100+ datasets found
  1. Global gender pay gap 2015-2025

    • statista.com
    • ai-chatbox.pro
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Global gender pay gap 2015-2025 [Dataset]. https://www.statista.com/statistics/1212140/global-gender-pay-gap/
    Explore at:
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    The difference between the earnings of women and men shrank slightly over the past years. Considering the controlled gender pay gap, which measures the median salary for men and women with the same job and qualifications, women earned one U.S. cent less. By comparison, the uncontrolled gender pay gap measures the median salary for all men and all women across all sectors and industries and regardless of location and qualification. In 2025, the uncontrolled gender pay gap in the world stood at 0.83, meaning that women earned 0.83 dollars for every dollar earned by men.

  2. Gender pay gap

    • cy.ons.gov.uk
    • ons.gov.uk
    zip
    Updated Oct 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2024). Gender pay gap [Dataset]. https://cy.ons.gov.uk/employmentandlabourmarket/peopleinwork/earningsandworkinghours/datasets/annualsurveyofhoursandearningsashegenderpaygaptables
    Explore at:
    zipAvailable download formats
    Dataset updated
    Oct 29, 2024
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Annual gender pay gap estimates for UK employees by age, occupation, industry, full-time and part-time, region and other geographies, and public and private sector. Compiled from the Annual Survey of Hours and Earnings.

  3. Gender pay gap between men and women in Germany 2024

    • statista.com
    Updated Jun 17, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Gender pay gap between men and women in Germany 2024 [Dataset]. https://www.statista.com/statistics/1407077/men-women-gender-pay-gap/
    Explore at:
    Dataset updated
    Jun 17, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Germany
    Description

    In 2024, the gender pay gap in Germany was around 16 percent. This meant that wages for men were on average 16 percent higher than for women. Figures have gradually decreased since 2009.

  4. c

    Gender Wage Gap

    • data.ccrpc.org
    csv
    Updated Oct 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Champaign County Regional Planning Commission (2024). Gender Wage Gap [Dataset]. https://data.ccrpc.org/dataset/gender-wage-gap
    Explore at:
    csv(1958)Available download formats
    Dataset updated
    Oct 22, 2024
    Dataset provided by
    Champaign County Regional Planning Commission
    Description

    The gender wage gap indicator compares the median earnings between male and female workers in Champaign County.

    Two worker populations are analyzed: all workers, including part-time and seasonal workers and those that were not employed for the full survey year; and full-time, year-round workers. The gender wage gap is included because it blends economics and equity, and illustrates that a major economic talking point on the national level is just as relevant at the local scale.

    For all four populations (male full-time, year-round workers; female full-time, year-round workers; all male workers; and all female workers), the estimated median earnings were higher in 2023 than in 2005. The greatest increase in a population’s estimated median earnings between 2005 and 2023 was for female full-time, year-round workers; the smallest increase between 2005 and 2023 was for all female workers. In both categories (all and full-time, year-round), the estimated median annual earnings for male workers was consistently higher than for female workers.

    The gender gap between the two estimates in 2023 was larger for full-time, year-round workers than all workers. For full-time, year-round workers, the difference was $11,863; for all workers, it was approaching $9,700.

    The Associated Press wrote this article in October 2024 about how Census Bureau data shows that in 2023 in the United States, the gender wage gap between men and women working full-time widened year-over-year for the first time in 20 years.

    Income data was sourced from the U.S. Census Bureau’s American Community Survey (ACS) 1-Year Estimates, which are released annually.

    As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.

    Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.

    For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Median Earnings in the Past 12 Months (in 2020 Inflation-Adjusted Dollars) by Sex by Work Experience in the Past 12 Months for the Population 16 Years and Over with Earnings in the Past 12 Months.

    Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using data.census.gov; (16 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using data.census.gov; (20 October 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using data.census.gov; (21 September 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using data.census.gov; (7 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using data.census.gov; (7 June 2021).; U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).

  5. P

    Gender Pay Gap in Wages by country, urbanisation, and disability status

    • pacificdata.org
    • pacific-data.sprep.org
    csv
    Updated Sep 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SPC (2024). Gender Pay Gap in Wages by country, urbanisation, and disability status [Dataset]. https://pacificdata.org/data/dataset/gender-pay-gap-in-wages-by-country-urbanisation-and-disability-status-df-gwg
    Explore at:
    csvAvailable download formats
    Dataset updated
    Sep 26, 2024
    Dataset provided by
    SPC
    Time period covered
    Jan 1, 2012 - Dec 31, 2021
    Description

    This table describes gender pay gap and is defined as the ratio of the gross earnings between women and men. The disaggregation variables are subject to data availability and where the numbers are lesser than 6, the disaggregation will be dropped.

    Find more Pacific data on PDH.stat.

  6. U.S. gender pay gap by state 2023

    • statista.com
    • ai-chatbox.pro
    Updated Jun 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). U.S. gender pay gap by state 2023 [Dataset]. https://www.statista.com/statistics/244361/female-to-male-earnings-ratio-of-workers-in-the-us-by-state/
    Explore at:
    Dataset updated
    Jun 25, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    In 2023, the Rhode Island had the highest earnings ratio for women, as female workers earned ***** percent of their male counterparts on average. The state of Louisiana had the lowest earnings ratio for female workers, who earned ***** percent of what their male counterparts earn.

  7. U.S. gender wage gap, by industry 2021

    • statista.com
    • ai-chatbox.pro
    Updated Aug 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). U.S. gender wage gap, by industry 2021 [Dataset]. https://www.statista.com/statistics/244202/us-gender-wage-gap-by-industry/
    Explore at:
    Dataset updated
    Aug 23, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2021
    Area covered
    United States
    Description

    In 2021, female employee earnings were outpaced by male earnings across nearly all industries, with sharp disparities in the professional and technical services industry, as well as the finance and insurance industry. In that year, there were no industries in which women earned more than men.

  8. Gender pay gap in OECD countries 2023

    • statista.com
    • ai-chatbox.pro
    Updated May 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Gender pay gap in OECD countries 2023 [Dataset]. https://www.statista.com/statistics/934039/gender-pay-gap-select-countries/
    Explore at:
    Dataset updated
    May 30, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    Worldwide, OECD
    Description

    As of 2023, South Korea is the country with the highest gender pay gap among OECD countries, with a **** percent difference between the genders. The gender pay gap displays the difference between the median wages of full-time employed men and full-time employed women.

  9. Gender pay gap in Italy 2024

    • statista.com
    • ai-chatbox.pro
    Updated Jun 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Gender pay gap in Italy 2024 [Dataset]. https://www.statista.com/statistics/684293/gender-pay-gap-in-italy/
    Explore at:
    Dataset updated
    Jun 3, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Italy
    Description

    In 2024, Italian women earned annually about ***** euros less than men. However, the gender pay gap decreased in the last years. In 2016, it amounted to **** percent in favor of men, whereas the difference in 2022 was equal to **** percent. For 2024, it reduced to *** percent. According to JobPricing, women's annual gross salary amounted to around ****** euros in 2024. On the other hand, men had an average annual salary of approximately ****** euros. Regional differences In Italy, significant wage differences can also be observed among regions. As of 2024, regions in northern Italy registered higher average annual salaries compared to the southern regions. Lombardy had the highest average wages in the country, ****** euros per year. On the other hand, people living in Basilicata, in the south, had the lowest wages in the country, ****** euros annually. Differences in the sectors Different sectors registered various levels of pay gaps. For instance, in the banking and financial services, the difference in between the salaries of men and women favored men by ***** euros in 2020. Nonetheless, in very few sectors, the gap favors women. In the construction industry, women earned, on average, around ***** euros more than men. In the field of metallurgy and steel, women and men were equally paid.

  10. o

    Data and Code for: College Majors, Occupations, and the Gender Wage Gap

    • openicpsr.org
    delimited
    Updated Sep 1, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Carolyn M. Sloane; Erik G. Hurst; Dan A. Black (2021). Data and Code for: College Majors, Occupations, and the Gender Wage Gap [Dataset]. http://doi.org/10.3886/E149061V1
    Explore at:
    delimitedAvailable download formats
    Dataset updated
    Sep 1, 2021
    Dataset provided by
    American Economic Association
    Authors
    Carolyn M. Sloane; Erik G. Hurst; Dan A. Black
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2014 - 2017
    Area covered
    United States of America
    Description

    The paper assesses gender differences in pre-labor market specialization among the college-educated and highlights how those differences have evolved over time. Women choose majors with lower potential earnings (based on male wages associated with those majors) and subsequently sort into occupations with lower potential earnings given their major choice. These differences have narrowed over time, but recent cohorts of women still choose majors and occupations with lower potential earnings. Differences in undergraduate major choice explain a substantive portion of gender wage gaps for the college-educated above and beyond simply controlling for occupation. Collectively, our results highlight the importance of understanding gender differences in the mapping between college major and occupational sorting when studying the evolution of gender differences in labor market outcomes over time.

  11. DSIT: gender pay gap report and data, 2024

    • gov.uk
    Updated Dec 17, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department for Science, Innovation and Technology (2024). DSIT: gender pay gap report and data, 2024 [Dataset]. https://www.gov.uk/government/publications/dsit-gender-pay-gap-report-and-data-2024
    Explore at:
    Dataset updated
    Dec 17, 2024
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Department for Science, Innovation and Technology
    Description

    Gender pay gap legislation introduced in April 2017 requires all employers of 250 or more employees to publish their gender pay gap data annually. The gender pay gap is the difference between the average earnings of men and women, expressed relative to men’s earnings.

    You can also:

  12. Data from: Presentation of the Gender Pay Gap

    • data.europa.eu
    • data.wu.ac.at
    html
    Updated Apr 30, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2021). Presentation of the Gender Pay Gap [Dataset]. https://data.europa.eu/data/datasets/presentation_of_the_gender_pay_gap?locale=et
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Apr 30, 2021
    Dataset authored and provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    A paper outlining how the gender pay gap will be presented in future ONS Statistical Bulletins

    Source agency: Office for National Statistics

    Designation: National Statistics

    Language: English

    Alternative title: Presentation of the Gender Pay Gap: ONS Position Paper

  13. DWP: gender pay gap report and data 2023

    • gov.uk
    • s3.amazonaws.com
    Updated Nov 30, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department for Work and Pensions (2023). DWP: gender pay gap report and data 2023 [Dataset]. https://www.gov.uk/government/publications/dwp-gender-pay-gap-report-and-data-2023
    Explore at:
    Dataset updated
    Nov 30, 2023
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Department for Work and Pensions
    Description

    Gender Pay Gap legislation introduced in April 2017 requires all employers of 250 or more employees to report annually on their gender pay gap.

    The gender pay gap is the difference between the average earnings of men and women, expressed relative to men’s earnings.

    You can also:

  14. Gender salary gap (not adjusted to individual characteristics) by hourly...

    • ine.es
    csv, html, json +4
    Updated Feb 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    INE - Instituto Nacional de Estadística (2023). Gender salary gap (not adjusted to individual characteristics) by hourly salary by sectors of economic activity and period in the EU [Dataset]. https://www.ine.es/jaxiT3/Tabla.htm?t=10895&L=1
    Explore at:
    txt, text/pc-axis, xlsx, xls, html, csv, jsonAvailable download formats
    Dataset updated
    Feb 21, 2023
    Dataset provided by
    National Statistics Institutehttp://www.ine.es/
    Authors
    INE - Instituto Nacional de Estadística
    License

    https://www.ine.es/aviso_legalhttps://www.ine.es/aviso_legal

    Time period covered
    Jan 1, 2009 - Jan 1, 2020
    Area covered
    European Union
    Variables measured
    Source, Countries, Secciones, Type of data, Sustainable development indicators
    Description

    Women and Men in Spain: Gender salary gap (not adjusted to individual characteristics) by hourly salary by sectors of economic activity and period in the EU. Annual. National.

  15. N

    West Palm Beach, FL annual median income by work experience and sex dataset:...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). West Palm Beach, FL annual median income by work experience and sex dataset: Aged 15+, 2010-2023 (in 2023 inflation-adjusted dollars) // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/west-palm-beach-fl-income-by-gender/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    West Palm Beach, Florida
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates. The dataset covers the years 2010 to 2023, representing 14 years of data. To analyze income differences between genders (male and female), we conducted an initial data analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series (R-CPI-U-RS) based on current methodologies. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in West Palm Beach. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.

    Key observations: Insights from 2023

    Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In West Palm Beach, the median income for all workers aged 15 years and older, regardless of work hours, was $43,939 for males and $31,320 for females.

    These income figures indicate a substantial gender-based pay disparity, showcasing a gap of approximately 29% between the median incomes of males and females in West Palm Beach. With women, regardless of work hours, earning 71 cents to each dollar earned by men, this income disparity reveals a concerning trend toward wage inequality that demands attention in thecity of West Palm Beach.

    - Full-time workers, aged 15 years and older: In West Palm Beach, among full-time, year-round workers aged 15 years and older, males earned a median income of $55,693, while females earned $51,397, resulting in a 8% gender pay gap among full-time workers. This illustrates that women earn 92 cents for each dollar earned by men in full-time positions. While this gap shows a trend where women are inching closer to wage parity with men, it also exhibits a noticeable income difference for women working full-time in the city of West Palm Beach.

    Interestingly, when analyzing income across all roles, including non-full-time employment, the gender pay gap percentage was higher for women compared to men. It appears that full-time employment presents a more favorable income scenario for women compared to other employment patterns in West Palm Beach.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.

    Gender classifications include:

    • Male
    • Female

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Variables / Data Columns

    • Year: This column presents the data year. Expected values are 2010 to 2023
    • Male Total Income: Annual median income, for males regardless of work hours
    • Male FT Income: Annual median income, for males working full time, year-round
    • Male PT Income: Annual median income, for males working part time
    • Female Total Income: Annual median income, for females regardless of work hours
    • Female FT Income: Annual median income, for females working full time, year-round
    • Female PT Income: Annual median income, for females working part time

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for West Palm Beach median household income by race. You can refer the same here

  16. U.S. gender pay gap by age group Q4 2023

    • statista.com
    • ai-chatbox.pro
    Updated Jul 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). U.S. gender pay gap by age group Q4 2023 [Dataset]. https://www.statista.com/statistics/244383/female-to-male-earnings-ratio-of-workers-in-the-us-by-age/
    Explore at:
    Dataset updated
    Jul 5, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The statistic shows the female to male earnings ratio in the United States in the fourth quarter of 2022, based on the median income in current U.S. dollars, by age group. In the fourth quarter of 2022, the earnings ratio of female to male workers aged between 16 to 24 years was at about 92.9 percent.

  17. N

    Van Meter, IA annual median income by work experience and sex dataset: Aged...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Van Meter, IA annual median income by work experience and sex dataset: Aged 15+, 2010-2023 (in 2023 inflation-adjusted dollars) // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/van-meter-ia-income-by-gender/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Van Meter, Iowa
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates. The dataset covers the years 2010 to 2023, representing 14 years of data. To analyze income differences between genders (male and female), we conducted an initial data analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series (R-CPI-U-RS) based on current methodologies. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Van Meter. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.

    Key observations: Insights from 2023

    Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Van Meter, the median income for all workers aged 15 years and older, regardless of work hours, was $71,458 for males and $48,500 for females.

    These income figures highlight a substantial gender-based income gap in Van Meter. Women, regardless of work hours, earn 68 cents for each dollar earned by men. This significant gender pay gap, approximately 32%, underscores concerning gender-based income inequality in the city of Van Meter.

    - Full-time workers, aged 15 years and older: In Van Meter, among full-time, year-round workers aged 15 years and older, males earned a median income of $85,238, while females earned $56,750, leading to a 33% gender pay gap among full-time workers. This illustrates that women earn 67 cents for each dollar earned by men in full-time roles. This level of income gap emphasizes the urgency to address and rectify this ongoing disparity, where women, despite working full-time, face a more significant wage discrepancy compared to men in the same employment roles.

    Remarkably, across all roles, including non-full-time employment, women displayed a similar gender pay gap percentage. This indicates a consistent gender pay gap scenario across various employment types in Van Meter, showcasing a consistent income pattern irrespective of employment status.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.

    Gender classifications include:

    • Male
    • Female

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Variables / Data Columns

    • Year: This column presents the data year. Expected values are 2010 to 2023
    • Male Total Income: Annual median income, for males regardless of work hours
    • Male FT Income: Annual median income, for males working full time, year-round
    • Male PT Income: Annual median income, for males working part time
    • Female Total Income: Annual median income, for females regardless of work hours
    • Female FT Income: Annual median income, for females working full time, year-round
    • Female PT Income: Annual median income, for females working part time

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Van Meter median household income by race. You can refer the same here

  18. DHSC: gender pay gap report and data 2023

    • gov.uk
    • s3.amazonaws.com
    Updated Nov 30, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Health and Social Care (2023). DHSC: gender pay gap report and data 2023 [Dataset]. https://www.gov.uk/government/publications/dhsc-gender-pay-gap-report-and-data-2023
    Explore at:
    Dataset updated
    Nov 30, 2023
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Department of Health and Social Care
    Description

    Gender pay gap legislation introduced in April 2017 requires all employers of 250 or more employees to report annually on their gender pay gap.

    The gender pay gap is the difference between the average earnings of men and women, expressed relative to men’s earnings.

  19. Average and median gender wage ratio, annual, inactive

    • www150.statcan.gc.ca
    Updated Jan 6, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2023). Average and median gender wage ratio, annual, inactive [Dataset]. http://doi.org/10.25318/1410034001-eng
    Explore at:
    Dataset updated
    Jan 6, 2023
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Government of Canadahttp://www.gg.ca/
    Area covered
    Canada
    Description

    Average hourly and median hourly gender wage ratio by National Occupational Classification (NOC), type of work, sex, and age group, last 5 years.

  20. N

    Ulster County, NY annual median income by work experience and sex dataset:...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Ulster County, NY annual median income by work experience and sex dataset: Aged 15+, 2010-2023 (in 2023 inflation-adjusted dollars) // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/ulster-county-ny-income-by-gender/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    New York, Ulster County
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates. The dataset covers the years 2010 to 2023, representing 14 years of data. To analyze income differences between genders (male and female), we conducted an initial data analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series (R-CPI-U-RS) based on current methodologies. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Ulster County. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.

    Key observations: Insights from 2023

    Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Ulster County, the median income for all workers aged 15 years and older, regardless of work hours, was $50,338 for males and $36,322 for females.

    These income figures indicate a substantial gender-based pay disparity, showcasing a gap of approximately 28% between the median incomes of males and females in Ulster County. With women, regardless of work hours, earning 72 cents to each dollar earned by men, this income disparity reveals a concerning trend toward wage inequality that demands attention in thecounty of Ulster County.

    - Full-time workers, aged 15 years and older: In Ulster County, among full-time, year-round workers aged 15 years and older, males earned a median income of $74,248, while females earned $61,184, leading to a 18% gender pay gap among full-time workers. This illustrates that women earn 82 cents for each dollar earned by men in full-time roles. This analysis indicates a widening gender pay gap, showing a substantial income disparity where women, despite working full-time, face a more significant wage discrepancy compared to men in the same roles.

    Remarkably, across all roles, including non-full-time employment, women displayed a similar gender pay gap percentage. This indicates a consistent gender pay gap scenario across various employment types in Ulster County, showcasing a consistent income pattern irrespective of employment status.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.

    Gender classifications include:

    • Male
    • Female

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Variables / Data Columns

    • Year: This column presents the data year. Expected values are 2010 to 2023
    • Male Total Income: Annual median income, for males regardless of work hours
    • Male FT Income: Annual median income, for males working full time, year-round
    • Male PT Income: Annual median income, for males working part time
    • Female Total Income: Annual median income, for females regardless of work hours
    • Female FT Income: Annual median income, for females working full time, year-round
    • Female PT Income: Annual median income, for females working part time

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Ulster County median household income by race. You can refer the same here

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Global gender pay gap 2015-2025 [Dataset]. https://www.statista.com/statistics/1212140/global-gender-pay-gap/
Organization logo

Global gender pay gap 2015-2025

Explore at:
3 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jun 30, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
Worldwide
Description

The difference between the earnings of women and men shrank slightly over the past years. Considering the controlled gender pay gap, which measures the median salary for men and women with the same job and qualifications, women earned one U.S. cent less. By comparison, the uncontrolled gender pay gap measures the median salary for all men and all women across all sectors and industries and regardless of location and qualification. In 2025, the uncontrolled gender pay gap in the world stood at 0.83, meaning that women earned 0.83 dollars for every dollar earned by men.

Search
Clear search
Close search
Google apps
Main menu