As of early 2023, approximately ** percent of consumers in the United States said they would prefer to shop mostly online rather than in-store, making it the country with highest online shopping preference. In contrast, more shoppers preferred visiting physical stores in countries such as Austria, Finland, and New Zealand.
This dataset is having data of customers who buys clothes online. The store offers in-store style and clothing advice sessions. Customers come in to the store, have sessions/meetings with a personal stylist, then they can go home and order either on a mobile app or website for the clothes they want.
The company is trying to decide whether to focus their efforts on their mobile app experience or their website.
This dataset contains a list of sales and movement data by item and department appended monthly. Update Frequency : Monthly
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset was created to simulate a market basket dataset, providing insights into customer purchasing behavior and store operations. The dataset facilitates market basket analysis, customer segmentation, and other retail analytics tasks. Here's more information about the context and inspiration behind this dataset:
Context:
Retail businesses, from supermarkets to convenience stores, are constantly seeking ways to better understand their customers and improve their operations. Market basket analysis, a technique used in retail analytics, explores customer purchase patterns to uncover associations between products, identify trends, and optimize pricing and promotions. Customer segmentation allows businesses to tailor their offerings to specific groups, enhancing the customer experience.
Inspiration:
The inspiration for this dataset comes from the need for accessible and customizable market basket datasets. While real-world retail data is sensitive and often restricted, synthetic datasets offer a safe and versatile alternative. Researchers, data scientists, and analysts can use this dataset to develop and test algorithms, models, and analytical tools.
Dataset Information:
The columns provide information about the transactions, customers, products, and purchasing behavior, making the dataset suitable for various analyses, including market basket analysis and customer segmentation. Here's a brief explanation of each column in the Dataset:
Use Cases:
Note: This dataset is entirely synthetic and was generated using the Python Faker library, which means it doesn't contain real customer data. It's designed for educational and research purposes.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A comprehensive dataset providing key insights into the eCommerce industry, including global retail online sales projections, number of eCommerce stores, digital buyer statistics, revenue growth in the United States, sector-wise revenue details with a focus on consumer electronics, average conversion rates, and mobile commerce sales forecasts.
This dataset provides insights into eCommerce shopping preferences and trends among UK adults in 2024. The findings are derived from data collected from a sample of 2,017 UK adults regarding their shopping habits and influencing factors.Furthermore, hundreds of thousands online searches were analysed to collate the most up-to-date statistics.
In 2024, global retail e-commerce sales reached an estimated ************ U.S. dollars. Projections indicate a ** percent growth in this figure over the coming years, with expectations to come close to ************** dollars by 2028. World players Among the key players on the world stage, the American marketplace giant Amazon holds the title of the largest e-commerce player globally, with a gross merchandise value of nearly *********** U.S. dollars in 2024. Amazon was also the most valuable retail brand globally, followed by mostly American competitors such as Walmart and the Home Depot. Leading e-tailing regions E-commerce is a dormant channel globally, but nowhere has it been as successful as in Asia. In 2024, the e-commerce revenue in that continent alone was measured at nearly ************ U.S. dollars, outperforming the Americas and Europe. That year, the up-and-coming e-commerce markets also centered around Asia. The Philippines and India stood out as the swiftest-growing e-commerce markets based on online sales, anticipating a growth rate surpassing ** percent.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This table contains 3 series, with data for years 2016 - 2017 (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Geography (1 item: Canada); Sales (3 items: Retail trade; Electronic shopping and mail-order houses; Retail E-commerce sales).
Success.ai delivers unparalleled access to Retail Store Data for Asia’s retail and e-commerce sectors, encompassing subcategories such as ecommerce data, ecommerce merchant data, ecommerce market data, and company data. Whether you’re targeting emerging markets or established players, our solutions provide the tools to connect with decision-makers, analyze market trends, and drive strategic growth. With continuously updated datasets and AI-validated accuracy, Success.ai ensures your data is always relevant and reliable.
Key Features of Success.ai's Retail Store Data for Retail & E-commerce in Asia:
Extensive Business Profiles: Access detailed profiles for 70M+ companies across Asia’s retail and e-commerce sectors. Profiles include firmographic data, revenue insights, employee counts, and operational scope.
Ecommerce Data: Gain insights into online marketplaces, customer demographics, and digital transaction patterns to refine your strategies.
Ecommerce Merchant Data: Understand vendor performance, supply chain metrics, and operational details to optimize partnerships.
Ecommerce Market Data: Analyze purchasing trends, regional preferences, and market demands to identify growth opportunities.
Contact Data for Decision-Makers: Reach key stakeholders, such as CEOs, marketing executives, and procurement managers. Verified contact details include work emails, phone numbers, and business addresses.
Real-Time Accuracy: AI-powered validation ensures a 99% accuracy rate, keeping your outreach efforts efficient and impactful.
Compliance and Ethics: All data is ethically sourced and fully compliant with GDPR and other regional data protection regulations.
Why Choose Success.ai for Retail Store Data?
Best Price Guarantee: We deliver industry-leading value with the most competitive pricing for comprehensive retail store data.
Customizable Solutions: Tailor your data to meet specific needs, such as targeting particular regions, industries, or company sizes.
Scalable Access: Our data solutions are built to grow with your business, supporting small startups to large-scale enterprises.
Seamless Integration: Effortlessly incorporate our data into your existing CRM, marketing, or analytics platforms.
Comprehensive Use Cases for Retail Store Data:
Identify potential partners, distributors, and clients to expand your footprint in Asia’s dynamic retail and e-commerce markets. Use detailed profiles to assess market opportunities and risks.
Leverage ecommerce data and consumer insights to craft highly targeted campaigns. Connect directly with decision-makers for precise and effective communication.
Analyze competitors’ operations, market positioning, and consumer strategies to refine your business plans and gain a competitive edge.
Evaluate potential suppliers or vendors using ecommerce merchant data, including financial health, operational details, and contact data.
Enhance customer loyalty programs and retention strategies by leveraging ecommerce market data and purchasing trends.
APIs to Amplify Your Results:
Enrichment API: Keep your CRM and analytics platforms up-to-date with real-time data enrichment, ensuring accurate and actionable company profiles.
Lead Generation API: Maximize your outreach with verified contact data for retail and e-commerce decision-makers. Ideal for driving targeted marketing and sales efforts.
Tailored Solutions for Industry Professionals:
Retailers: Expand your supply chain, identify new markets, and connect with key partners in the e-commerce ecosystem.
E-commerce Platforms: Optimize your vendor and partner selection with verified profiles and operational insights.
Marketing Agencies: Deliver highly personalized campaigns by leveraging detailed consumer data and decision-maker contacts.
Consultants: Provide data-driven recommendations to clients with access to comprehensive company data and market trends.
What Sets Success.ai Apart?
70M+ Business Profiles: Access an extensive and detailed database of companies across Asia’s retail and e-commerce sectors.
Global Compliance: All data is sourced ethically and adheres to international data privacy standards, including GDPR.
Real-Time Updates: Ensure your data remains accurate and relevant with our continuously updated datasets.
Dedicated Support: Our team of experts is available to help you maximize the value of our data solutions.
Empower Your Business with Success.ai:
Success.ai’s Retail Store Data for the retail and e-commerce sectors in Asia provides the insights and connections needed to thrive in this competitive market. Whether you’re entering a new region, launching a targeted campaign, or analyzing market trends, our data solutions ensure measurable success.
...
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Mariusz Šapczyński, Cracow University of Economics, Poland, lapczynm '@' uek.krakow.pl Sylwester Białowąs, Poznan University of Economics and Business, Poland, sylwester.bialowas '@' ue.poznan.pl
The dataset contains information on clickstream from online store offering clothing for pregnant women. Data are from five months of 2008 and include, among others, product category, location of the photo on the page, country of origin of the IP address and product price in US dollars.
The dataset contains 14 variables described in a separate file (See 'Data set description')
N/A
If you use this dataset, please cite:
Šapczyński M., Białowąs S. (2013) Discovering Patterns of Users' Behaviour in an E-shop - Comparison of Consumer Buying Behaviours in Poland and Other European Countries, “Studia Ekonomiczne†, nr 151, “La société de l'information : perspective européenne et globale : les usages et les risques d'Internet pour les citoyens et les consommateurs†, p. 144-153
========================================================
========================================================
========================================================
========================================================
following categories:
1-Australia 2-Austria 3-Belgium 4-British Virgin Islands 5-Cayman Islands 6-Christmas Island 7-Croatia 8-Cyprus 9-Czech Republic 10-Denmark 11-Estonia 12-unidentified 13-Faroe Islands 14-Finland 15-France 16-Germany 17-Greece 18-Hungary 19-Iceland 20-India 21-Ireland 22-Italy 23-Latvia 24-Lithuania 25-Luxembourg 26-Mexico 27-Netherlands 28-Norway 29-Poland 30-Portugal 31-Romania 32-Russia 33-San Marino 34-Slovakia 35-Slovenia 36-Spain 37-Sweden 38-Switzerland 39-Ukraine 40-United Arab Emirates 41-United Kingdom 42-USA 43-biz (.biz) 44-com (.com) 45-int (.int) 46-net (.net) 47-org (*.org)
========================================================
========================================================
1-trousers 2-skirts 3-blouses 4-sale
========================================================
(217 products)
========================================================
1-beige 2-black 3-blue 4-brown 5-burgundy 6-gray 7-green 8-navy blue 9-of many colors 10-olive 11-pink 12-red 13-violet 14-white
========================================================
1-top left 2-top in the middle 3-top right 4-bottom left 5-bottom in the middle 6-bottom right
========================================================
1-en face 2-profile
========================================================
========================================================
the average price for the entire product category
1-yes 2-no
========================================================
++++++++++++++++++++++++++++++++++++++++++++++++++++++++
https://ec.europa.eu/info/legal-notice_enhttps://ec.europa.eu/info/legal-notice_en
Deluxe is an online retailer based in UK that deals in a wide range of products in the following categories: 1. Clothing 2. Games 3. Appliances 4. Electronics 5. Books 6. Beauty products 7. Smartphones 8. Outdoors products 9. Accessories 10. Other Basic household products are classified as 'Other' in the category column since they have small value to the business.
Data Description: dates: sale date order_value_EUR : sale price in EUR cost: cost of goods sold in EUR category: item category country: customers' country at the time of purchase customer_name: name of customer device_type: The gadget used by customer to access our online store(PC, mobile, tablet) sales_manager: name of the sales manager for each sale sales_representative: name of the sales rep for each sale order_id: unique identifier of an order
The data was recorded for the period 1/2/2019 and 12/30/2020 with an aim to generate business insights to guide business direction. We would like to see what interesting insights the Kaggle community members can produce from this data.
Online Retail E-Commerce Data Hey everyone! 👋
This dataset contains real e-commerce transaction data from 2009 to 2011. It comes from a UK-based online store that sells a variety of products. The data includes details like invoices, product codes, descriptions, prices, and even customer IDs.
What’s Inside? Each row represents a transaction, and the dataset has the following key columns: 🛒 Invoice – Unique order ID 📦 StockCode – Product code 📝 Description – Name of the product 📊 Quantity – Number of units sold ⏳ InvoiceDate – When the purchase happened 💰 Price – Unit price of the product 👤 Customer ID – Unique identifier for each customer 🌍 Country – Where the customer is from
Why is this dataset useful? This dataset is great for exploring: Customer Segmentation (Find high-value customers) Customer Lifetime Value (LTV) Analysis Sales & Revenue Trends Market Basket Analysis (Which products are bought together?) Predicting Churn & Retention Strategies
How Can You Use It? If you're into data science, machine learning, or business analytics, this dataset is perfect for hands-on projects. You can analyze customer behavior, predict sales, or even build recommendation systems.
Hope this dataset helps with your projects! Let me know if you find something interesting.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset contains 1,462 entries and 22 columns, primarily capturing responses from a survey about e-customer relationships in e-commerce. Key demographic information includes age and sex, alongside questions on e-commerce usage patterns, such as daily app usage time and weekly purchase frequency.
The survey assesses factors influencing customer decisions, including the impact of e-commerce promotions (vouchers, coupons, flash sales), app usability, order processing speed, logistics ease, and customer service responsiveness. Further columns explore trust in sellers, the importance of regular order updates, perceived product quality, pricing competitiveness compared to physical stores, and the influence of social media advertisements and famous ambassadors. Additionally, participants rated their confidence in flagship stores, consideration of online shop ratings, and tendency to purchase from well-reviewed stores. Each response is rated on a scale, reflecting the importance of various factors in their e-commerce shopping behaviors.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for E-Commerce Retail Sales (ECOMNSA) from Q4 1999 to Q1 2025 about e-commerce, retail trade, sales, retail, and USA.
Success.ai’s Retail Data for the Retail Sector in North America offers a comprehensive dataset designed to connect businesses with key players across the diverse retail industry. Covering everything from department stores and supermarkets to specialty shops and e-commerce platforms, this dataset provides verified contact details, business locations, and leadership profiles for retail companies in the United States, Canada, and Mexico.
With access to over 170 million verified professional profiles and 30 million company profiles, Success.ai ensures your outreach, marketing, and business development efforts are powered by accurate, continuously updated, and AI-validated data.
Backed by our Best Price Guarantee, this solution empowers businesses to thrive in North America’s competitive retail landscape.
Why Choose Success.ai’s Retail Data for North America?
Verified Contact Data for Precision Outreach
Comprehensive Coverage Across Retail Segments
Continuously Updated Datasets
Ethical and Compliant
Data Highlights:
Key Features of the Dataset:
Retail Decision-Maker Profiles
Advanced Filters for Precision Targeting
Market Trends and Operational Insights
AI-Driven Enrichment
Strategic Use Cases:
Sales and Lead Generation
Market Research and Consumer Insights
E-Commerce and Digital Strategy Development
Recruitment and Workforce Solutions
Why Choose Success.ai?
Best Price Guarantee
Seamless Integration
...
Success.ai’s Ecommerce Store Data for the APAC E-commerce Sector provides a reliable and accurate dataset tailored for businesses aiming to connect with e-commerce professionals and organizations across the Asia-Pacific region. Covering roles and businesses involved in online retail, marketplace management, logistics, and digital commerce, this dataset includes verified business profiles, decision-maker contact details, and actionable insights.
With access to continuously updated, AI-validated data and over 700 million global profiles, Success.ai ensures your outreach, market analysis, and partnership strategies are effective and data-driven. Backed by our Best Price Guarantee, this solution helps you excel in one of the world’s fastest-growing e-commerce markets.
Why Choose Success.ai’s Ecommerce Store Data?
Verified Profiles for Precision Engagement
Comprehensive Coverage of the APAC E-commerce Sector
Continuously Updated Datasets
Ethical and Compliant
Data Highlights:
Key Features of the Dataset:
Comprehensive E-commerce Business Profiles
Advanced Filters for Precision Campaigns
Regional and Sector-specific Insights
AI-Driven Enrichment
Strategic Use Cases:
Marketing Campaigns and Outreach
Partnership Development and Vendor Collaboration
Market Research and Competitive Analysis
Recruitment and Talent Acquisition
Why Choose Success.ai?
Best Price Guarantee
Seamless Integration
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Internet sales in Great Britain by store type, month and year.
Revolutionize Customer Engagement with Our Comprehensive Ecommerce Data
Our Ecommerce Data is designed to elevate your customer engagement strategies, providing you with unparalleled insights and precision targeting capabilities. With over 61 million global contacts, this dataset goes beyond conventional data, offering a unique blend of shopping cart links, business emails, phone numbers, and LinkedIn profiles. This comprehensive approach ensures that your marketing strategies are not just effective but also highly personalized, enabling you to connect with your audience on a deeper level.
What Makes Our Ecommerce Data Stand Out?
Unique Features for Enhanced Targeting
Our Ecommerce Data is distinguished by its depth and precision. Unlike many other datasets, it includes shopping cart links—a rare and valuable feature that provides you with direct insights into consumer behavior and purchasing intent. This information allows you to tailor your marketing efforts with unprecedented accuracy. Additionally, the integration of business emails, phone numbers, and LinkedIn profiles adds multiple layers to traditional contact data, enriching your understanding of clients and enabling more personalized engagement.
Robust and Reliable Data Sourcing
We pride ourselves on our dual-sourcing strategy that ensures the highest levels of data accuracy and relevance:
Primary Use Cases Across Industries
Our Ecommerce Data is versatile and can be leveraged across various industries for multiple applications: - Precision Targeting in Marketing: Create personalized marketing campaigns based on detailed shopping cart activities, ensuring that your outreach resonates with individual customer preferences. - Sales Enrichment: Sales teams can benefit from enriched client profiles that include comprehensive contact information, enabling them to connect with key decision-makers more effectively. - Market Research and Analytics: Research and analytics departments can use this data for in-depth market studies and trend analyses, gaining valuable insights into consumer behavior and market dynamics.
Global Coverage for Comprehensive Engagement
Our Ecommerce Data spans across the globe, providing you with extensive reach and the ability to engage with customers in diverse regions: - North America: United States, Canada, Mexico - Europe: United Kingdom, Germany, France, Italy, Spain, Netherlands, Sweden, and more - Asia: China, Japan, India, South Korea, Singapore, Malaysia, and more - South America: Brazil, Argentina, Chile, Colombia, and more - Africa: South Africa, Nigeria, Kenya, Egypt, and more - Australia and Oceania: Australia, New Zealand - Middle East: United Arab Emirates, Saudi Arabia, Israel, Qatar, and more
Comprehensive Employee and Revenue Size Information
Our dataset also includes detailed information on: - Employee Size: Whether you’re targeting small businesses or large corporations, our data covers all employee sizes, from startups to global enterprises. - Revenue Size: Gain insights into companies across various revenue brackets, enabling you to segment the market more effectively and target your efforts where they will have the most impact.
Seamless Integration into Broader Data Offerings
Our Ecommerce Data is not just a standalone product; it is a critical piece of our broader data ecosystem. It seamlessly integrates with our comprehensive suite of business and consumer datasets, offering you a holistic approach to data-driven decision-making: - Tailored Packages: Choose customized data packages that meet your specific business needs, combining Ecommerce Data with other relevant datasets for a complete view of your market. - Holistic Insights: Whether you are looking for industry-specific details or a broader market overview, our integrated data solutions provide you with the insights necessary to stay ahead of the competition and make informed business decisions.
Elevate Your Business Decisions with Our Ecommerce Data
In essence, our Ecommerce Data is more than just a collection of contacts—it’s a strategic tool designed to give you a competitive edge in understanding and engaging your target audience. By leveraging the power of this comprehensive dataset, you can elevate your business decisions, enhance customer interactions, and navigate the digital landscape with confi...
https://brightdata.com/licensehttps://brightdata.com/license
We'll customize a Wildberries dataset to align with your unique requirements, incorporating data on product categories, customer reviews, pricing trends, popular items, demographic insights, sales figures, and other relevant metrics. Leverage our Wildberries datasets for various applications to strengthen strategic planning and market analysis. Examining these datasets enables organizations to understand consumer preferences and online shopping trends, facilitating refined product offerings and marketing campaigns. Tailor your access to the complete dataset or specific subsets according to your business needs. Popular use cases include conducting competitor analysis to understand market positioning, monitoring brand reputation through consumer feedback, and performing consumer market analysis to identify and predict emerging trends in e-commerce and online retail.
E-commerce sales and total sales for retail trade in Canada, available on an annual basis.
As of early 2023, approximately ** percent of consumers in the United States said they would prefer to shop mostly online rather than in-store, making it the country with highest online shopping preference. In contrast, more shoppers preferred visiting physical stores in countries such as Austria, Finland, and New Zealand.