100+ datasets found
  1. T

    United States Stock Market Index Data

    • tradingeconomics.com
    • ar.tradingeconomics.com
    • +12more
    csv, excel, json, xml
    Updated Dec 2, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Stock Market Index Data [Dataset]. https://tradingeconomics.com/united-states/stock-market
    Explore at:
    excel, xml, json, csvAvailable download formats
    Dataset updated
    Dec 2, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 3, 1928 - Dec 2, 2025
    Area covered
    United States
    Description

    The main stock market index of United States, the US500, rose to 6818 points on December 2, 2025, gaining 0.08% from the previous session. Over the past month, the index has declined 0.50%, though it remains 12.70% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on December of 2025.

  2. Share of Americans investing money in the stock market 1999-2025

    • statista.com
    Updated Nov 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Share of Americans investing money in the stock market 1999-2025 [Dataset]. https://www.statista.com/statistics/270034/percentage-of-us-adults-to-have-money-invested-in-the-stock-market/
    Explore at:
    Dataset updated
    Nov 19, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    1999 - 2025
    Area covered
    United States
    Description

    In 2025, ** percent of adults in the United States invested in the stock market. This figure has remained steady over the last few years and is still below the levels before the Great Recession, when it peaked in 2007 at ** percent. What is the stock market? The stock market can be defined as a group of stock exchanges where investors can buy shares in a publicly traded company. In more recent years, it is estimated an increasing number of Americans are using neobrokers, making stock trading more accessible to investors. Other investments A significant number of people think stocks and bonds are the safest investments, while others point to real estate, gold, bonds, or a savings account. Since witnessing the significant one-day losses in the stock market during the financial crisis, many investors were turning towards these alternatives in hopes for more stability, particularly for investments with longer maturities. This could explain the decrease in this statistic since 2007. Nevertheless, some speculators enjoy chasing the short-run fluctuations, and others see value in choosing particular stocks.

  3. Stock Market Dataset

    • kaggle.com
    zip
    Updated Jan 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ziya (2025). Stock Market Dataset [Dataset]. https://www.kaggle.com/datasets/ziya07/stock-market-dataset
    Explore at:
    zip(1075471 bytes)Available download formats
    Dataset updated
    Jan 25, 2025
    Authors
    Ziya
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    The "Stock Market Dataset for AI-Driven Prediction and Trading Strategy Optimization" is designed to simulate real-world stock market data for training and evaluating machine learning models. This dataset includes a combination of technical indicators, market metrics, sentiment scores, and macroeconomic factors, providing a comprehensive foundation for developing and testing AI models for stock price prediction and trading strategy optimization.

    Key Features Market Metrics:

    Open, High, Low, Close Prices: Daily stock price movement. Volume: Represents the trading activity during the day. Technical Indicators:

    RSI (Relative Strength Index): A momentum oscillator to measure the speed and change of price movements. MACD (Moving Average Convergence Divergence): An indicator to reveal changes in strength, direction, momentum, and duration of a trend. Bollinger Bands: Upper and lower bands around a stock price to measure volatility. Sentiment Analysis:

    Sentiment Score: Simulated sentiment derived from financial news and social media, ranging from -1 (negative) to 1 (positive). Macroeconomic Factors:

    GDP Growth: Indicates the overall health and growth of the economy. Inflation Rate: Reflects changes in purchasing power and economic stability. Target Variable:

    Buy/Sell Signal: Binary classification (1 = Buy, 0 = Sell) based on price movement thresholds, simulating actionable trading decisions. Use Cases AI Model Training: Ideal for building stock prediction models using LSTM, Gradient Boosting, Random Forest, etc. Trading Strategy Optimization: Enables testing of trading algorithms and strategies in a simulated environment. Sentiment Analysis Research: Useful for understanding how sentiment influences stock movements. Feature Engineering and Selection: Provides a diverse set of features for experimentation with advanced techniques like PCA and LDA. Dataset Highlights Synthetic Yet Realistic: Carefully designed to mimic real-world financial data trends and relationships. Comprehensive Coverage: Includes key indicators and metrics used by traders and analysts. Scalable: Suitable for use in both small-scale academic projects and larger AI-driven trading platforms. Accessible for All Levels: The intuitive structure ensures that even beginners can utilize this dataset for financial machine learning applications. File Format The dataset is provided in CSV format, where:

    Rows represent individual trading days. Columns represent features (technical indicators, market metrics, etc.) and the target variable. Acknowledgments This dataset is synthetically generated and is intended for research and educational purposes. It is not based on real market data and should not be used for actual trading.

  4. Stock Prices Dataset

    • brightdata.com
    .json, .csv, .xlsx
    Updated Dec 2, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2024). Stock Prices Dataset [Dataset]. https://brightdata.com/products/datasets/financial/stock-price
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset updated
    Dec 2, 2024
    Dataset authored and provided by
    Bright Datahttps://brightdata.com/
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide
    Description

    Use our Stock prices dataset to access comprehensive financial and corporate data, including company profiles, stock prices, market capitalization, revenue, and key performance metrics. This dataset is tailored for financial analysts, investors, and researchers to analyze market trends and evaluate company performance.

    Popular use cases include investment research, competitor benchmarking, and trend forecasting. Leverage this dataset to make informed financial decisions, identify growth opportunities, and gain a deeper understanding of the business landscape. The dataset includes all major data points: company name, company ID, summary, stock ticker, earnings date, closing price, previous close, opening price, and much more.

  5. Stock market statistics, Canada and United States, Bank of Canada

    • open.canada.ca
    • www150.statcan.gc.ca
    • +2more
    csv, html, xml
    Updated Jan 17, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2023). Stock market statistics, Canada and United States, Bank of Canada [Dataset]. https://open.canada.ca/data/en/dataset/e037b4dd-4c13-4cc2-b8c4-0262083dbbd0
    Explore at:
    csv, xml, htmlAvailable download formats
    Dataset updated
    Jan 17, 2023
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Area covered
    Canada, United States
    Description

    This table contains 14 series, with data starting from 1953 (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Geography (1 items: Canada ...), Stock market statistics (14 items: Toronto Stock Exchange; value of shares traded; United States common stocks; Dow-Jones industrials; high; United States common stocks; Dow-Jones industrials; low; Toronto Stock Exchange; volume of shares traded ...).

  6. Human Labeled OHLCV Stock Market Data

    • kaggle.com
    zip
    Updated Mar 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Barathan Aslan (2025). Human Labeled OHLCV Stock Market Data [Dataset]. https://www.kaggle.com/datasets/barathanaslan/human-labeled-synthetic-stock-market-data
    Explore at:
    zip(9914465 bytes)Available download formats
    Dataset updated
    Mar 26, 2025
    Authors
    Barathan Aslan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Context

    This dataset provides synthetically generated financial time series data, presented as OHLCV (Open-High-Low-Close-Volume) candlestick charts. A key feature of this dataset is the inclusion of technical analysis annotations (labels) meticulously created by a human analyst for each chart.

    The primary goal is to offer a resource for training and evaluating machine learning models focused on automated technical analysis and chart pattern recognition. By providing synthetic data with high-quality human labels, this dataset aims to facilitate research and development in areas like algorithmic trading and financial visualization analysis.

    This is an evolving dataset. It represents the initial phase of a larger labeling effort, and future updates are planned to incorporate a greater number and variety of labeled chart patterns.

    Content

    The dataset is provided entirely as a collection of JSON files. Each file represents a single 300-candle chart window and contains:

    1. metadata: Contains basic information related to the generation of the file (e.g., generation timestamp, version).
    2. ohlcv_data: A sequence of 300 data points. Each point is a dictionary representing one time candle and includes:
      • time: Timestamp string (ISO 8601 format). Note: These timestamps maintain realistic intra-day time progression (hours, minutes), but the specific dates (Day, Month, Year) are entirely synthetic and do not align with real-world calendar dates.
      • open, high, low, close: Numerical values representing the candle's price range. Note: These values are synthetic and are not tied to any real financial instrument's price.
      • volume: A numerical value representing activity during the candle's period. Note: This is also a synthetic value.
    3. labels: A dictionary containing the human-provided technical analysis annotations for the corresponding chart window:
      • horizontal_lines: A list of structures, each containing a price key. These typically denote significant horizontal levels identified by the labeler, such as support or resistance.
      • ray_lines: A list of structures, each defining a line segment via start_date, start_price, end_date, and end_price. These are used to represent patterns like trendlines, channel boundaries, or other linear formations observed by the labeler.

    Data Generation Approach

    The dataset features synthetically generated candlestick patterns. The generation process focuses on creating structurally plausible chart sequences. Human analysts then carefully review these sequences and apply relevant technical analysis labels (support, resistance, trendlines).

    While the patterns may resemble those seen in financial markets, the underlying numerical data (price, volume, and the associated timestamps) is artificial and intentionally detached from any real-world financial data. Users should focus on the relative structure of the candles and the associated human-provided labels, rather than interpreting the absolute values as representative of any specific market or time.

    Acknowledgements

    This dataset is made possible through ongoing human labeling efforts and custom data generation software.

    Inspiration

    • Train models (e.g., CNNs, Transformers) to recognize support/resistance levels and trendlines directly from chart data.
    • Develop and benchmark algorithms for automated technical analysis pattern detection.
    • Use as a basis for generating further augmented chart data for ML training.
    • Explore novel approaches to financial time series analysis using labeled, synthetic data.
  7. Global stock market capitalization 2025, by sector

    • statista.com
    Updated May 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Global stock market capitalization 2025, by sector [Dataset]. https://www.statista.com/statistics/1611751/global-stock-market-value-by-sector/
    Explore at:
    Dataset updated
    May 13, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2025
    Area covered
    Worldwide
    Description

    As of early 2025, companies in the information technology sector made up ** percent of the total market capitalization of all stock exchanges worldwide. Tech companies worldwide had a combined market capitalization of approximately ** trillion U.S. dollars. The second largest sector on stock markets worldwide was the financial services industry, with a market cap of ** trillion U.S. dollars, followed by the industrials sector with ** trillion U.S. dollars. On the other hand, real estate and utilities were the least represented sectors on stock markets worldwide.

  8. Stock Market Data North America ( End of Day Pricing dataset )

    • datarade.ai
    Updated Aug 24, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Techsalerator (2023). Stock Market Data North America ( End of Day Pricing dataset ) [Dataset]. https://datarade.ai/data-products/stock-market-data-north-america-end-of-day-pricing-dataset-techsalerator
    Explore at:
    .json, .csv, .xls, .txtAvailable download formats
    Dataset updated
    Aug 24, 2023
    Dataset provided by
    Techsalerator LLC
    Authors
    Techsalerator
    Area covered
    El Salvador, Bermuda, Honduras, Belize, United States of America, Mexico, Panama, Guatemala, Saint Pierre and Miquelon, Greenland, North America
    Description

    End-of-day prices refer to the closing prices of various financial instruments, such as equities (stocks), bonds, and indices, at the end of a trading session on a particular trading day. These prices are crucial pieces of market data used by investors, traders, and financial institutions to track the performance and value of these assets over time. The Techsalerator closing prices dataset is considered the most up-to-date, standardized valuation of a security trading commences again on the next trading day. This data is used for portfolio valuation, index calculation, technical analysis and benchmarking throughout the financial industry. The End-of-Day Pricing service covers equities, equity derivative bonds, and indices listed on 170 markets worldwide.

  9. G

    Toronto Stock Exchange statistics

    • open.canada.ca
    • www150.statcan.gc.ca
    • +2more
    csv, html, xml
    Updated Nov 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2023). Toronto Stock Exchange statistics [Dataset]. https://open.canada.ca/data/en/dataset/0e1e57aa-e664-41b5-a69f-d814d4407d62
    Explore at:
    csv, html, xmlAvailable download formats
    Dataset updated
    Nov 8, 2023
    Dataset provided by
    Statistics Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    This table contains 25 series, with data for years 1956 - present (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Geography (1 items: Canada ...), Toronto Stock Exchange Statistics (25 items: Standard and Poor's/Toronto Stock Exchange Composite Index; high; Standard and Poor's/Toronto Stock Exchange Composite Index; close; Toronto Stock Exchange; oil and gas; closing quotations; Standard and Poor's/Toronto Stock Exchange Composite Index; low ...).

  10. Stock Market Data Europe ( End of Day Pricing dataset )

    • datarade.ai
    Updated Aug 24, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Techsalerator (2023). Stock Market Data Europe ( End of Day Pricing dataset ) [Dataset]. https://datarade.ai/data-products/stock-market-data-europe-end-of-day-pricing-dataset-techsalerator
    Explore at:
    .json, .csv, .xls, .txtAvailable download formats
    Dataset updated
    Aug 24, 2023
    Dataset provided by
    Techsalerator LLC
    Authors
    Techsalerator
    Area covered
    Slovenia, Andorra, Latvia, Croatia, Lithuania, Belgium, Italy, Denmark, Finland, Switzerland, Europe
    Description

    End-of-day prices refer to the closing prices of various financial instruments, such as equities (stocks), bonds, and indices, at the end of a trading session on a particular trading day. These prices are crucial pieces of market data used by investors, traders, and financial institutions to track the performance and value of these assets over time. The Techsalerator closing prices dataset is considered the most up-to-date, standardized valuation of a security trading commences again on the next trading day. This data is used for portfolio valuation, index calculation, technical analysis and benchmarking throughout the financial industry. The End-of-Day Pricing service covers equities, equity derivative bonds, and indices listed on 170 markets worldwide.

  11. F

    Index of Common Stock Prices, New York Stock Exchange for United States

    • fred.stlouisfed.org
    json
    Updated Aug 15, 2012
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2012). Index of Common Stock Prices, New York Stock Exchange for United States [Dataset]. https://fred.stlouisfed.org/series/M11007USM322NNBR
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Aug 15, 2012
    License

    https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required

    Area covered
    New York, United States
    Description

    Graph and download economic data for Index of Common Stock Prices, New York Stock Exchange for United States (M11007USM322NNBR) from Jan 1902 to May 1923 about New York, stock market, indexes, and USA.

  12. Reddit: /r/stocks

    • kaggle.com
    zip
    Updated Dec 19, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2022). Reddit: /r/stocks [Dataset]. https://www.kaggle.com/datasets/thedevastator/unlocking-stock-market-insights-with-reddit-user
    Explore at:
    zip(622416 bytes)Available download formats
    Dataset updated
    Dec 19, 2022
    Authors
    The Devastator
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Reddit: /r/stocks

    Analyzing User Engagement to Identify Market Trends

    By Reddit [source]

    About this dataset

    This dataset provides a valuable opportunity for researchers to explore the fascinating world of stock exchange markets through the eyes of those participating in discussions on Reddit. We have compiled posts from the subredditstocks subreddit to provide researchers with an invaluable source of information on how stock market trends may be impacted by user sentiment. With detailed data columns such as post titles, scores, id's, URLs, comments counts and created times for each post we are offering a unique vantage point into understanding how stocks market discussions may inform our better understanding of these dynamics. By delving further into user sentiment and engagement with stock topics, investigators can put together meaningful pieces in assembling full-fledged investments picture that is based off sound evidence gained from real people’s experiences and opinion. Discovering new insights has never been made easier – let’s venture out on this journey together!

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨! ### Research Ideas
    • Using the score and comments data, researchers can determine which stocks are being discussed and tracked the most, indicating potential areas of interest in the stock market.
    • Analyzing the body text of posts to identify common topics of conversation related to various stocks assists in providing a better understanding of users' feelings towards different stock investments.
    • Through analyzing fluctuations in user engagement over time, researchers can observe which stocks have experienced an increase or decrease in user interest and reaction to new developments within different markets

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    License: CC0 1.0 Universal (CC0 1.0) - Public Domain Dedication No Copyright - You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission. See Other Information.

    Columns

    File: stocks.csv | Column name | Description | |:--------------|:--------------------------------------------------------------------| | title | The title of the post. (String) | | score | The score of the post, based on the Reddit voting system. (Integer) | | url | The URL of the post. (String) | | comms_num | The number of comments on the post. (Integer) | | created | The date and time the post was created. (Timestamp) | | body | The body text of the post. (String) | | timestamp | The date and time the post was last updated. (Timestamp) |

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. If you use this dataset in your research, please credit Reddit.

  13. T

    France Stock Market Index (FR40) Data

    • tradingeconomics.com
    • pl.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Dec 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). France Stock Market Index (FR40) Data [Dataset]. https://tradingeconomics.com/france/stock-market
    Explore at:
    json, xml, csv, excelAvailable download formats
    Dataset updated
    Dec 2, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jul 9, 1987 - Dec 2, 2025
    Area covered
    France
    Description

    France's main stock market index, the FR40, rose to 8121 points on December 2, 2025, gaining 0.29% from the previous session. Over the past month, the index has climbed 0.13% and is up 11.93% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from France. France Stock Market Index (FR40) - values, historical data, forecasts and news - updated on December of 2025.

  14. Google Stock Price Data (2020-2025) | GOOGL

    • kaggle.com
    zip
    Updated Feb 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    M. Zohaib Zeeshan (2025). Google Stock Price Data (2020-2025) | GOOGL [Dataset]. https://www.kaggle.com/datasets/mzohaibzeeshan/google-stock-price-data-2020-2025-googl
    Explore at:
    zip(36400 bytes)Available download formats
    Dataset updated
    Feb 16, 2025
    Authors
    M. Zohaib Zeeshan
    Description

    About Dataset:

    This dataset includes the daily historical stock prices for Google (GOOGL) spanning from 2020 to 2025. It features essential financial metrics such as opening and closing prices, daily highs and lows, adjusted close prices, and trading volumes. The information offers valuable insights into the stock's performance over a five-year timeframe.

    Column Descriptions:

    • Price: Date of the stock data (needs cleaning as the first two rows are headers).
    • Adj Close: Adjusted closing price, accounting for events like dividends and splits.
    • Close: Closing price of the stock at the end of the trading day.
    • High: Highest price of the stock during the trading day.
    • Low: Lowest price of the stock during the trading day.
    • Open: Opening price of the stock at the start of the trading day.
    • Volume: Number of shares traded during the day.

    What Can You Achieve and Apply on This Data:

    • Time Series Analysis: Examine trends and patterns over time.
    • Stock Price Prediction: Use machine learning models to forecast future prices.
    • Volatility Analysis: Measure the stock's price fluctuations.
    • Technical Analysis: Calculate indicators like moving averages, RSI, and MACD.
    • Correlation Analysis: Investigate the relationship between volume and price changes.
    • Investment Strategy Backtesting: Test trading strategies like moving average crossovers.

    Note: 1. This data is scraped from Yahoo Finance by me using python code. 2. Some of the About Data is generated from AI, but verified from me.

  15. Can we predict stock market using machine learning? (FZO Stock Forecast)...

    • kappasignal.com
    Updated Nov 21, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). Can we predict stock market using machine learning? (FZO Stock Forecast) (Forecast) [Dataset]. https://www.kappasignal.com/2022/11/can-we-predict-stock-market-using_20.html
    Explore at:
    Dataset updated
    Nov 21, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Can we predict stock market using machine learning? (FZO Stock Forecast)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  16. Stock Market Dataset

    • kaggle.com
    zip
    Updated Apr 2, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Oleh Onyshchak (2020). Stock Market Dataset [Dataset]. http://doi.org/10.34740/kaggle/dsv/1054465
    Explore at:
    zip(547714524 bytes)Available download formats
    Dataset updated
    Apr 2, 2020
    Authors
    Oleh Onyshchak
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Overview

    This dataset contains historical daily prices for all tickers currently trading on NASDAQ. The up to date list is available from nasdaqtrader.com. The historic data is retrieved from Yahoo finance via yfinance python package.

    It contains prices for up to 01 of April 2020. If you need more up to date data, just fork and re-run data collection script also available from Kaggle.

    Data Structure

    The date for every symbol is saved in CSV format with common fields:

    • Date - specifies trading date
    • Open - opening price
    • High - maximum price during the day
    • Low - minimum price during the day
    • Close - close price adjusted for splits
    • Adj Close - adjusted close price adjusted for both dividends and splits.
    • Volume - the number of shares that changed hands during a given day

    All that ticker data is then stored in either ETFs or stocks folder, depending on a type. Moreover, each filename is the corresponding ticker symbol. At last, symbols_valid_meta.csv contains some additional metadata for each ticker such as full name.

  17. Monthly development Dow Jones Industrial Average Index 2018-2025

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Monthly development Dow Jones Industrial Average Index 2018-2025 [Dataset]. https://www.statista.com/statistics/261690/monthly-performance-of-djia-index/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2018 - Jun 2025
    Area covered
    United States
    Description

    The value of the DJIA index amounted to ****** at the end of June 2025, up from ********* at the end of March 2020. Global panic about the coronavirus epidemic caused the drop in March 2020, which was the worst drop since the collapse of Lehman Brothers in 2008. Dow Jones Industrial Average index – additional information The Dow Jones Industrial Average index is a price-weighted average of 30 of the largest American publicly traded companies on New York Stock Exchange and NASDAQ, and includes companies like Goldman Sachs, IBM and Walt Disney. This index is considered to be a barometer of the state of the American economy. DJIA index was created in 1986 by Charles Dow. Along with the NASDAQ 100 and S&P 500 indices, it is amongst the most well-known and used stock indexes in the world. The year that the 2018 financial crisis unfolded was one of the worst years of the Dow. It was also in 2008 that some of the largest ever recorded losses of the Dow Jones Index based on single-day points were registered. On September 29, 2008, for instance, the Dow had a loss of ****** points, one of the largest single-day losses of all times. The best years in the history of the index still are 1915, when the index value increased by ***** percent in one year, and 1933, year when the index registered a growth of ***** percent.

  18. F

    S&P 500

    • fred.stlouisfed.org
    json
    Updated Dec 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). S&P 500 [Dataset]. https://fred.stlouisfed.org/series/SP500
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Dec 1, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval

    Description

    View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.

  19. Weekly development Dow Jones Industrial Average Index 2020-2025

    • statista.com
    Updated Mar 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Weekly development Dow Jones Industrial Average Index 2020-2025 [Dataset]. https://www.statista.com/statistics/1104278/weekly-performance-of-djia-index/
    Explore at:
    Dataset updated
    Mar 15, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 1, 2020 - Mar 2, 2025
    Area covered
    United States
    Description

    The Dow Jones Industrial Average (DJIA) index dropped around ***** points in the four weeks from February 12 to March 11, 2020, but has since recovered and peaked at ********* points as of November 24, 2024. In February 2020 - just prior to the global coronavirus (COVID-19) pandemic, the DJIA index stood at a little over ****** points. U.S. markets suffer as virus spreads The COVID-19 pandemic triggered a turbulent period for stock markets – the S&P 500 and Nasdaq Composite also recorded dramatic drops. At the start of February, some analysts remained optimistic that the outbreak would ease. However, the increased spread of the virus started to hit investor confidence, prompting a record plunge in the stock markets. The Dow dropped by more than ***** points in the week from February 21 to February 28, which was a fall of **** percent – its worst percentage loss in a week since October 2008. Stock markets offer valuable economic insights The Dow Jones Industrial Average is a stock market index that monitors the share prices of the 30 largest companies in the United States. By studying the performance of the listed companies, analysts can gauge the strength of the domestic economy. If investors are confident in a company’s future, they will buy its stocks. The uncertainty of the coronavirus sparked fears of an economic crisis, and many traders decided that investment during the pandemic was too risky.

  20. U

    United States US: Stocks Traded: Total Value

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2023). United States US: Stocks Traded: Total Value [Dataset]. https://www.ceicdata.com/en/united-states/financial-sector/us-stocks-traded-total-value
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2006 - Dec 1, 2017
    Area covered
    United States
    Variables measured
    Turnover
    Description

    United States US: Stocks Traded: Total Value data was reported at 39,785.881 USD bn in 2017. This records a decrease from the previous number of 42,071.330 USD bn for 2016. United States US: Stocks Traded: Total Value data is updated yearly, averaging 17,934.293 USD bn from Dec 1984 (Median) to 2017, with 34 observations. The data reached an all-time high of 47,245.496 USD bn in 2008 and a record low of 1,108.421 USD bn in 1984. United States US: Stocks Traded: Total Value data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Financial Sector. The value of shares traded is the total number of shares traded, both domestic and foreign, multiplied by their respective matching prices. Figures are single counted (only one side of the transaction is considered). Companies admitted to listing and admitted to trading are included in the data. Data are end of year values converted to U.S. dollars using corresponding year-end foreign exchange rates.; ; World Federation of Exchanges database.; Sum; Stock market data were previously sourced from Standard & Poor's until they discontinued their 'Global Stock Markets Factbook' and database in April 2013. Time series have been replaced in December 2015 with data from the World Federation of Exchanges and may differ from the previous S&P definitions and methodology.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
TRADING ECONOMICS (2025). United States Stock Market Index Data [Dataset]. https://tradingeconomics.com/united-states/stock-market

United States Stock Market Index Data

United States Stock Market Index - Historical Dataset (1928-01-03/2025-12-02)

Explore at:
21 scholarly articles cite this dataset (View in Google Scholar)
excel, xml, json, csvAvailable download formats
Dataset updated
Dec 2, 2025
Dataset authored and provided by
TRADING ECONOMICS
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
Jan 3, 1928 - Dec 2, 2025
Area covered
United States
Description

The main stock market index of United States, the US500, rose to 6818 points on December 2, 2025, gaining 0.08% from the previous session. Over the past month, the index has declined 0.50%, though it remains 12.70% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on December of 2025.

Search
Clear search
Close search
Google apps
Main menu