49 datasets found
  1. f

    Data from: Excel Templates: A Helpful Tool for Teaching Statistics

    • tandf.figshare.com
    zip
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alejandro Quintela-del-Río; Mario Francisco-Fernández (2023). Excel Templates: A Helpful Tool for Teaching Statistics [Dataset]. http://doi.org/10.6084/m9.figshare.3408052.v2
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Taylor & Francis
    Authors
    Alejandro Quintela-del-Río; Mario Francisco-Fernández
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This article describes a free, open-source collection of templates for the popular Excel (2013, and later versions) spreadsheet program. These templates are spreadsheet files that allow easy and intuitive learning and the implementation of practical examples concerning descriptive statistics, random variables, confidence intervals, and hypothesis testing. Although they are designed to be used with Excel, they can also be employed with other free spreadsheet programs (changing some particular formulas). Moreover, we exploit some possibilities of the ActiveX controls of the Excel Developer Menu to perform interactive Gaussian density charts. Finally, it is important to note that they can be often embedded in a web page, so it is not necessary to employ Excel software for their use. These templates have been designed as a useful tool to teach basic statistics and to carry out data analysis even when the students are not familiar with Excel. Additionally, they can be used as a complement to other analytical software packages. They aim to assist students in learning statistics, within an intuitive working environment. Supplementary materials with the Excel templates are available online.

  2. Sorting/selecting data in Excel with VLOOKUP()

    • figshare.com
    xlsx
    Updated Jan 18, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anneke Batenburg (2016). Sorting/selecting data in Excel with VLOOKUP() [Dataset]. http://doi.org/10.6084/m9.figshare.964802.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jan 18, 2016
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Anneke Batenburg
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Example of how I use MS Excel's VLOOKUP() function to filter my data.

  3. m

    Dataset of development of business during the COVID-19 crisis

    • data.mendeley.com
    • narcis.nl
    Updated Nov 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tatiana N. Litvinova (2020). Dataset of development of business during the COVID-19 crisis [Dataset]. http://doi.org/10.17632/9vvrd34f8t.1
    Explore at:
    Dataset updated
    Nov 9, 2020
    Authors
    Tatiana N. Litvinova
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    To create the dataset, the top 10 countries leading in the incidence of COVID-19 in the world were selected as of October 22, 2020 (on the eve of the second full of pandemics), which are presented in the Global 500 ranking for 2020: USA, India, Brazil, Russia, Spain, France and Mexico. For each of these countries, no more than 10 of the largest transnational corporations included in the Global 500 rating for 2020 and 2019 were selected separately. The arithmetic averages were calculated and the change (increase) in indicators such as profitability and profitability of enterprises, their ranking position (competitiveness), asset value and number of employees. The arithmetic mean values of these indicators for all countries of the sample were found, characterizing the situation in international entrepreneurship as a whole in the context of the COVID-19 crisis in 2020 on the eve of the second wave of the pandemic. The data is collected in a general Microsoft Excel table. Dataset is a unique database that combines COVID-19 statistics and entrepreneurship statistics. The dataset is flexible data that can be supplemented with data from other countries and newer statistics on the COVID-19 pandemic. Due to the fact that the data in the dataset are not ready-made numbers, but formulas, when adding and / or changing the values in the original table at the beginning of the dataset, most of the subsequent tables will be automatically recalculated and the graphs will be updated. This allows the dataset to be used not just as an array of data, but as an analytical tool for automating scientific research on the impact of the COVID-19 pandemic and crisis on international entrepreneurship. The dataset includes not only tabular data, but also charts that provide data visualization. The dataset contains not only actual, but also forecast data on morbidity and mortality from COVID-19 for the period of the second wave of the pandemic in 2020. The forecasts are presented in the form of a normal distribution of predicted values and the probability of their occurrence in practice. This allows for a broad scenario analysis of the impact of the COVID-19 pandemic and crisis on international entrepreneurship, substituting various predicted morbidity and mortality rates in risk assessment tables and obtaining automatically calculated consequences (changes) on the characteristics of international entrepreneurship. It is also possible to substitute the actual values identified in the process and following the results of the second wave of the pandemic to check the reliability of pre-made forecasts and conduct a plan-fact analysis. The dataset contains not only the numerical values of the initial and predicted values of the set of studied indicators, but also their qualitative interpretation, reflecting the presence and level of risks of a pandemic and COVID-19 crisis for international entrepreneurship.

  4. m

    Raw data outputs 1-18

    • bridges.monash.edu
    • researchdata.edu.au
    xlsx
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abbas Salavaty Hosein Abadi; Sara Alaei; Mirana Ramialison; Peter Currie (2023). Raw data outputs 1-18 [Dataset]. http://doi.org/10.26180/21259491.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Monash University
    Authors
    Abbas Salavaty Hosein Abadi; Sara Alaei; Mirana Ramialison; Peter Currie
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Raw data outputs 1-18 Raw data output 1. Differentially expressed genes in AML CSCs compared with GTCs as well as in TCGA AML cancer samples compared with normal ones. This data was generated based on the results of AML microarray and TCGA data analysis. Raw data output 2. Commonly and uniquely differentially expressed genes in AML CSC/GTC microarray and TCGA bulk RNA-seq datasets. This data was generated based on the results of AML microarray and TCGA data analysis. Raw data output 3. Common differentially expressed genes between training and test set samples the microarray dataset. This data was generated based on the results of AML microarray data analysis. Raw data output 4. Detailed information on the samples of the breast cancer microarray dataset (GSE52327) used in this study. Raw data output 5. Differentially expressed genes in breast CSCs compared with GTCs as well as in TCGA BRCA cancer samples compared with normal ones. Raw data output 6. Commonly and uniquely differentially expressed genes in breast cancer CSC/GTC microarray and TCGA BRCA bulk RNA-seq datasets. This data was generated based on the results of breast cancer microarray and TCGA BRCA data analysis. CSC, and GTC are abbreviations of cancer stem cell, and general tumor cell, respectively. Raw data output 7. Differential and common co-expression and protein-protein interaction of genes between CSC and GTC samples. This data was generated based on the results of AML microarray and STRING database-based protein-protein interaction data analysis. CSC, and GTC are abbreviations of cancer stem cell, and general tumor cell, respectively. Raw data output 8. Differentially expressed genes between AML dormant and active CSCs. This data was generated based on the results of AML scRNA-seq data analysis. Raw data output 9. Uniquely expressed genes in dormant or active AML CSCs. This data was generated based on the results of AML scRNA-seq data analysis. Raw data output 10. Intersections between the targeting transcription factors of AML key CSC genes and differentially expressed genes between AML CSCs vs GTCs and between dormant and active AML CSCs or the uniquely expressed genes in either class of CSCs. Raw data output 11. Targeting desirableness score of AML key CSC genes and their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 12. CSC-specific targeting desirableness score of AML key CSC genes and their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 13. The protein-protein interactions between AML key CSC genes with themselves and their targeting transcription factors. This data was generated based on the results of AML microarray and STRING database-based protein-protein interaction data analysis. Raw data output 14. The previously confirmed associations of genes having the highest targeting desirableness and CSC-specific targeting desirableness scores with AML or other cancers’ (stem) cells as well as hematopoietic stem cells. These data were generated based on a PubMed database-based literature mining. Raw data output 15. Drug score of available drugs and bioactive small molecules targeting AML key CSC genes and/or their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 16. CSC-specific drug score of available drugs and bioactive small molecules targeting AML key CSC genes and/or their targeting transcription factors. These scores were generated based on an in-house scoring function described in the Methods section. Raw data output 17. Candidate drugs for experimental validation. These drugs were selected based on their respective (CSC-specific) drug scores. CSC is the abbreviation of cancer stem cell. Raw data output 18. Detailed information on the samples of the AML microarray dataset GSE30375 used in this study.

  5. d

    Finsheet - Stock Price in Excel and Google Sheet

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Do, Tuan (2023). Finsheet - Stock Price in Excel and Google Sheet [Dataset]. http://doi.org/10.7910/DVN/ZD9XVF
    Explore at:
    Dataset updated
    Nov 8, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Do, Tuan
    Description

    This dataset contains the valuation template the researcher can use to retrieve real-time Excel stock price and stock price in Google Sheets. The dataset is provided by Finsheet, the leading financial data provider for spreadsheet users. To get more financial data, visit the website and explore their function. For instance, if a researcher would like to get the last 30 years of income statement for Meta Platform Inc, the syntax would be =FS_EquityFullFinancials("FB", "ic", "FY", 30) In addition, this syntax will return the latest stock price for Caterpillar Inc right in your spreadsheet. =FS_Latest("CAT") If you need assistance with any of the function, feel free to reach out to their customer support team. To get starter, install their Excel and Google Sheets add-on.

  6. d

    Worksheet for computing annual exceedance probability flood discharges and...

    • catalog.data.gov
    • data.usgs.gov
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Worksheet for computing annual exceedance probability flood discharges and prediction intervals at stream sites in Connecticut [Dataset]. https://catalog.data.gov/dataset/worksheet-for-computing-annual-exceedance-probability-flood-discharges-and-prediction-inte
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Connecticut
    Description

    The U.S. Geological Survey (USGS), in cooperation with Connecticut Department of Transportation, completed a study to improve flood-frequency estimates in Connecticut. This companion data release is a Microsoft Excel workbook for: (1) computing flood discharges for the 50- to 0.2-percent annual exceedance probabilities from peak-flow regression equations, and (2) computing additional prediction intervals, not available through the USGS StreamStats web application. The current StreamStats application (version 4) only computes the 90-percent prediction interval for stream sites in Connecticut. The Excel workbook can be used to compute the 70-, 80-, 90-, 95-, and 99-percent prediction intervals. The prediction interval provides upper and lower limits of the estimated flood discharge with a certain probability, or level of confidence in the accuracy of the estimate. The standard error of prediction for the Connecticut peak-flow regression equations ranged from 26.3 to 45.0 percent (Ahearn and Hodgkins, 2020). The Excel workbook consists of four worksheets. The worksheets provide an overview of how the application works; input and output tables of the explanatory variables and flood discharges, and graphical display of the results; and the computational formulas used to estimate the flood discharges and prediction intervals.

  7. f

    Microsoft excel database containing all the simulated (10 sets) and...

    • plos.figshare.com
    xlsx
    Updated Jun 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hamed Ahmadi (2023). Microsoft excel database containing all the simulated (10 sets) and experimental data used in this study. [Dataset]. http://doi.org/10.1371/journal.pone.0187292.s001
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 3, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Hamed Ahmadi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Excel sheets in order: The sheet entitled “Hens Original Data” contains the results of an experiment conducted to study the response of laying hens during initial phase of egg production subjected to different intakes of dietary threonine. The sheet entitled “Simulated data & fitting values” contains the 10 simulated data sets that were generated using a standard procedure of random number generator. The predicted values obtained by the new three-parameter and conventional four-parameter logistic models were also appeared in this sheet. (XLSX)

  8. 2011 skills for life survey: small area estimation data

    • gov.uk
    Updated Dec 12, 2012
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department for Business, Innovation & Skills (2012). 2011 skills for life survey: small area estimation data [Dataset]. https://www.gov.uk/government/statistical-data-sets/2011-skills-for-life-survey-small-area-estimation-data
    Explore at:
    Dataset updated
    Dec 12, 2012
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Department for Business, Innovation & Skills
    Description

    Small area estimation modelling methods have been applied to the 2011 Skills for Life survey data in order to generate local level area estimates of the number and proportion of adults (aged 16-64 years old) in England living in households with defined skill levels in:

    • literacy
    • numeracy
    • information and communication technology (ICT); including emailing, word processing, spreadsheet use and a multiple-choice assessment of ICT awareness

    The number and proportion of adults in households who do not speak English as a first language are also included.

    Two sets of small area estimates are provided for 7 geographies; middle layer super output areas (MSOAs), standard table wards, 2005 statistical wards, 2011 council wards, 2011 parliamentary constituencies, local authorities, and local enterprise partnership areas.

    Regional estimates have also been provided, however, unlike the other geographies, these estimates are based on direct survey estimates and not modelled estimates.

    The files are available as both Excel and csv files – the user guide explains the estimates and modelling approach in more detail.

    How to use the small area estimation files, an example

    To find the estimate for the proportion of adults with entry level 1 or below literacy in the Manchester Central parliamentary constituency, you need to:

    1. select the link to the ‘parliamentary-constituencies-2009-all’ Excel file in the table above
    2. select the ‘literacy proportions’ page of the Excel spreadsheet
    3. use the ‘find’ function to locate ‘Manchester Central’
    4. note the proportion listed for Entry Level and below

    It is estimated that 8.1% of adults aged 16-64 in Manchester Central have entry level or below literacy. The Credible Intervals for this estimate are 7.0 and 9.3% at the 95 per cent level. This means that while the estimate is 8.1%, there is a 95% likelihood that the actual value lies between 7.0 and 9.3%.

    https://assets.publishing.service.gov.uk/media/5a79d91240f0b670a8025dd8/middle-layer-super-output-areas-2001-all_1_.xlsx">Middle layer super output areas: 2001 all skill level estimates

     <p class="gem-c-attachment_metadata"><span class="gem-c-attachment_attribute">MS Excel Spreadsheet</span>, <span class="gem-c-attachment_attribute">14.5 MB</span></p>
    
    
    
    
     <p class="gem-c-attachment_metadata">This file may not be suitable for users of assistive technology.</p>
     <details data-module="ga4-event-tracker" data-ga4-event='{"event_name":"select_content","type":"detail","text":"Request an accessible format.","section":"Request an accessible format.","index_section":1}' class="gem-c-details govuk-details govuk-!-margin-bottom-0" title="Request an accessible format.">
    

    Request an accessible format.

      If you use assistive technology (such as a screen reader) and need a version of this document in a more accessible format, please email <a href="mailto:enquiries@beis.gov.uk" target="_blank" class="govuk-link">enquiries@beis.gov.uk</a>. Please tell us what format you need. It will help us if you say what assistive technology you use.
    

    <div class="gem-c-attachmen

  9. Superstore Sales Analysis

    • kaggle.com
    Updated Oct 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ali Reda Elblgihy (2023). Superstore Sales Analysis [Dataset]. https://www.kaggle.com/datasets/aliredaelblgihy/superstore-sales-analysis/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 21, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Ali Reda Elblgihy
    Description

    Analyzing sales data is essential for any business looking to make informed decisions and optimize its operations. In this project, we will utilize Microsoft Excel and Power Query to conduct a comprehensive analysis of Superstore sales data. Our primary objectives will be to establish meaningful connections between various data sheets, ensure data quality, and calculate critical metrics such as the Cost of Goods Sold (COGS) and discount values. Below are the key steps and elements of this analysis:

    1- Data Import and Transformation:

    • Gather and import relevant sales data from various sources into Excel.
    • Utilize Power Query to clean, transform, and structure the data for analysis.
    • Merge and link different data sheets to create a cohesive dataset, ensuring that all data fields are connected logically.

    2- Data Quality Assessment:

    • Perform data quality checks to identify and address issues like missing values, duplicates, outliers, and data inconsistencies.
    • Standardize data formats and ensure that all data is in a consistent, usable state.

    3- Calculating COGS:

    • Determine the Cost of Goods Sold (COGS) for each product sold by considering factors like purchase price, shipping costs, and any additional expenses.
    • Apply appropriate formulas and calculations to determine COGS accurately.

    4- Discount Analysis:

    • Analyze the discount values offered on products to understand their impact on sales and profitability.
    • Calculate the average discount percentage, identify trends, and visualize the data using charts or graphs.

    5- Sales Metrics:

    • Calculate and analyze various sales metrics, such as total revenue, profit margins, and sales growth.
    • Utilize Excel functions to compute these metrics and create visuals for better insights.

    6- Visualization:

    • Create visualizations, such as charts, graphs, and pivot tables, to present the data in an understandable and actionable format.
    • Visual representations can help identify trends, outliers, and patterns in the data.

    7- Report Generation:

    • Compile the findings and insights into a well-structured report or dashboard, making it easy for stakeholders to understand and make informed decisions.

    Throughout this analysis, the goal is to provide a clear and comprehensive understanding of the Superstore's sales performance. By using Excel and Power Query, we can efficiently manage and analyze the data, ensuring that the insights gained contribute to the store's growth and success.

  10. d

    R script that creates a wrapper function to automate the generation of...

    • catalog.data.gov
    Updated Jul 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). R script that creates a wrapper function to automate the generation of boxplots of change factors for all Florida HUC-8 basins (basin_boxplot.R) [Dataset]. https://catalog.data.gov/dataset/r-script-that-creates-a-wrapper-function-to-automate-the-generation-of-boxplots-of-change--f7fc2
    Explore at:
    Dataset updated
    Jul 20, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    The Florida Flood Hub for Applied Research and Innovation and the U.S. Geological Survey have developed projected future change factors for precipitation depth-duration-frequency (DDF) curves at 242 National Oceanic and Atmospheric Administration (NOAA) Atlas 14 stations in Florida. The change factors were computed as the ratio of projected future to historical extreme-precipitation depths fitted to extreme-precipitation data from downscaled climate datasets using a constrained maximum likelihood (CML) approach as described in https://doi.org/10.3133/sir20225093. The change factors correspond to the periods 2020-59 (centered in the year 2040) and 2050-89 (centered in the year 2070) as compared to the 1966-2005 historical period. An R script (basin_boxplot.R) is provided as an example on how to create a wrapper function that will automate the generation of boxplots of change factors for all Florida HUC-8 basins. The wrapper script sources the file create_boxplot.R and calls the function create_boxplot() one Florida basin at a time to create a figure with boxplots of change factors for all durations (1, 3, and 7 days) and return periods (5, 10, 25, 50, 100, 200, and 500 years) evaluated as part of this project. An example is also provided in the code that shows how to generate a figure showing boxplots of change factors for a single duration and return period. A Microsoft Word file documenting code usage is also provided within this data release (Documentation_R_script_create_boxplot.docx). As described in the documentation, the R script relies on some of the Microsoft Excel spreadsheets published as part of this data release. The script uses HUC-8 basins defined in the "Florida Hydrologic Unit Code (HUC) Basins (areas)" from the Florida Department of Environmental Protection (FDEP; https://geodata.dep.state.fl.us/datasets/FDEP::florida-hydrologic-unit-code-huc-basins-areas/explore) and their names are listed in the file basins_list.txt provided with the script. County names are listed in the file counties_list.txt provided with the script. NOAA Atlas 14 stations located in each Florida basin or county are defined in the Microsoft Excel spreadsheet Datasets_station_information.xlsx which is part of this data release. Instructions are provided in code documentation (see highlighted text on page 7 of Documentation_R_script_create_boxplot.docx) so that users can modify the script to generate boxplots for basins different from the FDEP "Florida Hydrologic Unit Code (HUC) Basins (areas)."

  11. m

    Excel Calculations & Tabular Data for the article titled "Customer...

    • data.mendeley.com
    Updated Jul 28, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Saurabh Pradhan (2021). Excel Calculations & Tabular Data for the article titled "Customer Efficiency as a measure of Customer Lifetime-Value: An alternative approach to CLV based Segmentation" [Dataset]. http://doi.org/10.17632/nn9j29fmsc.1
    Explore at:
    Dataset updated
    Jul 28, 2021
    Authors
    Saurabh Pradhan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Excel Calculations & Tabular Data for the article titled "Customer Efficiency as a measure of Customer Lifetime-Value: An alternative approach to CLV based Segmentation"

  12. Instagram Reach Analysis - Excel Project

    • kaggle.com
    Updated Jun 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Raghad Al-marshadi (2025). Instagram Reach Analysis - Excel Project [Dataset]. https://www.kaggle.com/datasets/raghadalmarshadi/instagram-reach-analysis-excel-project/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 14, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Raghad Al-marshadi
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    📊 Instagram Reach Analysis | تحليل الوصول في إنستغرام

    An exploratory data analysis project using Excel to understand what influences Instagram post reach and engagement.
    مشروع تحليل استكشافي لفهم العوامل المؤثرة في وصول منشورات إنستغرام وتفاعل المستخدمين، باستخدام Excel.

    📁 Project Description | وصف المشروع

    This project uses an Instagram dataset imported from Kaggle to explore how different factors like hashtags, saves, shares, and caption length influence impressions and engagement.
    يستخدم هذا المشروع بيانات من إنستغرام تم استيرادها من منصة Kaggle لتحليل كيف تؤثر عوامل مثل الهاشتاقات، الحفظ، المشاركة، وطول التسمية التوضيحية في عدد مرات الظهور والتفاعل.

    🛠️ Tools Used | الأدوات المستخدمة

    • Microsoft Excel
    • Pivot Tables
    • TRIM, WRAP, and other Excel formulas
    • مايكروسوفت إكسل
    • الجداول المحورية
    • دوال مثل TRIM و WRAP وغيرها في Excel

    🧹 Data Cleaning | تنظيف البيانات

    • Removed unnecessary spaces using TRIM
    • Removed 17 duplicate rows → 103 unique rows remained
    • Standardized formatting: freeze top row, wrap text, center align

    • إزالة المسافات غير الضرورية باستخدام TRIM

    • حذف 17 صفًا مكررًا → تبقى 103 صفوف فريدة

    • تنسيق موحد: تثبيت الصف الأول، لف النص، وتوسيط المحتوى

    🔍 Key Analysis Highlights | أبرز نتائج التحليل

    1. Impressions by Source | مرات الظهور حسب المصدر

    • Highest reach: Home > Hashtags > Explore > Other
    • Some totals exceed 100% due to overlapping

    2. Engagement Insights | رؤى حول التفاعل

    • Saves strongly correlate with higher impressions
    • Caption length is inversely related to likes
    • Shares have weak correlation with impressions

    3. Hashtag Patterns | تحليل الهاشتاقات

    • Most used: #Thecleverprogrammer, #Amankharwal, #Python
    • Repeating hashtags does not guarantee higher reach

    ✅ Conclusion | الخلاصة

    Shorter captions and higher save counts contribute more to reach than repeated hashtags. Profile visits are often linked to new followers.
    العناوين القصيرة وعدد الحفظات تلعب دورًا أكبر في الوصول من تكرار الهاشتاقات. كما أن زيارات الملف الشخصي ترتبط غالبًا بزيادة المتابعين.

    👩‍💻 Author | المؤلفة

    Raghad's LinkedIn

    🧠 Inspiration | الإلهام

    Inspired by content from TheCleverProgrammer, Aman Kharwal, and Kaggle datasets.
    استُلهم المشروع من محتوى TheCleverProgrammer وأمان خروال، وبيانات من Kaggle.

    💬 Feedback | الملاحظات

    Feel free to open an issue or share suggestions!
    يسعدنا تلقي ملاحظاتكم واقتراحاتكم عبر صفحة المشروع.

  13. B

    Yield to the Data: Some Perspective on Crop Productivity and Pesticides -...

    • borealisdata.ca
    • search.dataone.org
    Updated Dec 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nicole Washuck; Mark Hanson; Ryan Prosser (2024). Yield to the Data: Some Perspective on Crop Productivity and Pesticides - Excel user form [Dataset]. http://doi.org/10.5683/SP3/RDQWIK
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 3, 2024
    Dataset provided by
    Borealis
    Authors
    Nicole Washuck; Mark Hanson; Ryan Prosser
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jun 2021 - Dec 2021
    Area covered
    North America
    Dataset funded by
    Natural Sciences and Engineering Research Council of Canada
    Description

    The hectares of habitat protected and the number of adults and children fed in one year were calculated for each of the six crop types for Canada and United States. The calculations were based on the 50th centile of the cumulative frequency distributions of change in crop yield due to pesticide treatment for each crop type. An editable interactive table was created using Microsoft Excel that would allow individuals to determine how pesticide treatment in their selected jurisdiction (province in Canada or state in the United States) and crop translates into habitat saved, calories produced, and mouths fed. This table allows the user to choose the country (Canada or United States), whether to include the organic agriculture correction factor, their state or province of interest, crop, and whether a young child, adolescent child, adult women, or adult man is being fed. The table will then calculate the hectares of habitat saved, added number of calories produced (kcal), the number of individual fed in one day, and the number of individual fed in one year. Due to the variability in yield results between crops and studies, the Excel user form allows individuals to set whichever yield increase they anticipate observing or use the 50th centile of yield increase from the cumulative frequency distribution for each crop.

  14. d

    Relaxed Naïve Bayes Data

    • search.dataone.org
    Updated Nov 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Relaxed Naïve Bayes Team (2023). Relaxed Naïve Bayes Data [Dataset]. http://doi.org/10.7910/DVN/7KNKLL
    Explore at:
    Dataset updated
    Nov 8, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Relaxed Naïve Bayes Team
    Description

    NaiveBayes_R.xlsx: This Excel file includes information as to how probabilities of observed features are calculated given recidivism (P(x_ij│R)) in the training data. Each cell is embedded with an Excel function to render appropriate figures. P(Xi|R): This tab contains probabilities of feature attributes among recidivated offenders. NIJ_Recoded: This tab contains re-coded NIJ recidivism challenge data following our coding schema described in Table 1. Recidivated_Train: This tab contains re-coded features of recidivated offenders. Tabs from [Gender] through [Condition_Other]: Each tab contains probabilities of feature attributes given recidivism. We use these conditional probabilities to replace the raw values of each feature in P(Xi|R) tab. NaiveBayes_NR.xlsx: This Excel file includes information as to how probabilities of observed features are calculated given non-recidivism (P(x_ij│N)) in the training data. Each cell is embedded with an Excel function to render appropriate figures. P(Xi|N): This tab contains probabilities of feature attributes among non-recidivated offenders. NIJ_Recoded: This tab contains re-coded NIJ recidivism challenge data following our coding schema described in Table 1. NonRecidivated_Train: This tab contains re-coded features of non-recidivated offenders. Tabs from [Gender] through [Condition_Other]: Each tab contains probabilities of feature attributes given non-recidivism. We use these conditional probabilities to replace the raw values of each feature in P(Xi|N) tab. Training_LnTransformed.xlsx: Figures in each cell are log-transformed ratios of probabilities in NaiveBayes_R.xlsx (P(Xi|R)) to the probabilities in NaiveBayes_NR.xlsx (P(Xi|N)). TestData.xlsx: This Excel file includes the following tabs based on the test data: P(Xi|R), P(Xi|N), NIJ_Recoded, and Test_LnTransformed (log-transformed P(Xi|R)/ P(Xi|N)). Training_LnTransformed.dta: We transform Training_LnTransformed.xlsx to Stata data set. We use Stat/Transfer 13 software package to transfer the file format. StataLog.smcl: This file includes the results of the logistic regression analysis. Both estimated intercept and coefficient estimates in this Stata log correspond to the raw weights and standardized weights in Figure 1. Brier Score_Re-Check.xlsx: This Excel file recalculates Brier scores of Relaxed Naïve Bayes Classifier in Table 3, showing evidence that results displayed in Table 3 are correct. *****Full List***** NaiveBayes_R.xlsx NaiveBayes_NR.xlsx Training_LnTransformed.xlsx TestData.xlsx Training_LnTransformed.dta StataLog.smcl Brier Score_Re-Check.xlsx Data for Weka (Training Set): Bayes_2022_NoID Data for Weka (Test Set): BayesTest_2022_NoID Weka output for machine learning models (Conventional naïve Bayes, AdaBoost, Multilayer Perceptron, Logistic Regression, and Random Forest)

  15. f

    Increment Calculations (Excel)

    • figshare.com
    xlsx
    Updated Dec 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Valerio Avitabile (2023). Increment Calculations (Excel) [Dataset]. http://doi.org/10.6084/m9.figshare.23936268.v4
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Dec 15, 2023
    Dataset provided by
    figshare
    Authors
    Valerio Avitabile
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This file provides the input data, assumptions and calculations used to compute the statistics on gross and net annual forest increment and natural losses for Europe, harmonized for definitions and reference period.The description of the content of this file is provided in the "ReadMe" spreadsheet within the file

  16. Extended 1.0 Dataset of "Concentration and Geospatial Modelling of Health...

    • zenodo.org
    bin, csv, pdf
    Updated Sep 23, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Peter Domjan; Peter Domjan; Viola Angyal; Viola Angyal; Istvan Vingender; Istvan Vingender (2024). Extended 1.0 Dataset of "Concentration and Geospatial Modelling of Health Development Offices' Accessibility for the Total and Elderly Populations in Hungary" [Dataset]. http://doi.org/10.5281/zenodo.13826993
    Explore at:
    bin, pdf, csvAvailable download formats
    Dataset updated
    Sep 23, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Peter Domjan; Peter Domjan; Viola Angyal; Viola Angyal; Istvan Vingender; Istvan Vingender
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Sep 23, 2024
    Area covered
    Hungary
    Description

    Introduction

    We are enclosing the database used in our research titled "Concentration and Geospatial Modelling of Health Development Offices' Accessibility for the Total and Elderly Populations in Hungary", along with our statistical calculations. For the sake of reproducibility, further information can be found in the file Short_Description_of_Data_Analysis.pdf and Statistical_formulas.pdf

    The sharing of data is part of our aim to strengthen the base of our scientific research. As of March 7, 2024, the detailed submission and analysis of our research findings to a scientific journal has not yet been completed.

    The dataset was expanded on 23rd September 2024 to include SPSS statistical analysis data, a heatmap, and buffer zone analysis around the Health Development Offices (HDOs) created in QGIS software.

    Short Description of Data Analysis and Attached Files (datasets):

    Our research utilised data from 2022, serving as the basis for statistical standardisation. The 2022 Hungarian census provided an objective basis for our analysis, with age group data available at the county level from the Hungarian Central Statistical Office (KSH) website. The 2022 demographic data provided an accurate picture compared to the data available from the 2023 microcensus. The used calculation is based on our standardisation of the 2022 data. For xlsx files, we used MS Excel 2019 (version: 1808, build: 10406.20006) with the SOLVER add-in.

    Hungarian Central Statistical Office served as the data source for population by age group, county, and regions: https://www.ksh.hu/stadat_files/nep/hu/nep0035.html, (accessed 04 Jan. 2024.) with data recorded in MS Excel in the Data_of_demography.xlsx file.

    In 2022, 108 Health Development Offices (HDOs) were operational, and it's noteworthy that no developments have occurred in this area since 2022. The availability of these offices and the demographic data from the Central Statistical Office in Hungary are considered public interest data, freely usable for research purposes without requiring permission.

    The contact details for the Health Development Offices were sourced from the following page (Hungarian National Population Centre (NNK)): https://www.nnk.gov.hu/index.php/efi (n=107). The Semmelweis University Health Development Centre was not listed by NNK, hence it was separately recorded as the 108th HDO. More information about the office can be found here: https://semmelweis.hu/egeszsegfejlesztes/en/ (n=1). (accessed 05 Dec. 2023.)

    Geocoordinates were determined using Google Maps (N=108): https://www.google.com/maps. (accessed 02 Jan. 2024.) Recording of geocoordinates (latitude and longitude according to WGS 84 standard), address data (postal code, town name, street, and house number), and the name of each HDO was carried out in the: Geo_coordinates_and_names_of_Hungarian_Health_Development_Offices.csv file.

    The foundational software for geospatial modelling and display (QGIS 3.34), an open-source software, can be downloaded from:

    https://qgis.org/en/site/forusers/download.html. (accessed 04 Jan. 2024.)

    The HDOs_GeoCoordinates.gpkg QGIS project file contains Hungary's administrative map and the recorded addresses of the HDOs from the

    Geo_coordinates_and_names_of_Hungarian_Health_Development_Offices.csv file,

    imported via .csv file.

    The OpenStreetMap tileset is directly accessible from www.openstreetmap.org in QGIS. (accessed 04 Jan. 2024.)

    The Hungarian county administrative boundaries were downloaded from the following website: https://data2.openstreetmap.hu/hatarok/index.php?admin=6 (accessed 04 Jan. 2024.)

    HDO_Buffers.gpkg is a QGIS project file that includes the administrative map of Hungary, the county boundaries, as well as the HDO offices and their corresponding buffer zones with a radius of 7.5 km.

    Heatmap.gpkg is a QGIS project file that includes the administrative map of Hungary, the county boundaries, as well as the HDO offices and their corresponding heatmap (Kernel Density Estimation).

    A brief description of the statistical formulas applied is included in the Statistical_formulas.pdf.

    Recording of our base data for statistical concentration and diversification measurement was done using MS Excel 2019 (version: 1808, build: 10406.20006) in .xlsx format.

    • Aggregated number of HDOs by county: Number_of_HDOs.xlsx
    • Standardised data (Number of HDOs per 100,000 residents): Standardized_data.xlsx
    • Calculation of the Lorenz curve: Lorenz_curve.xlsx
    • Calculation of the Gini index: Gini_Index.xlsx
    • Calculation of the LQ index: LQ_Index.xlsx
    • Calculation of the Herfindahl-Hirschman Index: Herfindahl_Hirschman_Index.xlsx
    • Calculation of the Entropy index: Entropy_Index.xlsx
    • Regression and correlation analysis calculation: Regression_correlation.xlsx

    Using the SPSS 29.0.1.0 program, we performed the following statistical calculations with the databases Data_HDOs_population_without_outliers.sav and Data_HDOs_population.sav:

    • Regression curve estimation with elderly population and number of HDOs, excluding outlier values (Types of analyzed equations: Linear, Logarithmic, Inverse, Quadratic, Cubic, Compound, Power, S, Growth, Exponential, Logistic, with summary and ANOVA analysis table): Curve_estimation_elderly_without_outlier.spv
    • Pearson correlation table between the total population, elderly population, and number of HDOs per county, excluding outlier values such as Budapest and Pest County: Pearson_Correlation_populations_HDOs_number_without_outliers.spv.
    • Dot diagram including total population and number of HDOs per county, excluding outlier values such as Budapest and Pest Counties: Dot_HDO_total_population_without_outliers.spv.
    • Dot diagram including elderly (64<) population and number of HDOs per county, excluding outlier values such as Budapest and Pest Counties: Dot_HDO_elderly_population_without_outliers.spv
    • Regression curve estimation with total population and number of HDOs, excluding outlier values (Types of analyzed equations: Linear, Logarithmic, Inverse, Quadratic, Cubic, Compound, Power, S, Growth, Exponential, Logistic, with summary and ANOVA analysis table): Curve_estimation_without_outlier.spv
    • Dot diagram including elderly (64<) population and number of HDOs per county: Dot_HDO_elderly_population.spv
    • Dot diagram including total population and number of HDOs per county: Dot_HDO_total_population.spv
    • Pearson correlation table between the total population, elderly population, and number of HDOs per county: Pearson_Correlation_populations_HDOs_number.spv
    • Regression curve estimation with total population and number of HDOs, (Types of analyzed equations: Linear, Logarithmic, Inverse, Quadratic, Cubic, Compound, Power, S, Growth, Exponential, Logistic, with summary and ANOVA analysis table): Curve_estimation_total_population.spv

    For easier readability, the files have been provided in both SPV and PDF formats.

    The translation of these supplementary files into English was completed on 23rd Sept. 2024.

    If you have any further questions regarding the dataset, please contact the corresponding author: domjan.peter@phd.semmelweis.hu

  17. f

    Data from: Spreadsheets to calculate P–V–T relations, thermodynamic and...

    • tandf.figshare.com
    xlsx
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tatiana S. Sokolova; Peter I. Dorogokupets; Konstantin D. Litasov; Boris S. Danilov; Anna M. Dymshits (2023). Spreadsheets to calculate P–V–T relations, thermodynamic and thermoelastic properties of silicates in the MgSiO3–MgO system [Dataset]. http://doi.org/10.6084/m9.figshare.6210506.v2
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Taylor & Francis
    Authors
    Tatiana S. Sokolova; Peter I. Dorogokupets; Konstantin D. Litasov; Boris S. Danilov; Anna M. Dymshits
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Modified equations of state (EoS) of forsterite, wadsleyite, ringwoodite, akimotoite, bridgmanite and post-perovskite based on the Helmholtz free energy are described using Microsoft Excel spreadsheets. The equations of state were set up by joint analysis of reference experimental data and can be used to calculate thermodynamic and thermoelastic parameters and P–V–T properties of the Mg-silicates. We used Visual Basic for Applications module in Microsoft Excel and presented a simultaneous calculation of full set of thermodynamic and thermoelastic functions using only T–P and T–V data as input parameters. Phase transitions in the MgSiO3–MgO system play an important role in the interpretation of the seismic boundaries of the upper Earth’s mantle and in the D″ layer. Therefore, proposed EoSes of silicates in the MgSiO3–MgO system have clear geophysical implications. The developed software will be interesting to specialists who are engaged to study the mantle mineralogy and Earth’s interior.

  18. r

    Data from: INDILACT – Extended voluntary waiting period in primiparous dairy...

    • researchdata.se
    Updated Mar 13, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anna Edvardsson Rasmussen (2025). INDILACT – Extended voluntary waiting period in primiparous dairy cows. Part 2: Customized VWP – Metadata and R–scripts with statistical calculations [Dataset]. https://researchdata.se/en/catalogue/dataset/2024-424
    Explore at:
    (108812), (428272), (22393), (5799), (3243), (23818), (5034), (747913), (7170)Available download formats
    Dataset updated
    Mar 13, 2025
    Dataset provided by
    Swedish University of Agricultural Sciences (SLU)
    Authors
    Anna Edvardsson Rasmussen
    Time period covered
    Jan 1, 2019 - Oct 27, 2022
    Area covered
    Sweden
    Description

    This is part 2 of INDILACT, part 1 is published separately.

    The objective of this study is to investigate how a customized voluntary waiting period before first insemination in prmiparous dairy cows would affect milk production, fertility and health of primparous dairy cows during their first calving interval.

    The data was registered between January 2019 and october 2022.

    This data is archived: - Metadata (publically available) - Raw data (.txt files) from the Swedish national herd recording scheme (SNDRS), operated by Växa Sverige: access restricted due to agreements with the principle owners of the data, Växa Sverige and the farms. Code lists are available in INDILACT part 1. - Aggregated data (Excel files): access restricted due to agreements with the principle owners of the data, Växa Sverige and the farms - R- scripts with statistical calculations (Openly available)

    Metadata (3 filer): - Metadata gentypning: The only new file type compared to INDILACT Part 1, description of how this data category have been handled. The other file-types have been handled in the same way as in INDILACT Part 1. - Metadata - del 2 - General summary of initioal data handeling for aggregation of the files of the same types (dates etc.) to create excel-files used in the R-scripts. - DisCodes: Divisions of the diagnoses into categories.

    Raw data: -59 .txt files containing data retrieved from SNDRS from 8 separate occacions. -Data from 18 Swedish farms from Jan 2019 to Oct 2022.

    Aggregeated data: - 29 Excelfiles. The textfiles have been transformed to Excel formate and all data from the same file type is aggregated into one file. - Data collected from the farms by email and phone contact, about individual cows enrolled in the trial, from Oct 2020 to Oct 2022. - One merged Script derived from initial data handeling in R where relevant variables were calculated and aggregated to be used for statistical calculations.

    R-script with data handeling and statistical calculations: - "Data analysis part 2 - final": Data handeling to create the file used in the statistical calculations. - "Part 2 - Binomial models - Fertility": Statistiscal calculations of variables using Binomial models. - "Part 2 - glmmTMB models - Fertility": Statistiscal calculations of variables using glmmTMB models. - "Part 2 - linear models - Fertility": Statistiscal calculations of fertility variables using linear models. - "Part 2 - linear models": Statistiscal calculations of milk variables using linear models.

    Running the R scripts requires access to the restricted files. The files should be unpacked in a subdirectory "data" relative to the working directory for the scripts. See also the file "sessionInfo.txt" for information on R packages used.

  19. f

    Excel Data File (A longitudinal examination of executive function, visual...

    • yorksj.figshare.com
    txt
    Updated Jun 23, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jack Brimmell (2022). Excel Data File (A longitudinal examination of executive function, visual attention, and soccer penalty performance) [Dataset]. http://doi.org/10.25421/yorksj.20089349.v2
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jun 23, 2022
    Dataset provided by
    York St John University
    Authors
    Jack Brimmell
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is the Excel file for the PhD study of Jack Brimmell entitled: A longitudinal examination of executive function, visual attention, and soccer penalty performance.

  20. Data from: PROperties of FIre Suppressant SYstems: "PROFISSY" - A...

    • catalog.data.gov
    • data.nist.gov
    Updated Jul 29, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institute of Standards and Technology (2022). PROperties of FIre Suppressant SYstems: "PROFISSY" - A Spreadsheet Application for Fire-Suppressant Bottle-Filling Calculations [Dataset]. https://catalog.data.gov/dataset/properties-of-fire-suppressant-systems-profissy-a-spreadsheet-application-for-fire-suppres-b8c63
    Explore at:
    Dataset updated
    Jul 29, 2022
    Dataset provided by
    National Institute of Standards and Technologyhttp://www.nist.gov/
    Description

    This spreadsheet and accompanying files are the result of work performed for U.S. Army Ground Vehicle Systems Center by the National Institute of Standards and Technology (NIST), Applied Chemicals and Materials Division on the development of a computer program for fire-suppressant bottle-filling calculations under interagency agreement number 11478007. The work includes the development of an Excel spreadsheet that is to be used with the NIST23 (REFPROP) (that must be obtained separately at https://www.nist.gov/srd/refprop) to provide two bottle-filling calculations (1) given vessel size, mass of agent, mass of pressurizing agent, and filling temperature compute the filling pressure, and the temperature and pressure conditions at which the fluid in the vessel becomes single phase, and (2) given the vessel size, mass of agent, and filling temperature and pressure, compute the mass of pressurizing fluid, and the temperature and pressure conditions at which the fluid in the vessel becomes single phase. The agents include CF3I, R-218, R-125, R-227ea, R 13B1, R-236fa, HFE-7100, Novec 649 (also known as Novec 1230 and FK-5-1-12), R 1233zd(E), R-1336mzz(Z), and R1336-mzz(E). Two pressurizing agents are available, nitrogen and carbon dioxide. There also is an option to include solid sodium bicarbonate powder in the calculations, and the ability to generate tables of conditions in the vessel as a function of temperature summarized with simple graphics.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Alejandro Quintela-del-Río; Mario Francisco-Fernández (2023). Excel Templates: A Helpful Tool for Teaching Statistics [Dataset]. http://doi.org/10.6084/m9.figshare.3408052.v2

Data from: Excel Templates: A Helpful Tool for Teaching Statistics

Related Article
Explore at:
zipAvailable download formats
Dataset updated
May 30, 2023
Dataset provided by
Taylor & Francis
Authors
Alejandro Quintela-del-Río; Mario Francisco-Fernández
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

This article describes a free, open-source collection of templates for the popular Excel (2013, and later versions) spreadsheet program. These templates are spreadsheet files that allow easy and intuitive learning and the implementation of practical examples concerning descriptive statistics, random variables, confidence intervals, and hypothesis testing. Although they are designed to be used with Excel, they can also be employed with other free spreadsheet programs (changing some particular formulas). Moreover, we exploit some possibilities of the ActiveX controls of the Excel Developer Menu to perform interactive Gaussian density charts. Finally, it is important to note that they can be often embedded in a web page, so it is not necessary to employ Excel software for their use. These templates have been designed as a useful tool to teach basic statistics and to carry out data analysis even when the students are not familiar with Excel. Additionally, they can be used as a complement to other analytical software packages. They aim to assist students in learning statistics, within an intuitive working environment. Supplementary materials with the Excel templates are available online.

Search
Clear search
Close search
Google apps
Main menu