their roles - what stakeholders or actors does HVD determination in-volve? What are their roles? 23) Data - what data do HVD cover? 24) Level (if relevant) - what is the level of the HVD determination covered in the article? (e.g., city, regional, national, international)

    Format of the file .xls, .csv (for the first spreadsheet only), .odt, .docx

    Licenses or restrictions CC-BY

    For more info, see README.txt

  12. c

    Data from: Delta Neighborhood Physical Activity Study

    • s.cnmilf.com
    • agdatacommons.nal.usda.gov
    • +1more
    Updated Jun 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agricultural Research Service (2025). Delta Neighborhood Physical Activity Study [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/delta-neighborhood-physical-activity-study-f82d7
    Explore at:
    Dataset updated
    Jun 5, 2025
    Dataset provided by
    Agricultural Research Service
    Description

    The Delta Neighborhood Physical Activity Study was an observational study designed to assess characteristics of neighborhood built environments associated with physical activity. It was an ancillary study to the Delta Healthy Sprouts Project and therefore included towns and neighborhoods in which Delta Healthy Sprouts participants resided. The 12 towns were located in the Lower Mississippi Delta region of Mississippi. Data were collected via electronic surveys between August 2016 and September 2017 using the Rural Active Living Assessment (RALA) tools and the Community Park Audit Tool (CPAT). Scale scores for the RALA Programs and Policies Assessment and the Town-Wide Assessment were computed using the scoring algorithms provided for these tools via SAS software programming. The Street Segment Assessment and CPAT do not have associated scoring algorithms and therefore no scores are provided for them. Because the towns were not randomly selected and the sample size is small, the data may not be generalizable to all rural towns in the Lower Mississippi Delta region of Mississippi. Dataset one contains data collected with the RALA Programs and Policies Assessment (PPA) tool. Dataset two contains data collected with the RALA Town-Wide Assessment (TWA) tool. Dataset three contains data collected with the RALA Street Segment Assessment (SSA) tool. Dataset four contains data collected with the Community Park Audit Tool (CPAT). [Note : title changed 9/4/2020 to reflect study name] Resources in this dataset:Resource Title: Dataset One RALA PPA Data Dictionary. File Name: RALA PPA Data Dictionary.csvResource Description: Data dictionary for dataset one collected using the RALA PPA tool.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel Resource Title: Dataset Two RALA TWA Data Dictionary. File Name: RALA TWA Data Dictionary.csvResource Description: Data dictionary for dataset two collected using the RALA TWA tool.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel Resource Title: Dataset Three RALA SSA Data Dictionary. File Name: RALA SSA Data Dictionary.csvResource Description: Data dictionary for dataset three collected using the RALA SSA tool.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel Resource Title: Dataset Four CPAT Data Dictionary. File Name: CPAT Data Dictionary.csvResource Description: Data dictionary for dataset four collected using the CPAT.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel Resource Title: Dataset One RALA PPA. File Name: RALA PPA Data.csvResource Description: Data collected using the RALA PPA tool.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel Resource Title: Dataset Two RALA TWA. File Name: RALA TWA Data.csvResource Description: Data collected using the RALA TWA tool.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel Resource Title: Dataset Three RALA SSA. File Name: RALA SSA Data.csvResource Description: Data collected using the RALA SSA tool.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel Resource Title: Dataset Four CPAT. File Name: CPAT Data.csvResource Description: Data collected using the CPAT.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel Resource Title: Data Dictionary. File Name: DataDictionary_RALA_PPA_SSA_TWA_CPAT.csvResource Description: This is a combined data dictionary from each of the 4 dataset files in this set.

  13. d

    Statewide Commercial Baseline Study of New York Means of Energy Using...

    • catalog.data.gov
    • data.ny.gov
    • +1more
    Updated Jul 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ny.gov (2025). Statewide Commercial Baseline Study of New York Means of Energy Using Equipment: 2019 [Dataset]. https://catalog.data.gov/dataset/statewide-commercial-baseline-study-of-new-york-means-of-energy-using-equipment-2019
    Explore at:
    Dataset updated
    Jul 26, 2025
    Dataset provided by
    data.ny.gov
    Area covered
    New York
    Description

    The overall objective of the Statewide Commercial Baseline research was to understand the existing commercial building stock in New York State and associated energy use, including the means of energy using equipment. This dataset provides all characteristics that are presented as averages, such as the average square footage of businesses or the average cooling capacity of split systems. All supporting summary statistics are also provided. For more information, see the Final Report at https://www.nyserda.ny.gov/About/Publications/Building-Stock-and-Potential-Studies/Commercial-Statewide-Baseline-Study The New York State Energy Research and Development Authority (NYSERDA) offers objective information and analysis, innovative programs, technical expertise, and support to help New Yorkers increase energy efficiency, save money, use renewable energy, and reduce reliance on fossil fuels. To learn more about NYSERDA’s programs, visit https://nyserda.ny.gov or follow us on X, Facebook, YouTube, or Instagram.

  14. a

    Traffic Study Flow Counts

    • data-seattlecitygis.opendata.arcgis.com
    • data.seattle.gov
    • +3more
    Updated Sep 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Seattle ArcGIS Online (2023). Traffic Study Flow Counts [Dataset]. https://data-seattlecitygis.opendata.arcgis.com/datasets/SeattleCityGIS::traffic-study-flow-counts
    Explore at:
    Dataset updated
    Sep 22, 2023
    Dataset authored and provided by
    City of Seattle ArcGIS Online
    Area covered
    Description

    Displays traffic study flow count data maintained by Seattle Department of Transportation.Users can utilize following definition query for traffic count study data for a particular year. Note-ENTER YEAR is the particular year of interest.Definition Query: STDY_YEAR=ENTER YEAR AND FLOWMAP = 'Y'Refresh: Weekly

  15. original : CIFAR 100

    • kaggle.com
    zip
    Updated Dec 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shashwat Pandey (2024). original : CIFAR 100 [Dataset]. https://www.kaggle.com/datasets/shashwat90/original-cifar-100
    Explore at:
    zip(168517945 bytes)Available download formats
    Dataset updated
    Dec 28, 2024
    Authors
    Shashwat Pandey
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    The CIFAR-10 and CIFAR-100 datasets are labeled subsets of the 80 million tiny images dataset. CIFAR-10 and CIFAR-100 were created by Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. (Sadly, the 80 million tiny images dataset has been thrown into the memory hole by its authors. Spotting the doublethink which was used to justify its erasure is left as an exercise for the reader.)

    The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images per class. There are 50000 training images and 10000 test images.

    The dataset is divided into five training batches and one test batch, each with 10000 images. The test batch contains exactly 1000 randomly-selected images from each class. The training batches contain the remaining images in random order, but some training batches may contain more images from one class than another. Between them, the training batches contain exactly 5000 images from each class.

    The classes are completely mutually exclusive. There is no overlap between automobiles and trucks. "Automobile" includes sedans, SUVs, things of that sort. "Truck" includes only big trucks. Neither includes pickup trucks.

    Baseline results You can find some baseline replicable results on this dataset on the project page for cuda-convnet. These results were obtained with a convolutional neural network. Briefly, they are 18% test error without data augmentation and 11% with. Additionally, Jasper Snoek has a new paper in which he used Bayesian hyperparameter optimization to find nice settings of the weight decay and other hyperparameters, which allowed him to obtain a test error rate of 15% (without data augmentation) using the architecture of the net that got 18%.

    Other results Rodrigo Benenson has collected results on CIFAR-10/100 and other datasets on his website; click here to view.

    Dataset layout Python / Matlab versions I will describe the layout of the Python version of the dataset. The layout of the Matlab version is identical.

    The archive contains the files data_batch_1, data_batch_2, ..., data_batch_5, as well as test_batch. Each of these files is a Python "pickled" object produced with cPickle. Here is a python2 routine which will open such a file and return a dictionary: python def unpickle(file): import cPickle with open(file, 'rb') as fo: dict = cPickle.load(fo) return dict And a python3 version: def unpickle(file): import pickle with open(file, 'rb') as fo: dict = pickle.load(fo, encoding='bytes') return dict Loaded in this way, each of the batch files contains a dictionary with the following elements: data -- a 10000x3072 numpy array of uint8s. Each row of the array stores a 32x32 colour image. The first 1024 entries contain the red channel values, the next 1024 the green, and the final 1024 the blue. The image is stored in row-major order, so that the first 32 entries of the array are the red channel values of the first row of the image. labels -- a list of 10000 numbers in the range 0-9. The number at index i indicates the label of the ith image in the array data.

    The dataset contains another file, called batches.meta. It too contains a Python dictionary object. It has the following entries: label_names -- a 10-element list which gives meaningful names to the numeric labels in the labels array described above. For example, label_names[0] == "airplane", label_names[1] == "automobile", etc. Binary version The binary version contains the files data_batch_1.bin, data_batch_2.bin, ..., data_batch_5.bin, as well as test_batch.bin. Each of these files is formatted as follows: <1 x label><3072 x pixel> ... <1 x label><3072 x pixel> In other words, the first byte is the label of the first image, which is a number in the range 0-9. The next 3072 bytes are the values of the pixels of the image. The first 1024 bytes are the red channel values, the next 1024 the green, and the final 1024 the blue. The values are stored in row-major order, so the first 32 bytes are the red channel values of the first row of the image.

    Each file contains 10000 such 3073-byte "rows" of images, although there is nothing delimiting the rows. Therefore each file should be exactly 30730000 bytes long.

    There is another file, called batches.meta.txt. This is an ASCII file that maps numeric labels in the range 0-9 to meaningful class names. It is merely a list of the 10 class names, one per row. The class name on row i corresponds to numeric label i.

    The CIFAR-100 dataset This dataset is just like the CIFAR-10, except it has 100 classes containing 600 images each. There are 500 training images and 100 testing images per class. The 100 classes in the CIFAR-100 are grouped into 20 superclasses. Each image comes with a "fine" label (the class to which it belongs) and a "coarse" label (the superclass to which it belongs). Her...

  16. d

    HIRENASD Experimental Data, Static Cp Plots and Data files

    • catalog.data.gov
    • s.cnmilf.com
    • +2more
    Updated Apr 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dashlink (2025). HIRENASD Experimental Data, Static Cp Plots and Data files [Dataset]. https://catalog.data.gov/dataset/hirenasd-experimental-data-static-cp-plots-and-data-files
    Explore at:
    Dataset updated
    Apr 11, 2025
    Dataset provided by
    Dashlink
    Description

    Tecplot (ascii) and matlab files are posted here for the Static pressure coefficient data sets. To download all of the data in either tecplot format or matlab format, you can go to https://c3.nasa.gov/dashlink/resources/485/ Please consult the documentation found on this page under Support/Documentation for information regarding variable definition, data processing, etc.

  17. u

    ERA-Interim Project, Monthly Means

    • data.ucar.edu
    • rda.ucar.edu
    • +3more
    grib
    Updated Oct 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    European Centre for Medium-Range Weather Forecasts (2025). ERA-Interim Project, Monthly Means [Dataset]. http://doi.org/10.5065/D68050NT
    Explore at:
    gribAvailable download formats
    Dataset updated
    Oct 9, 2025
    Dataset provided by
    NSF National Center for Atmospheric Research
    Authors
    European Centre for Medium-Range Weather Forecasts
    Area covered
    Description

    ERA-Interim represents a major undertaking by ECMWF (European Centre for Medium-Range Weather Forecasts) to produce a reanalysis with an improved atmospheric model and assimilation system which replaces those used in ERA-40, particularly for the data-rich 1990s and 2000s, and to be continued as an ECMWF Climate Data Assimilation System (ECDAS) until superseded by a new extended reanalysis. Preliminary runs indicated that several of the inaccuracies exhibited by ERA-40 such as too-strong precipitation over oceans from the early 1990s onwards and a too-strong Brewer-Dobson circulation in the stratosphere, were eliminated or significantly reduced. Production of ERA-Interim, from 1989 onwards, began in summer of 2006. (The period 1979-1988 was prepended in 2011.)

    Through systematic increases of computing power, 4-dimensional variational assimilation (4D-Var) became feasible and part of ECMWF operations since 1997, paving the way to base ERA-Interim on 4D-Var (rather than 3D-Var as in ERA-40). Enhanced computing power also allowed horizontal resolution to be increased from T159 (N80, nominally 1.125 degrees for ERA-40) to T255 (N128, nominally 0.703125 degrees), and the latest cycle of the atmospheric model (IFS CY31r1 and CY31r2) to be used, taking advantage of improved model physics. ERA-interim retains the same 60 model levels used for ERA-40 with the highest level being 0.1 hectopascal. In addition, data assimilation of ERA-Interim also benefits from quality control that draws on experience from ERA-40 and JRA-25, variational bias correction of satellite radiance data, and more extensive use of radiances with an improved fast radiative transfer model.

    ERA-Interim uses sets of observations and boundary forcing fields acquired for ERA-40 through 2001, and from ECMWF operations thereafter. Noteworthy exceptions include new ERS (European Remote Sensing Satellite) altimeter wave heights, EUMETSAT (European Organisation for the Exploitation...

  18. WRAB Project Area Data Dictionary v2

    • catalog.newmexicowaterdata.org
    • hub.arcgis.com
    • +1more
    html
    Updated Aug 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New Mexico Office of the State Engineer (2023). WRAB Project Area Data Dictionary v2 [Dataset]. https://catalog.newmexicowaterdata.org/dataset/wrab-project-area-data-dictionary-v2
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Aug 14, 2023
    Dataset provided by
    New Mexico Office of the State Engineerhttps://www.ose.state.nm.us/
    Description

    This data dictionary supplements the Abstracting and Imaging Project Areas dataset and explains codes and how each area was created.

  19. Means of travel to place of work or study 2011

    • statistics.ukdataservice.ac.uk
    csv, zip
    Updated Sep 20, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics; National Records of Scotland; Northern Ireland Statistics and Research Agency; UK Data Service. (2022). Means of travel to place of work or study 2011 [Dataset]. https://statistics.ukdataservice.ac.uk/dataset/means-travel-place-work-or-study-2011
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Sep 20, 2022
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    Northern Ireland Statistics and Research Agency
    UK Data Servicehttps://ukdataservice.ac.uk/
    Authors
    Office for National Statistics; National Records of Scotland; Northern Ireland Statistics and Research Agency; UK Data Service.
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Dataset population: Persons working or studying

    Travel to place of work or study, means of

    'Public transport' and 'car or van availability' are a different statistic to the 2001 Census.

    Scotland excludes some 4 and 5-year-olds (a total of 11,876) who were reported as being in full-time education but for whom no information on their place of study or method of travel to study was provided.

  20. Medical Service Study Areas

    • data.chhs.ca.gov
    • healthdata.gov
    • +5more
    Updated Dec 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Health Care Access and Information (2024). Medical Service Study Areas [Dataset]. https://data.chhs.ca.gov/dataset/medical-service-study-areas
    Explore at:
    csv, html, geojson, kml, zip, arcgis geoservices rest apiAvailable download formats
    Dataset updated
    Dec 6, 2024
    Dataset authored and provided by
    Department of Health Care Access and Information
    Description
    This is the current Medical Service Study Area. California Medical Service Study Areas are created by the California Department of Health Care Access and Information (HCAI).

    Check the Data Dictionary for field descriptions.


    Checkout the California Healthcare Atlas for more Medical Service Study Area information.

    This is an update to the MSSA geometries and demographics to reflect the new 2020 Census tract data. The Medical Service Study Area (MSSA) polygon layer represents the best fit mapping of all new 2020 California census tract boundaries to the original 2010 census tract boundaries used in the construction of the original 2010 MSSA file. Each of the state's new 9,129 census tracts was assigned to one of the previously established medical service study areas (excluding tracts with no land area), as identified in this data layer. The MSSA Census tract data is aggregated by HCAI, to create this MSSA data layer. This represents the final re-mapping of 2020 Census tracts to the original 2010 MSSA geometries. The 2010 MSSA were based on U.S. Census 2010 data and public meetings held throughout California.


    <a href="https://hcai.ca.gov/">https://hcai.ca.gov/</a>

    Source of update: American Community Survey 5-year 2006-2010 data for poverty. For source tables refer to InfoUSA update procedural documentation. The 2010 MSSA Detail layer was developed to update fields affected by population change. The American Community Survey 5-year 2006-2010 population data pertaining to total, in households, race, ethnicity, age, and poverty was used in the update. The 2010 MSSA Census Tract Detail map layer was developed to support geographic information systems (GIS) applications, representing 2010 census tract geography that is the foundation of 2010 medical service study area (MSSA) boundaries. ***This version is the finalized MSSA reconfiguration boundaries based on the US Census Bureau 2010 Census. In 1976 Garamendi Rural Health Services Act, required the development of a geographic framework for determining which parts of the state were rural and which were urban, and for determining which parts of counties and cities had adequate health care resources and which were "medically underserved". Thus, sub-city and sub-county geographic units called "medical service study areas [MSSAs]" were developed, using combinations of census-defined geographic units, established following General Rules promulgated by a statutory commission. After each subsequent census the MSSAs were revised. In the scheduled revisions that followed the 1990 census, community meetings of stakeholders (including county officials, and representatives of hospitals and community health centers) were held in larger metropolitan areas. The meetings were designed to develop consensus as how to draw the sub-city units so as to best display health care disparities. The importance of involving stakeholders was heightened in 1992 when the United States Department of Health and Human Services' Health and Resources Administration entered a formal agreement to recognize the state-determined MSSAs as "rational service areas" for federal recognition of "health professional shortage areas" and "medically underserved areas". After the 2000 census, two innovations transformed the process, and set the stage for GIS to emerge as a major factor in health care resource planning in California. First, the Office of Statewide Health Planning and Development [OSHPD], which organizes the community stakeholder meetings and provides the staff to administer the MSSAs, entered into an Enterprise GIS contract. Second, OSHPD authorized at least one community meeting to be held in each of the 58 counties, a significant number of which were wholly rural or frontier counties. For populous Los Angeles County, 11 community meetings were held. As a result, health resource data in California are collected and organized by 541 geographic units. The boundaries of these units were established by community healthcare experts, with the objective of maximizing their usefulness for needs assessment purposes. The most dramatic consequence was introducing a data simultaneously displayed in a GIS format. A two-person team, incorporating healthcare policy and GIS expertise, conducted the series of meetings, and supervised the development of the 2000-census configuration of the MSSAs.

    MSSA Configuration Guidelines (General Rules):- Each MSSA is composed of one or more complete census tracts.- As a general rule, MSSAs are deemed to be "rational service areas [RSAs]" for purposes of designating health professional shortage areas [HPSAs], medically underserved areas [MUAs] or medically underserved populations [MUPs].- MSSAs will not cross county lines.- To the extent practicable, all census-defined places within the MSSA are within 30 minutes travel time to the largest population center within the MSSA, except in those circumstances where meeting this criterion would require splitting a census tract.- To the extent practicable, areas that, standing alone, would meet both the definition of an MSSA and a Rural MSSA, should not be a part of an Urban MSSA.- Any Urban MSSA whose population exceeds 200,000 shall be divided into two or more Urban MSSA Subdivisions.- Urban MSSA Subdivisions should be within a population range of 75,000 to 125,000, but may not be smaller than five square miles in area. If removing any census tract on the perimeter of the Urban MSSA Subdivision would cause the area to fall below five square miles in area, then the population of the Urban MSSA may exceed 125,000. - To the extent practicable, Urban MSSA Subdivisions should reflect recognized community and neighborhood boundaries and take into account such demographic information as income level and ethnicity. Rural Definitions: A rural MSSA is an MSSA adopted by the Commission, which has a population density of less than 250 persons per square mile, and which has no census defined place within the area with a population in excess of 50,000. Only the population that is located within the MSSA is counted in determining the population of the census defined place. A frontier MSSA is a rural MSSA adopted by the Commission which has a population density of less than 11 persons per square mile. Any MSSA which is not a rural or frontier MSSA is an urban MSSA. Last updated December 6th 2024.
Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Agricultural Research Service (2025). Data from: Precipitation manipulation experiments may be confounded by water source [Dataset]. https://catalog.data.gov/dataset/data-from-precipitation-manipulation-experiments-may-be-confounded-by-water-source-7d7bc
Organization logo

Data from: Precipitation manipulation experiments may be confounded by water source

Related Article
Explore at:
Dataset updated
Apr 21, 2025
Dataset provided by
Agricultural Research Servicehttps://www.ars.usda.gov/
Description

This is digital research data corresponding to the manuscript, Reinhart, K.O., Vermeire, L.T. Precipitation Manipulation Experiments May Be Confounded by Water Source. J Soil Sci Plant Nutr (2023). https://doi.org/10.1007/s42729-023-01298-0 Files for a 3x2x2 factorial field experiment and water quality data used to create Table 1. Data for the experiment were used for the statistical analysis and generation of summary statistics for Figure 2. Purpose: This study aims to investigate the consequences of performing precipitation manipulation experiments with mineralized water in place of rainwater (i.e. demineralized water). Limited attention has been paid to the effects of water mineralization on plant and soil properties, even when the experiments are in a rainfed context. Methods: We conducted a 6-yr experiment with a gradient in spring rainfall (70, 100, and 130% of ambient). We tested effects of rainfall treatments on plant biomass and six soil properties and interpreted the confounding effects of dissolved solids in irrigation water. Results: Rainfall treatments affected all response variables. Sulfate was the most common dissolved solid in irrigation water and was 41 times more abundant in irrigated (i.e. 130% of ambient) than other plots. Soils of irrigated plots also had elevated iron (16.5 µg × 10 cm-2 × 60-d vs 8.9) and pH (7.0 vs 6.8). The rainfall gradient also had a nonlinear (hump-shaped) effect on plant available phosphorus (P). Plant and microbial biomasses are often limited by and positively associated with available P, suggesting the predicted positive linear relationship between plant biomass and P was confounded by additions of mineralized water. In other words, the unexpected nonlinear relationship was likely driven by components of mineralized irrigation water (i.e. calcium, iron) and/or shifts in soil pH that immobilized P. Conclusions: Our results suggest robust precipitation manipulation experiments should either capture rainwater when possible (or use demineralized water) or consider the confounding effects of mineralized water on plant and soil properties. Resources in this dataset: Resource Title: Readme file- Data dictionary File Name: README.txt Resource Description: File contains data dictionary to accompany data files for a research study. Resource Title: 3x2x2 factorial dataset.csv File Name: 3x2x2 factorial dataset.csv Resource Description: Dataset is for a 3x2x2 factorial field experiment (factors: rainfall variability, mowing seasons, mowing intensity) conducted in northern mixed-grass prairie vegetation in eastern Montana, USA. Data include activity of 5 plant available nutrients, soil pH, and plant biomass metrics. Data from 2018. Resource Title: water quality dataset.csv File Name: water quality dataset.csv Resource Description: Water properties (pH and common dissolved solids) of samples from Yellowstone River collected near Miles City, Montana. Data extracted from Rinella MJ, Muscha JM, Reinhart KO, Petersen MK (2021) Water quality for livestock in northern Great Plains rangelands. Rangeland Ecol. Manage. 75: 29-34.

Search
Clear search
Close search
Google apps
Main menu