Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
https://raw.githubusercontent.com/Masterx-AI/Project_Housing_Price_Prediction_/main/hs.jpg" alt="">
A simple yet challenging project, to predict the housing price based on certain factors like house area, bedrooms, furnished, nearness to mainroad, etc. The dataset is small yet, it's complexity arises due to the fact that it has strong multicollinearity. Can you overcome these obstacles & build a decent predictive model?
Harrison, D. and Rubinfeld, D.L. (1978) Hedonic prices and the demand for clean air. J. Environ. Economics and Management 5, 81–102. Belsley D.A., Kuh, E. and Welsch, R.E. (1980) Regression Diagnostics. Identifying Influential Data and Sources of Collinearity. New York: Wiley.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Annual house price data based on a sub-sample of the Regulated Mortgage Survey.
Facebook
TwitterAttribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
This dataset contains various features of residential properties along with their corresponding prices. It is suitable for exploring and analyzing factors influencing housing prices and for building predictive models to estimate the price of a property based on its attributes.
| Feature | Description |
|---|---|
| price | The price of the property. |
| area | The total area of the property in square feet. |
| bedrooms | The number of bedrooms in the property. |
| bathrooms | The number of bathrooms in the property. |
| stories | The number of stories (floors) in the property. |
| mainroad | Indicates whether the property is located on a main road (binary: yes/no). |
| guestroom | Indicates whether the property has a guest room (binary: yes/no). |
| basement | Indicates whether the property has a basement (binary: yes/no). |
| hotwaterheating | Indicates whether the property has hot water heating (binary: yes/no). |
| airconditioning | Indicates whether the property has air conditioning (binary: yes/no). |
| parking | The number of parking spaces available with the property. |
| prefarea | Indicates whether the property is in a preferred area (binary: yes/no). |
| furnishingstatus | The furnishing status of the property (e.g., furnished, semi-furnished, unfurnished). |
License: This dataset is made available under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Average Sales Price of Houses Sold for the United States (ASPUS) from Q1 1963 to Q2 2025 about sales, housing, and USA.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Summary of UK House Price Index (HPI) price statistics covering England, Scotland, Wales and Northern Ireland. Full UK HPI data are available on GOV.UK.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Single Family Home Prices in the United States increased to 415200 USD in October from 412300 USD in September of 2025. This dataset provides - United States Existing Single Family Home Prices- actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset provides insights into the global housing market, covering various economic factors from 2015 to 2024. It includes details about property prices, rental yields, interest rates, and household income across multiple countries. This dataset is ideal for real estate analysis, financial forecasting, and market trend visualization.
| Column Name | Description |
|---|---|
Country | The country where the housing market data is recorded 🌍 |
Year | The year of observation 📅 |
Average House Price ($) | The average price of houses in USD 💰 |
Median Rental Price ($) | The median monthly rent for properties in USD 🏠 |
Mortgage Interest Rate (%) | The average mortgage interest rate percentage 📉 |
Household Income ($) | The average annual household income in USD 🏡 |
Population Growth (%) | The percentage increase in population over the year 👥 |
Urbanization Rate (%) | Percentage of the population living in urban areas 🏙️ |
Homeownership Rate (%) | The percentage of people who own their homes 🔑 |
GDP Growth Rate (%) | The annual GDP growth percentage 📈 |
Unemployment Rate (%) | The percentage of unemployed individuals in the labor force 💼 |
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Key information about House Prices Growth
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Real Residential Property Prices for United States (QUSR628BIS) from Q1 1970 to Q2 2025 about residential, HPI, housing, real, price index, indexes, price, and USA.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
House Price Index YoY in the United States decreased to 1.70 percent in September from 2.40 percent in August of 2025. This dataset includes a chart with historical data for the United States FHFA House Price Index YoY.
Facebook
TwitterIn 2025, India was the country with the highest increase in house prices since 2010 among the Asia-Pacific (APAC) countries under observation. In the second quarter of the year, the nominal house price index in India reached over 359 index points. This suggests an increase of 259 percent since 2010, the baseline year when the index value was set to 100. It is important to note that the nominal index does not account for the effects of inflation, meaning when adjusted for inflation, price growth in real terms was slower.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for All-Transactions House Price Index for the United States (USSTHPI) from Q1 1975 to Q3 2025 about appraisers, HPI, housing, price index, indexes, price, and USA.
Facebook
TwitterThe UK House Price Index is a National Statistic.
Download the full UK House Price Index data below, or use our tool to https://landregistry.data.gov.uk/app/ukhpi?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=tool&utm_term=9.30_19_02_25" class="govuk-link">create your own bespoke reports.
Datasets are available as CSV files. Find out about republishing and making use of the data.
This file includes a derived back series for the new UK HPI. Under the UK HPI, data is available from 1995 for England and Wales, 2004 for Scotland and 2005 for Northern Ireland. A longer back series has been derived by using the historic path of the Office for National Statistics HPI to construct a series back to 1968.
Download the full UK HPI background file:
If you are interested in a specific attribute, we have separated them into these CSV files:
https://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Average-prices-2024-12.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=average_price&utm_term=9.30_19_02_25" class="govuk-link">Average price (CSV, 7MB)
https://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Average-prices-Property-Type-2024-12.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=average_price_property_price&utm_term=9.30_19_02_25" class="govuk-link">Average price by property type (CSV, 15.2KB)
https://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Sales-2024-12.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=sales&utm_term=9.30_19_02_25" class="govuk-link">Sales (CSV, 5.2KB)
https://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Cash-mortgage-sales-2024-12.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=cash_mortgage-sales&utm_term=9.30_19_02_25" class="govuk-link">Cash mortgage sales (CSV, 4.8KB)
https://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/First-Time-Buyer-Former-Owner-Occupied-2024-12.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=FTNFOO&utm_term=9.30_19_02_25" class="govuk-link">First time buyer and former owner occupier (CSV, 4.4KB)
https://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/New-and-Old-2024-12.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=new_build&utm_term=9.30_19_02_25" class="govuk-link">New build and existing resold property (CSV, 10.9KB)
https://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Indices-2024-12.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=index&utm_term=9.30_19_02_25" class="govuk-link">Index (CSV, 5.4KB)
https://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Indices-seasonally-adjusted-2024-12.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=index_season_adjusted&utm_term=9.30_19_02_25" class="govuk-link">Index seasonally adjusted (CSV, 193KB)
https://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Average-price-seasonally-adjusted-2024-12.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=average-price_season_adjusted&utm_term=9.30_19_02_25" class="govuk-link">Average price seasonally adjusted (CSV, 203KB)
<a rel="external" href="https://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Repossession-2024-12.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=repossession&utm_term=9.30_19_02
Facebook
TwitterIn 2022, house price growth in the UK slowed, after a period of decade-long increase. Nevertheless, in June 2025, prices reached a new peak, with the average home costing ******* British pounds. This figure refers to all property types, including detached, semi-detached, terraced houses, and flats and maisonettes. Compared to other European countries, the UK had some of the highest house prices. How have UK house prices increased over the last 10 years? Property prices have risen dramatically over the past decade. According to the UK house price index, the average house price has grown by over ** percent since 2015. This price development has led to the gap between the cost of buying and renting a property to close. In 2023, buying a three-bedroom house in the UK was no longer more affordable than renting one. Consequently, Brits have become more likely to rent longer and push off making a house purchase until they have saved up enough for a down payment and achieved the financial stability required to make the step. What caused the recent fluctuations in house prices? House prices are affected by multiple factors, such as mortgage rates, supply, and demand on the market. For nearly a decade, the UK experienced uninterrupted house price growth as a result of strong demand and a chronic undersupply. Homebuyers who purchased a property at the peak of the housing boom in July 2022 paid ** percent more compared to what they would have paid a year before. Additionally, 2022 saw the most dramatic increase in mortgage rates in recent history. Between December 2021 and December 2022, the **-year fixed mortgage rate doubled, adding further strain to prospective homebuyers. As a result, the market cooled, leading to a correction in pricing.
Facebook
TwitterNew housing price index (NHPI). Monthly data are available from January 1981. The table presents data for the most recent reference period and the last four periods. The base period for the index is (201612=100).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Housing Index in the United Kingdom increased to 517.10 points in October from 514.20 points in September of 2025. This dataset provides - United Kingdom House Price Index - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for All-Transactions House Price Index for Utah (UTSTHPI) from Q1 1975 to Q2 2025 about UT, appraisers, HPI, housing, price index, indexes, price, and USA.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Median price paid for residential property in England and Wales, by property type and administrative geographies. Annual data.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Task Description: Real Estate Price Prediction
This task involves predicting the price of real estate properties based on various features that influence the value of a property. The dataset contains several attributes of real estate properties such as square footage, the number of bedrooms, bathrooms, floors, the year the property was built, whether the property has a garden or pool, the size of the garage, the location score, and the distance from the city center.
The goal is to build a regression model that can predict the Price of a property based on the provided features.
Dataset Columns:
ID: A unique identifier for each property.
Square_Feet: The area of the property in square meters.
Num_Bedrooms: The number of bedrooms in the property.
Num_Bathrooms: The number of bathrooms in the property.
Num_Floors: The number of floors in the property.
Year_Built: The year the property was built.
Has_Garden: Indicates whether the property has a garden (1 for yes, 0 for no).
Has_Pool: Indicates whether the property has a pool (1 for yes, 0 for no).
Garage_Size: The size of the garage in square meters.
Location_Score: A score from 0 to 10 indicating the quality of the neighborhood (higher scores indicate better neighborhoods).
Distance_to_Center: The distance from the property to the city center in kilometers.
Price: The target variable that represents the price of the property. This is the value we aim to predict.
Objective: The goal of this task is to develop a regression model that predicts the Price of a real estate property using the other features as inputs. The model should be able to learn the relationship between these features and the price, providing an accurate prediction for unseen data.
Facebook
Twitterhttps://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy
The Housing Data Extracted from Homes.com (USA) dataset is a comprehensive collection of 2 million real estate listings sourced from Homes.com, one of the leading real estate platforms in the United States. This dataset offers detailed insights into the U.S. housing market, making it an invaluable resource for real estate professionals, investors, researchers, and analysts.
The dataset contains extensive property details, including location, price, property type (single-family homes, condos, apartments), number of bedrooms and bathrooms, square footage, lot size, year built, and availability status. Organized in CSV format, it provides users with easy access to structured data for analyzing trends, developing investment strategies, or building real estate applications.
Key Features:
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
https://raw.githubusercontent.com/Masterx-AI/Project_Housing_Price_Prediction_/main/hs.jpg" alt="">
A simple yet challenging project, to predict the housing price based on certain factors like house area, bedrooms, furnished, nearness to mainroad, etc. The dataset is small yet, it's complexity arises due to the fact that it has strong multicollinearity. Can you overcome these obstacles & build a decent predictive model?
Harrison, D. and Rubinfeld, D.L. (1978) Hedonic prices and the demand for clean air. J. Environ. Economics and Management 5, 81–102. Belsley D.A., Kuh, E. and Welsch, R.E. (1980) Regression Diagnostics. Identifying Influential Data and Sources of Collinearity. New York: Wiley.