52 datasets found
  1. Statistical Function in Excel

    • kaggle.com
    zip
    Updated Feb 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sanjana Murthy (2024). Statistical Function in Excel [Dataset]. https://www.kaggle.com/datasets/sanjanamurthy392/statistical-function
    Explore at:
    zip(1412940 bytes)Available download formats
    Dataset updated
    Feb 7, 2024
    Authors
    Sanjana Murthy
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    This data contains functions like: Sum, Average, Max, Min, Sumif, Sumifs, Count, Countblank, Countifs, Counta, Averageif, Averageifs.

  2. Data from: Excel Templates: A Helpful Tool for Teaching Statistics

    • tandf.figshare.com
    zip
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alejandro Quintela-del-Río; Mario Francisco-Fernández (2023). Excel Templates: A Helpful Tool for Teaching Statistics [Dataset]. http://doi.org/10.6084/m9.figshare.3408052.v2
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Taylor & Francishttps://taylorandfrancis.com/
    Authors
    Alejandro Quintela-del-Río; Mario Francisco-Fernández
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This article describes a free, open-source collection of templates for the popular Excel (2013, and later versions) spreadsheet program. These templates are spreadsheet files that allow easy and intuitive learning and the implementation of practical examples concerning descriptive statistics, random variables, confidence intervals, and hypothesis testing. Although they are designed to be used with Excel, they can also be employed with other free spreadsheet programs (changing some particular formulas). Moreover, we exploit some possibilities of the ActiveX controls of the Excel Developer Menu to perform interactive Gaussian density charts. Finally, it is important to note that they can be often embedded in a web page, so it is not necessary to employ Excel software for their use. These templates have been designed as a useful tool to teach basic statistics and to carry out data analysis even when the students are not familiar with Excel. Additionally, they can be used as a complement to other analytical software packages. They aim to assist students in learning statistics, within an intuitive working environment. Supplementary materials with the Excel templates are available online.

  3. Sorting/selecting data in Excel with VLOOKUP()

    • figshare.com
    xlsx
    Updated Jan 18, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anneke Batenburg (2016). Sorting/selecting data in Excel with VLOOKUP() [Dataset]. http://doi.org/10.6084/m9.figshare.964802.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jan 18, 2016
    Dataset provided by
    Figsharehttp://figshare.com/
    figshare
    Authors
    Anneke Batenburg
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Example of how I use MS Excel's VLOOKUP() function to filter my data.

  4. m

    Dataset of development of business during the COVID-19 crisis

    • data.mendeley.com
    • narcis.nl
    Updated Nov 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tatiana N. Litvinova (2020). Dataset of development of business during the COVID-19 crisis [Dataset]. http://doi.org/10.17632/9vvrd34f8t.1
    Explore at:
    Dataset updated
    Nov 9, 2020
    Authors
    Tatiana N. Litvinova
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    To create the dataset, the top 10 countries leading in the incidence of COVID-19 in the world were selected as of October 22, 2020 (on the eve of the second full of pandemics), which are presented in the Global 500 ranking for 2020: USA, India, Brazil, Russia, Spain, France and Mexico. For each of these countries, no more than 10 of the largest transnational corporations included in the Global 500 rating for 2020 and 2019 were selected separately. The arithmetic averages were calculated and the change (increase) in indicators such as profitability and profitability of enterprises, their ranking position (competitiveness), asset value and number of employees. The arithmetic mean values of these indicators for all countries of the sample were found, characterizing the situation in international entrepreneurship as a whole in the context of the COVID-19 crisis in 2020 on the eve of the second wave of the pandemic. The data is collected in a general Microsoft Excel table. Dataset is a unique database that combines COVID-19 statistics and entrepreneurship statistics. The dataset is flexible data that can be supplemented with data from other countries and newer statistics on the COVID-19 pandemic. Due to the fact that the data in the dataset are not ready-made numbers, but formulas, when adding and / or changing the values in the original table at the beginning of the dataset, most of the subsequent tables will be automatically recalculated and the graphs will be updated. This allows the dataset to be used not just as an array of data, but as an analytical tool for automating scientific research on the impact of the COVID-19 pandemic and crisis on international entrepreneurship. The dataset includes not only tabular data, but also charts that provide data visualization. The dataset contains not only actual, but also forecast data on morbidity and mortality from COVID-19 for the period of the second wave of the pandemic in 2020. The forecasts are presented in the form of a normal distribution of predicted values and the probability of their occurrence in practice. This allows for a broad scenario analysis of the impact of the COVID-19 pandemic and crisis on international entrepreneurship, substituting various predicted morbidity and mortality rates in risk assessment tables and obtaining automatically calculated consequences (changes) on the characteristics of international entrepreneurship. It is also possible to substitute the actual values identified in the process and following the results of the second wave of the pandemic to check the reliability of pre-made forecasts and conduct a plan-fact analysis. The dataset contains not only the numerical values of the initial and predicted values of the set of studied indicators, but also their qualitative interpretation, reflecting the presence and level of risks of a pandemic and COVID-19 crisis for international entrepreneurship.

  5. Extended 1.0 Dataset of "Concentration and Geospatial Modelling of Health...

    • zenodo.org
    bin, csv, pdf
    Updated Sep 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Peter Domjan; Peter Domjan; Viola Angyal; Viola Angyal; Istvan Vingender; Istvan Vingender (2024). Extended 1.0 Dataset of "Concentration and Geospatial Modelling of Health Development Offices' Accessibility for the Total and Elderly Populations in Hungary" [Dataset]. http://doi.org/10.5281/zenodo.13826993
    Explore at:
    bin, pdf, csvAvailable download formats
    Dataset updated
    Sep 23, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Peter Domjan; Peter Domjan; Viola Angyal; Viola Angyal; Istvan Vingender; Istvan Vingender
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Sep 23, 2024
    Area covered
    Hungary
    Description

    Introduction

    We are enclosing the database used in our research titled "Concentration and Geospatial Modelling of Health Development Offices' Accessibility for the Total and Elderly Populations in Hungary", along with our statistical calculations. For the sake of reproducibility, further information can be found in the file Short_Description_of_Data_Analysis.pdf and Statistical_formulas.pdf

    The sharing of data is part of our aim to strengthen the base of our scientific research. As of March 7, 2024, the detailed submission and analysis of our research findings to a scientific journal has not yet been completed.

    The dataset was expanded on 23rd September 2024 to include SPSS statistical analysis data, a heatmap, and buffer zone analysis around the Health Development Offices (HDOs) created in QGIS software.

    Short Description of Data Analysis and Attached Files (datasets):

    Our research utilised data from 2022, serving as the basis for statistical standardisation. The 2022 Hungarian census provided an objective basis for our analysis, with age group data available at the county level from the Hungarian Central Statistical Office (KSH) website. The 2022 demographic data provided an accurate picture compared to the data available from the 2023 microcensus. The used calculation is based on our standardisation of the 2022 data. For xlsx files, we used MS Excel 2019 (version: 1808, build: 10406.20006) with the SOLVER add-in.

    Hungarian Central Statistical Office served as the data source for population by age group, county, and regions: https://www.ksh.hu/stadat_files/nep/hu/nep0035.html, (accessed 04 Jan. 2024.) with data recorded in MS Excel in the Data_of_demography.xlsx file.

    In 2022, 108 Health Development Offices (HDOs) were operational, and it's noteworthy that no developments have occurred in this area since 2022. The availability of these offices and the demographic data from the Central Statistical Office in Hungary are considered public interest data, freely usable for research purposes without requiring permission.

    The contact details for the Health Development Offices were sourced from the following page (Hungarian National Population Centre (NNK)): https://www.nnk.gov.hu/index.php/efi (n=107). The Semmelweis University Health Development Centre was not listed by NNK, hence it was separately recorded as the 108th HDO. More information about the office can be found here: https://semmelweis.hu/egeszsegfejlesztes/en/ (n=1). (accessed 05 Dec. 2023.)

    Geocoordinates were determined using Google Maps (N=108): https://www.google.com/maps. (accessed 02 Jan. 2024.) Recording of geocoordinates (latitude and longitude according to WGS 84 standard), address data (postal code, town name, street, and house number), and the name of each HDO was carried out in the: Geo_coordinates_and_names_of_Hungarian_Health_Development_Offices.csv file.

    The foundational software for geospatial modelling and display (QGIS 3.34), an open-source software, can be downloaded from:

    https://qgis.org/en/site/forusers/download.html. (accessed 04 Jan. 2024.)

    The HDOs_GeoCoordinates.gpkg QGIS project file contains Hungary's administrative map and the recorded addresses of the HDOs from the

    Geo_coordinates_and_names_of_Hungarian_Health_Development_Offices.csv file,

    imported via .csv file.

    The OpenStreetMap tileset is directly accessible from www.openstreetmap.org in QGIS. (accessed 04 Jan. 2024.)

    The Hungarian county administrative boundaries were downloaded from the following website: https://data2.openstreetmap.hu/hatarok/index.php?admin=6 (accessed 04 Jan. 2024.)

    HDO_Buffers.gpkg is a QGIS project file that includes the administrative map of Hungary, the county boundaries, as well as the HDO offices and their corresponding buffer zones with a radius of 7.5 km.

    Heatmap.gpkg is a QGIS project file that includes the administrative map of Hungary, the county boundaries, as well as the HDO offices and their corresponding heatmap (Kernel Density Estimation).

    A brief description of the statistical formulas applied is included in the Statistical_formulas.pdf.

    Recording of our base data for statistical concentration and diversification measurement was done using MS Excel 2019 (version: 1808, build: 10406.20006) in .xlsx format.

    • Aggregated number of HDOs by county: Number_of_HDOs.xlsx
    • Standardised data (Number of HDOs per 100,000 residents): Standardized_data.xlsx
    • Calculation of the Lorenz curve: Lorenz_curve.xlsx
    • Calculation of the Gini index: Gini_Index.xlsx
    • Calculation of the LQ index: LQ_Index.xlsx
    • Calculation of the Herfindahl-Hirschman Index: Herfindahl_Hirschman_Index.xlsx
    • Calculation of the Entropy index: Entropy_Index.xlsx
    • Regression and correlation analysis calculation: Regression_correlation.xlsx

    Using the SPSS 29.0.1.0 program, we performed the following statistical calculations with the databases Data_HDOs_population_without_outliers.sav and Data_HDOs_population.sav:

    • Regression curve estimation with elderly population and number of HDOs, excluding outlier values (Types of analyzed equations: Linear, Logarithmic, Inverse, Quadratic, Cubic, Compound, Power, S, Growth, Exponential, Logistic, with summary and ANOVA analysis table): Curve_estimation_elderly_without_outlier.spv
    • Pearson correlation table between the total population, elderly population, and number of HDOs per county, excluding outlier values such as Budapest and Pest County: Pearson_Correlation_populations_HDOs_number_without_outliers.spv.
    • Dot diagram including total population and number of HDOs per county, excluding outlier values such as Budapest and Pest Counties: Dot_HDO_total_population_without_outliers.spv.
    • Dot diagram including elderly (64<) population and number of HDOs per county, excluding outlier values such as Budapest and Pest Counties: Dot_HDO_elderly_population_without_outliers.spv
    • Regression curve estimation with total population and number of HDOs, excluding outlier values (Types of analyzed equations: Linear, Logarithmic, Inverse, Quadratic, Cubic, Compound, Power, S, Growth, Exponential, Logistic, with summary and ANOVA analysis table): Curve_estimation_without_outlier.spv
    • Dot diagram including elderly (64<) population and number of HDOs per county: Dot_HDO_elderly_population.spv
    • Dot diagram including total population and number of HDOs per county: Dot_HDO_total_population.spv
    • Pearson correlation table between the total population, elderly population, and number of HDOs per county: Pearson_Correlation_populations_HDOs_number.spv
    • Regression curve estimation with total population and number of HDOs, (Types of analyzed equations: Linear, Logarithmic, Inverse, Quadratic, Cubic, Compound, Power, S, Growth, Exponential, Logistic, with summary and ANOVA analysis table): Curve_estimation_total_population.spv

    For easier readability, the files have been provided in both SPV and PDF formats.

    The translation of these supplementary files into English was completed on 23rd Sept. 2024.

    If you have any further questions regarding the dataset, please contact the corresponding author: domjan.peter@phd.semmelweis.hu

  6. Formula 1 Stats 1998-2021

    • kaggle.com
    zip
    Updated Jan 21, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nick Peterselie (2022). Formula 1 Stats 1998-2021 [Dataset]. https://www.kaggle.com/datasets/nickpeterselie/formula-1-stats-19982021
    Explore at:
    zip(67314 bytes)Available download formats
    Dataset updated
    Jan 21, 2022
    Authors
    Nick Peterselie
    Description

    An excel file containing the following on the seasons 1998 to 2021: -Personal stats of drivers (championship finishes, wins/season, total wins, podiums, points, fastest laps and pole positions) -Championship stats (drivers and teams, with colours, and their championship positions at the end of each season) -Table with the wins per circuit per year (also with colours) and the wins per team per year

    This dataset was mainly made for fun / nice looking visualization so first open it in excel to see the colours as well. If you want to use it for more complex purposes, I would recommend to do some data-prepping

  7. m

    Raw data outputs 1-18

    • bridges.monash.edu
    • researchdata.edu.au
    xlsx
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abbas Salavaty Hosein Abadi; Sara Alaei; Mirana Ramialison; Peter Currie (2023). Raw data outputs 1-18 [Dataset]. http://doi.org/10.26180/21259491.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Monash University
    Authors
    Abbas Salavaty Hosein Abadi; Sara Alaei; Mirana Ramialison; Peter Currie
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Raw data outputs 1-18 Raw data output 1. Differentially expressed genes in AML CSCs compared with GTCs as well as in TCGA AML cancer samples compared with normal ones. This data was generated based on the results of AML microarray and TCGA data analysis. Raw data output 2. Commonly and uniquely differentially expressed genes in AML CSC/GTC microarray and TCGA bulk RNA-seq datasets. This data was generated based on the results of AML microarray and TCGA data analysis. Raw data output 3. Common differentially expressed genes between training and test set samples the microarray dataset. This data was generated based on the results of AML microarray data analysis. Raw data output 4. Detailed information on the samples of the breast cancer microarray dataset (GSE52327) used in this study. Raw data output 5. Differentially expressed genes in breast CSCs compared with GTCs as well as in TCGA BRCA cancer samples compared with normal ones. Raw data output 6. Commonly and uniquely differentially expressed genes in breast cancer CSC/GTC microarray and TCGA BRCA bulk RNA-seq datasets. This data was generated based on the results of breast cancer microarray and TCGA BRCA data analysis. CSC, and GTC are abbreviations of cancer stem cell, and general tumor cell, respectively. Raw data output 7. Differential and common co-expression and protein-protein interaction of genes between CSC and GTC samples. This data was generated based on the results of AML microarray and STRING database-based protein-protein interaction data analysis. CSC, and GTC are abbreviations of cancer stem cell, and general tumor cell, respectively. Raw data output 8. Differentially expressed genes between AML dormant and active CSCs. This data was generated based on the results of AML scRNA-seq data analysis. Raw data output 9. Uniquely expressed genes in dormant or active AML CSCs. This data was generated based on the results of AML scRNA-seq data analysis. Raw data output 10. Intersections between the targeting transcription factors of AML key CSC genes and differentially expressed genes between AML CSCs vs GTCs and between dormant and active AML CSCs or the uniquely expressed genes in either class of CSCs. Raw data output 11. Targeting desirableness score of AML key CSC genes and their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 12. CSC-specific targeting desirableness score of AML key CSC genes and their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 13. The protein-protein interactions between AML key CSC genes with themselves and their targeting transcription factors. This data was generated based on the results of AML microarray and STRING database-based protein-protein interaction data analysis. Raw data output 14. The previously confirmed associations of genes having the highest targeting desirableness and CSC-specific targeting desirableness scores with AML or other cancers’ (stem) cells as well as hematopoietic stem cells. These data were generated based on a PubMed database-based literature mining. Raw data output 15. Drug score of available drugs and bioactive small molecules targeting AML key CSC genes and/or their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 16. CSC-specific drug score of available drugs and bioactive small molecules targeting AML key CSC genes and/or their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 17. Candidate drugs for experimental validation. These drugs were selected based on their respective (CSC-specific) drug scores. CSC is the abbreviation of cancer stem cell. Raw data output 18. Detailed information on the samples of the AML microarray dataset GSE30375 used in this study.

  8. Coffee Shop Sales Analysis

    • kaggle.com
    Updated Apr 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Monis Amir (2024). Coffee Shop Sales Analysis [Dataset]. https://www.kaggle.com/datasets/monisamir/coffee-shop-sales-analysis
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 25, 2024
    Dataset provided by
    Kaggle
    Authors
    Monis Amir
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Analyzing Coffee Shop Sales: Excel Insights 📈

    In my first Data Analytics Project, I Discover the secrets of a fictional coffee shop's success with my data-driven analysis. By Analyzing a 5-sheet Excel dataset, I've uncovered valuable sales trends, customer preferences, and insights that can guide future business decisions. 📊☕

    DATA CLEANING 🧹

    • REMOVED DUPLICATES OR IRRELEVANT ENTRIES: Thoroughly eliminated duplicate records and irrelevant data to refine the dataset for analysis.

    • FIXED STRUCTURAL ERRORS: Rectified any inconsistencies or structural issues within the data to ensure uniformity and accuracy.

    • CHECKED FOR DATA CONSISTENCY: Verified the integrity and coherence of the dataset by identifying and resolving any inconsistencies or discrepancies.

    DATA MANIPULATION 🛠️

    • UTILIZED LOOKUPS: Used Excel's lookup functions for efficient data retrieval and analysis.

    • IMPLEMENTED INDEX MATCH: Leveraged the Index Match function to perform advanced data searches and matches.

    • APPLIED SUMIFS FUNCTIONS: Utilized SumIFs to calculate totals based on specified criteria.

    • CALCULATED PROFITS: Used relevant formulas and techniques to determine profit margins and insights from the data.

    PIVOTING THE DATA 𝄜

    • CREATED PIVOT TABLES: Utilized Excel's PivotTable feature to pivot the data for in-depth analysis.

    • FILTERED DATA: Utilized pivot tables to filter and analyze specific subsets of data, enabling focused insights. Specially used in “PEAK HOURS” and “TOP 3 PRODUCTS” charts.

    VISUALIZATION 📊

    • KEY INSIGHTS: Unveiled the grand total sales revenue while also analyzing the average bill per person, offering comprehensive insights into the coffee shop's performance and customer spending habits.

    • SALES TREND ANALYSIS: Used Line chart to compute total sales across various time intervals, revealing valuable insights into evolving sales trends.

    • PEAK HOUR ANALYSIS: Leveraged Clustered Column chart to identify peak sales hours, shedding light on optimal operating times and potential staffing needs.

    • TOP 3 PRODUCTS IDENTIFICATION: Utilized Clustered Bar chart to determine the top three coffee types, facilitating strategic decisions regarding inventory management and marketing focus.

    *I also used a Timeline to visualize chronological data trends and identify key patterns over specific times.

    While it's a significant milestone for me, I recognize that there's always room for growth and improvement. Your feedback and insights are invaluable to me as I continue to refine my skills and tackle future projects. I'm eager to hear your thoughts and suggestions on how I can make my next endeavor even more impactful and insightful.

    THANKS TO: WsCube Tech Mo Chen Alex Freberg

    TOOLS USED: Microsoft Excel

    DataAnalytics #DataAnalyst #ExcelProject #DataVisualization #BusinessIntelligence #SalesAnalysis #DataAnalysis #DataDrivenDecisions

  9. Bikes Buyer Data Analysis using Excel

    • kaggle.com
    zip
    Updated Aug 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ahmed Samir (2023). Bikes Buyer Data Analysis using Excel [Dataset]. https://www.kaggle.com/datasets/ahmedsamir11111/bikes-buyer-data-analysis-using-excel
    Explore at:
    zip(2569195 bytes)Available download formats
    Dataset updated
    Aug 12, 2023
    Authors
    Ahmed Samir
    Description

    In the beginning, the case was just data for a company that did not indicate any useful information that would help decision-makers. In this case, I had to ask questions that could help extract and explore information that would help decision-makers improve and evaluate performance. But before that, I did some operations in the data to help me to analyze it accurately: 1- Understand the data. 2- Clean the data “By power query”. 3- insert some calculation and columns by power query. 4- Analysis to the data and Ask some Questions About Distribution What is the Number of Bikes Sold? What is the most region purchasing bikes? What is the Ave. income by gender & purchasing bikes? The Miles with Purchasing bikes? What is situation to age by purchasing & Count of bikes sold? About Consumer Behavior Home Owner by purchasing? Single or married & Age by purchasing? Having cars by purchasing? Education By purchasing? Occupation By purchasing?

    And I notice the Most Situations Purchasing Bikes is: - North America “Region”. - Commute Distance 0-1 Miles. - The people who are in the middle age and single "169 Bikes". - People that having Bachelor's degree. - The Males who have the average income 60,124$. - People that having Professional occupation. - Home owners “325 Bikes”. - People who having 0 or 1 car. So, I Advise The give those slices more offers to increase the sell value.

  10. f

    Excel Data File (A longitudinal examination of executive function, visual...

    • yorksj.figshare.com
    txt
    Updated Jun 23, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jack Brimmell (2022). Excel Data File (A longitudinal examination of executive function, visual attention, and soccer penalty performance) [Dataset]. http://doi.org/10.25421/yorksj.20089349.v2
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jun 23, 2022
    Dataset provided by
    York St John University
    Authors
    Jack Brimmell
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is the Excel file for the PhD study of Jack Brimmell entitled: A longitudinal examination of executive function, visual attention, and soccer penalty performance.

  11. d

    Finsheet - Stock Price in Excel and Google Sheet

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Do, Tuan (2023). Finsheet - Stock Price in Excel and Google Sheet [Dataset]. http://doi.org/10.7910/DVN/ZD9XVF
    Explore at:
    Dataset updated
    Nov 8, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Do, Tuan
    Description

    This dataset contains the valuation template the researcher can use to retrieve real-time Excel stock price and stock price in Google Sheets. The dataset is provided by Finsheet, the leading financial data provider for spreadsheet users. To get more financial data, visit the website and explore their function. For instance, if a researcher would like to get the last 30 years of income statement for Meta Platform Inc, the syntax would be =FS_EquityFullFinancials("FB", "ic", "FY", 30) In addition, this syntax will return the latest stock price for Caterpillar Inc right in your spreadsheet. =FS_Latest("CAT") If you need assistance with any of the function, feel free to reach out to their customer support team. To get starter, install their Excel and Google Sheets add-on.

  12. Introducing the new RPIJ measure of Consumer Price Inflation - Dataset -...

    • ckan.publishing.service.gov.uk
    Updated Mar 12, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.publishing.service.gov.uk (2013). Introducing the new RPIJ measure of Consumer Price Inflation - Dataset - data.gov.uk [Dataset]. https://ckan.publishing.service.gov.uk/dataset/introducing_the_new_rpij_measure_of_consumer_price_inflation
    Explore at:
    Dataset updated
    Mar 12, 2013
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    This article describes the new RPIJ measure of Consumer Price Inflation. RPIJ is a Retail Prices Index (RPI) based measure that will use a geometric (Jevons) formula in place of one type of arithmetic formula (Carli). It is being launched in response to the National Statistician's conclusion that the RPI does not meet international standards due to the use of the Carli formula in its calculation. The accompanying Excel file includes a back series for RPIJ from 1997 to 2012. Source agency: Office for National Statistics Designation: National Statistics Language: English Alternative title: New RPIJ measure of Consumer Price Inflation

  13. m

    Programming Procedure in Excel for Calculating Model Variables in a New SEIR...

    • data.mendeley.com
    Updated Jun 6, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xiaoping Liu (2022). Programming Procedure in Excel for Calculating Model Variables in a New SEIR Epidemic Model Based on the latent-infectious period chronological order [Dataset]. http://doi.org/10.17632/z9jsfg8gbs.1
    Explore at:
    Dataset updated
    Jun 6, 2022
    Authors
    Xiaoping Liu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Our new SEIR epidemic model built from the l-i AIR model [1] has similar terms to the conventional SEIR epidemic model [2]. We have uploaded an instruction file for describing how to write a calculation program in Excel for calculating the model variables S, E, I, R and y.

    REFERENCES [1] Liu, X. A simple, SIR-like but individual-based epidemic model: Application in comparison of COVID-19 in New York City and Wuhan. Results Phys 20, 103712 (2021). [2] Liu, X. Analytical Solution of a New SEIR Model Based on Latent Period-Infectious Period Chronological Order. medRxiv, https://doi.org/10.1101/2021.12.14.21267812, 2021.2012.2014.21267812 (2021).

  14. Formatting and Custom Formatting in Excel

    • kaggle.com
    zip
    Updated Feb 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sanjana Murthy (2024). Formatting and Custom Formatting in Excel [Dataset]. https://www.kaggle.com/datasets/sanjanamurthy392/formatting-and-custom-formatting-in-excel
    Explore at:
    zip(57260 bytes)Available download formats
    Dataset updated
    Feb 6, 2024
    Authors
    Sanjana Murthy
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    This data contains various types of formatting and custom formattings in excel, Basics Formula and Calculation.

  15. 2011 skills for life survey: small area estimation data

    • gov.uk
    Updated Dec 12, 2012
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department for Business, Innovation & Skills (2012). 2011 skills for life survey: small area estimation data [Dataset]. https://www.gov.uk/government/statistical-data-sets/2011-skills-for-life-survey-small-area-estimation-data
    Explore at:
    Dataset updated
    Dec 12, 2012
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Department for Business, Innovation & Skills
    Description

    Small area estimation modelling methods have been applied to the 2011 Skills for Life survey data in order to generate local level area estimates of the number and proportion of adults (aged 16-64 years old) in England living in households with defined skill levels in:

    • literacy
    • numeracy
    • information and communication technology (ICT); including emailing, word processing, spreadsheet use and a multiple-choice assessment of ICT awareness

    The number and proportion of adults in households who do not speak English as a first language are also included.

    Two sets of small area estimates are provided for 7 geographies; middle layer super output areas (MSOAs), standard table wards, 2005 statistical wards, 2011 council wards, 2011 parliamentary constituencies, local authorities, and local enterprise partnership areas.

    Regional estimates have also been provided, however, unlike the other geographies, these estimates are based on direct survey estimates and not modelled estimates.

    The files are available as both Excel and csv files – the user guide explains the estimates and modelling approach in more detail.

    How to use the small area estimation files, an example

    To find the estimate for the proportion of adults with entry level 1 or below literacy in the Manchester Central parliamentary constituency, you need to:

    1. select the link to the ‘parliamentary-constituencies-2009-all’ Excel file in the table above
    2. select the ‘literacy proportions’ page of the Excel spreadsheet
    3. use the ‘find’ function to locate ‘Manchester Central’
    4. note the proportion listed for Entry Level and below

    It is estimated that 8.1% of adults aged 16-64 in Manchester Central have entry level or below literacy. The Credible Intervals for this estimate are 7.0 and 9.3% at the 95 per cent level. This means that while the estimate is 8.1%, there is a 95% likelihood that the actual value lies between 7.0 and 9.3%.

    https://assets.publishing.service.gov.uk/media/5a79d91240f0b670a8025dd8/middle-layer-super-output-areas-2001-all_1_.xlsx">Middle layer super output areas: 2001 all skill level estimates

     <p class="gem-c-attachment_metadata"><span class="gem-c-attachment_attribute">MS Excel Spreadsheet</span>, <span class="gem-c-attachment_attribute">14.5 MB</span></p>
    
    
    
    
     <p class="gem-c-attachment_metadata">This file may not be suitable for users of assistive technology.</p>
     <details data-module="ga4-event-tracker" data-ga4-event='{"event_name":"select_content","type":"detail","text":"Request an accessible format.","section":"Request an accessible format.","index_section":1}' class="gem-c-details govuk-details govuk-!-margin-bottom-0" title="Request an accessible format.">
    

    Request an accessible format.

      If you use assistive technology (such as a screen reader) and need a version of this document in a more accessible format, please email <a href="mailto:enquiries@beis.gov.uk" target="_blank" class="govuk-link">enquiries@beis.gov.uk</a>. Please tell us what format you need. It will help us if you say what assistive technology you use.
    

    <div class="gem-c-attachmen

  16. Z

    Data from: AWARE characterization factor samples

    • data.niaid.nih.gov
    • data-staging.niaid.nih.gov
    • +1more
    Updated Dec 26, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lesage, Pascal; Boulay, Anne-Marie; Pfister, Stefan (2020). AWARE characterization factor samples [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_3406507
    Explore at:
    Dataset updated
    Dec 26, 2020
    Dataset provided by
    CIRAIG, Polytechnique Montreal
    IFU, ETH Zurich
    Authors
    Lesage, Pascal; Boulay, Anne-Marie; Pfister, Stefan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Files contain 5000 samples of AWARE characterization factors, as well as sampled independent data used in their calculations and selected intermediate results.

    AWARE is a consensus-based method development to assess water use in LCA. It was developed by the WULCA UNEP/SETAC working group. Its characterization factors represent the relative Available WAter REmaining per area in a watershed, after the demand of humans and aquatic ecosystems has been met. It assesses the potential of water deprivation, to either humans or ecosystems, building on the assumption that the less water remaining available per area, the more likely another user will be deprived.

    The code used to generate the samples can be found here: https://github.com/PascalLesage/aware_cf_calculator/

    Samples were updated from v1.0 in 2020 to include model uncertainty associated with the choice of WaterGap as the global hydrological model (GHM).

    The following datasets are supplied:

    1) AWARE_characterization_factor_samples.zip

    Actual characterization factors resulting from the Monte Carlo Simulation. Contains 4 zip files:

    * monthly_cf.zip: contains 116,484 arrays of 5000 monthly characterization factor samples for each of 9707 watershed and for each month, in csv format. Names are cf_.csv, where is the watershed id and is the first three letters of the month ('jan', 'feb', etc.).
    
    
    * average_agri_cf.zip: contains 9707 arrays of 5000 annual average, agricultural use, characterization factor samples for each watershed, in csv format. Names are cf_average_agri_.csv.
    
    
    * average_non_agri_cf.zip: contains 9707 arrays of 5000 annual average, non-agricultural use, characterization factor samples for each watershed, in csv format. Names are cf_average_non_agri_.csv.
    
    
    * average_unknown_cf.zip: contains 9707 arrays of 5000 annual average, unspecified use, characterization factor samples for each watershed, in csv format. Names are cf_average_unknown_.csv..
    

    2) AWARE_base_data.xlsx

    Excel file with the deterministic data, per watershed and per month, for each of the independent variables used in the calculation of AWARE characterization factors. Specifically, it includes:

      Monthly irrigation
        Description: irrigation water, per month, per basin
        Unit: m3/month
        Location in Excel doc: Irrigation
        File name once imported: irrigation.pickle
        table shape: (11050, 12)
    
    
      Non-irrigation hwc: electricity, domestic, livestock, manufacturing
        Description: non-irrigation uses of water
        Unit: m3/year
        Location in Excel doc: hwc_non_irrigation
        File name once imported: electricity.pickle, domestic.pickle,
          livestock.pickle, manufacturing.pickle
        table shape: 3 x (11050,)
    
    
      avail_delta
        Description: Difference between "pristine" natural availability
          reported in PastorXNatAvail and natural availability calculated
          from "Actual availability as received from WaterGap - after
          human consumption" (Avail!W:AH) plus HWC.
          This should be added to calculated water availability to
          get the water availability used for the calculation of EWR
        Unit: m3/month
        Location in Excel doc: avail_delta
        File name once imported: avail_delta.pickle
        table shape: (11050, 12)
    
    
      avail_net
        Description: Actual availability as received from WaterGap - after human consumption
        Unit: m3/month
        Location in Excel doc: avail_net
        File name once imported: avail_net.pickle
        table shape: (11050, 12)
    
    
      pastor
        Description: fraction of PRISTINE water availability that should be reserved for environment
        Unit: unitless
        Location in Excel doc: pastor
        File name once imported: pastor.pickle
        table shape: (11050, 12)
    
    
      area
        Description: area
        Unit: m2
        Location in Excel doc: area
        File name once imported: area.pickle
        table shape: (11050,)
    

    It also includes:

    • information (k values) on the distributions used for each variable (uncertainty tab)

    • information (k values) on the model uncertainty (model uncertainty tab)

    • two filters used to exclude watersheds that are either in Greenland (polar filter) or without data from the Pastor et al. (2014) method (122 cells), representing small coastal cells with no direct overlap (pastor filter). (filters tab)

    3) independent_variable_samples.zip

    Samples for each of the independent variables used in the calculation of characterization factors. Only random variables are contained. For all watershed or watershed-months without samples, the Monte Carlo simulation used the deterministic values found in the AWARE_base_data.xlsx file.

    The files are in csv format. The first column contains the watershed id (BAS34S_ID) if the data is annual or the (BAS34S_ID, month) for data with a monthly resolution. the other 5000 columns contain the sampled data.

    The names of the files are .

    4) intermediate_variables.zip

    Contains results of intermediate calculations, used in the calculation of characterization factors. The zip file contains 3 zip files:

    * AMD_world_over_AMD_i.zip: contains 116,484 arrays (for each watershed-month) of 5000 calculated values of the ratio between the AMD (Availability Minus Demand) for the watershed-month and AMD_glo, the world weighted AMD average. Format is csv.
    * AMD_world.zip: contains one array of 5000 calculated values of the world average AMD. Format is csv.
    
    
    * HWC.zip: contains 116,484 arrays (for each watershed-month) of 5000 calculated values of the total Human Water Consumption. Format is csv.
    

    5) watershedBAS34S_ID.zip

    Contains the GIS files to link the watershed ids (BAS34S_ID) to actual spatial data.

  17. H

    Relaxed Naïve Bayes Data

    • dataverse.harvard.edu
    Updated Aug 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Relaxed Naïve Bayes Team (2023). Relaxed Naïve Bayes Data [Dataset]. http://doi.org/10.7910/DVN/7KNKLL
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 7, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Relaxed Naïve Bayes Team
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    NaiveBayes_R.xlsx: This Excel file includes information as to how probabilities of observed features are calculated given recidivism (P(x_ij│R)) in the training data. Each cell is embedded with an Excel function to render appropriate figures. P(Xi|R): This tab contains probabilities of feature attributes among recidivated offenders. NIJ_Recoded: This tab contains re-coded NIJ recidivism challenge data following our coding schema described in Table 1. Recidivated_Train: This tab contains re-coded features of recidivated offenders. Tabs from [Gender] through [Condition_Other]: Each tab contains probabilities of feature attributes given recidivism. We use these conditional probabilities to replace the raw values of each feature in P(Xi|R) tab. NaiveBayes_NR.xlsx: This Excel file includes information as to how probabilities of observed features are calculated given non-recidivism (P(x_ij│N)) in the training data. Each cell is embedded with an Excel function to render appropriate figures. P(Xi|N): This tab contains probabilities of feature attributes among non-recidivated offenders. NIJ_Recoded: This tab contains re-coded NIJ recidivism challenge data following our coding schema described in Table 1. NonRecidivated_Train: This tab contains re-coded features of non-recidivated offenders. Tabs from [Gender] through [Condition_Other]: Each tab contains probabilities of feature attributes given non-recidivism. We use these conditional probabilities to replace the raw values of each feature in P(Xi|N) tab. Training_LnTransformed.xlsx: Figures in each cell are log-transformed ratios of probabilities in NaiveBayes_R.xlsx (P(Xi|R)) to the probabilities in NaiveBayes_NR.xlsx (P(Xi|N)). TestData.xlsx: This Excel file includes the following tabs based on the test data: P(Xi|R), P(Xi|N), NIJ_Recoded, and Test_LnTransformed (log-transformed P(Xi|R)/ P(Xi|N)). Training_LnTransformed.dta: We transform Training_LnTransformed.xlsx to Stata data set. We use Stat/Transfer 13 software package to transfer the file format. StataLog.smcl: This file includes the results of the logistic regression analysis. Both estimated intercept and coefficient estimates in this Stata log correspond to the raw weights and standardized weights in Figure 1. Brier Score_Re-Check.xlsx: This Excel file recalculates Brier scores of Relaxed Naïve Bayes Classifier in Table 3, showing evidence that results displayed in Table 3 are correct. *****Full List***** NaiveBayes_R.xlsx NaiveBayes_NR.xlsx Training_LnTransformed.xlsx TestData.xlsx Training_LnTransformed.dta StataLog.smcl Brier Score_Re-Check.xlsx Data for Weka (Training Set): Bayes_2022_NoID Data for Weka (Test Set): BayesTest_2022_NoID Weka output for machine learning models (Conventional naïve Bayes, AdaBoost, Multilayer Perceptron, Logistic Regression, and Random Forest)

  18. Netflix Movies and TV Shows Dataset Cleaned(excel)

    • kaggle.com
    Updated Apr 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gaurav Tawri (2025). Netflix Movies and TV Shows Dataset Cleaned(excel) [Dataset]. https://www.kaggle.com/datasets/gauravtawri/netflix-movies-and-tv-shows-dataset-cleanedexcel
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 8, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Gaurav Tawri
    Description

    This dataset is a cleaned and preprocessed version of the original Netflix Movies and TV Shows dataset available on Kaggle. All cleaning was done using Microsoft Excel — no programming involved.

    🎯 What’s Included: - Cleaned Excel file (standardized columns, proper date format, removed duplicates/missing values) - A separate "formulas_used.txt" file listing all Excel formulas used during cleaning (e.g., TRIM, CLEAN, DATE, SUBSTITUTE, TEXTJOIN, etc.) - Columns like 'date_added' have been properly formatted into DMY structure - Multi-valued columns like 'listed_in' are split for better analysis - Null values replaced with “Unknown” for clarity - Duration field broken into numeric + unit components

    🔍 Dataset Purpose: Ideal for beginners and analysts who want to: - Practice data cleaning in Excel - Explore Netflix content trends - Analyze content by type, country, genre, or date added

    📁 Original Dataset Credit: The base version was originally published by Shivam Bansal on Kaggle: https://www.kaggle.com/shivamb/netflix-shows

    📌 Bonus: You can find a step-by-step cleaning guide and the same dataset on GitHub as well — along with screenshots and formulas documentation.

  19. m

    Falling head calculation spreadsheet

    • data.mendeley.com
    Updated Feb 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Marek Wcisło (2023). Falling head calculation spreadsheet [Dataset]. http://doi.org/10.17632/3stzwdp4n2.1
    Explore at:
    Dataset updated
    Feb 1, 2023
    Authors
    Marek Wcisło
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    MS Excel spreadsheet based on an automated formula with a solver. It serves for hydraulic conductivity calcuclation and error estimation by fitting the parameters of the theoretical formula (Darcy Equation) to the field data. The spreadsheet was developed to analize data collected by the falling head method in permeability investigation of riverbed sediments.

  20. D

    Replication Data for: Benchmarking density functional methods for harmonic...

    • dataverse.no
    • dataverse.azure.uit.no
    • +1more
    pdf, txt, xlsx
    Updated Sep 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Md Mehboob Alam; Md Mehboob Alam (2023). Replication Data for: Benchmarking density functional methods for harmonic vibrational frequencies. IN REVIEW [Dataset]. http://doi.org/10.18710/2DQK6Z
    Explore at:
    pdf(1666984), txt(164788), txt(104821), txt(99700), txt(75646), txt(89673), xlsx(2733050), txt(2038), txt(70615), txt(76901), txt(101625), txt(71700), txt(271747), txt(368175)Available download formats
    Dataset updated
    Sep 28, 2023
    Dataset provided by
    DataverseNO
    Authors
    Md Mehboob Alam; Md Mehboob Alam
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    The files contains data for reproducing all the results in the article "Benchmarking density functional methods for harmonic vibrational frequencies" (IN REVIEW). The file frequency_data_for_statistical_analysis.xlsx is an excel file containing 11 differently named worksheets. Each worksheet contains the name of the XC functionals used. All the quantities are calculated using the standard mathematical formula of EXCEL. The distribution_of_signed_error_plot.pdf is a pdf file containing the distribution of signed error obtained for each molecule using 17 different XC functionals. The distribution plots are obtained using the distribution formula given in the upcoming article. All the plots have been created using GNUPLOT software. The text files are tab delimited text files obtained from the excel worksheets.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Sanjana Murthy (2024). Statistical Function in Excel [Dataset]. https://www.kaggle.com/datasets/sanjanamurthy392/statistical-function
Organization logo

Statistical Function in Excel

Sum, average, max, min, sumif, sumifs, count, countblank, countif, countifs, etc

Explore at:
35 scholarly articles cite this dataset (View in Google Scholar)
zip(1412940 bytes)Available download formats
Dataset updated
Feb 7, 2024
Authors
Sanjana Murthy
License

Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically

Description

This data contains functions like: Sum, Average, Max, Min, Sumif, Sumifs, Count, Countblank, Countifs, Counta, Averageif, Averageifs.

Search
Clear search
Close search
Google apps
Main menu