Journal of business analytics Impact Factor 2024-2025 - ResearchHelpDesk - Business analytics research focuses on developing new insights and a holistic understanding of an organisation’s business environment to help make timely and accurate decisions, and to survive, innovate and grow. Thus, business analytics draws on the full spectrum of descriptive/diagnostic, predictive and prescriptive analytics in order to make better (i.e., data-driven and evidence-based) decisions to create business value in the broadest sense. The mission of the Journal of Business Analytics Journal (JBA) is to serve the emerging and rapidly growing community of business analytics academics and practitioners. We aim to publish articles that use real-world data and cases to tackle problem situations in a creative and innovative manner. We solicit articles that address an interesting research problem, collect and/or repurpose multiple types of data sets, and develop and evaluate analytics methods and methodologies to help organisations apply business analytics in new and novel ways. Reports of research using qualitative or quantitative approaches are welcomed, as are interdisciplinary and mixed methods approaches. Topics may include: Applications of AI and machine learning methods in business analytics Network science and social network applications for business Social media analytics Statistics and econometrics in business analytics Use of novel data science techniques in business analytics Robotics and autonomous vehicles Methods and methodologies for business analytics development and deployment Organisational factors in business analytics Responsible use of business analytics and AI Ethical and social implications of business analytics and AI Bias and explainability in analytics and AI Our editorial philosophy is to publish papers that contribute to theory and practice. Journal of Business Analytics is indexed in: AIS eLibrary Australian Business Deans Council (ABDC) Journal Quality List British Library CLOCKSS Crossref Ei Compendex (Engineering Village) Google Scholar Microsoft Academic Portico SCImago Scopus Ulrich's Periodicals Directory
Journal of business analytics Abstract & Indexing - ResearchHelpDesk - Business analytics research focuses on developing new insights and a holistic understanding of an organisation’s business environment to help make timely and accurate decisions, and to survive, innovate and grow. Thus, business analytics draws on the full spectrum of descriptive/diagnostic, predictive and prescriptive analytics in order to make better (i.e., data-driven and evidence-based) decisions to create business value in the broadest sense. The mission of the Journal of Business Analytics Journal (JBA) is to serve the emerging and rapidly growing community of business analytics academics and practitioners. We aim to publish articles that use real-world data and cases to tackle problem situations in a creative and innovative manner. We solicit articles that address an interesting research problem, collect and/or repurpose multiple types of data sets, and develop and evaluate analytics methods and methodologies to help organisations apply business analytics in new and novel ways. Reports of research using qualitative or quantitative approaches are welcomed, as are interdisciplinary and mixed methods approaches. Topics may include: Applications of AI and machine learning methods in business analytics Network science and social network applications for business Social media analytics Statistics and econometrics in business analytics Use of novel data science techniques in business analytics Robotics and autonomous vehicles Methods and methodologies for business analytics development and deployment Organisational factors in business analytics Responsible use of business analytics and AI Ethical and social implications of business analytics and AI Bias and explainability in analytics and AI Our editorial philosophy is to publish papers that contribute to theory and practice. Journal of Business Analytics is indexed in: AIS eLibrary Australian Business Deans Council (ABDC) Journal Quality List British Library CLOCKSS Crossref Ei Compendex (Engineering Village) Google Scholar Microsoft Academic Portico SCImago Scopus Ulrich's Periodicals Directory
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Consumer Price Index (CPI) is a key economic indicator used by policymakers worldwide to monitor inflation and guide monetary policy decisions. In Korea, the CPI significantly impacts decisions on interest rates, fiscal policy frameworks, and the Bank of Korea’s strategies for economic stability. Given its importance, accurately forecasting the Total CPI is crucial for informed decision-making. Achieving accurate estimation, however, presents several challenges. First, the Korean Total CPI is calculated as a weighted sum of 462 items grouped into 12 categories of goods and services. This heterogeneity makes it difficult to account for all variations in consumer behavior and price dynamics. Second, the monthly frequency of CPI data results in a relatively sparse time series, limiting the performance of the analysis. Furthermore, external factors such as policy changes and pandemics add further volatility to the CPI. To address these challenges, we propose a novel framework consisting of four key components: (1) a hybrid Convolutional Neural Network-Long Short-Term Memory mechanism designed to capture complex patterns in CPI data, enhancing estimation accuracy; (2) multivariate inputs that incorporate CPI component indices alongside auxiliary variables for richer contextual information; (3) data augmentation through linear interpolation to convert monthly data into daily data, optimizing it for highly parametrized deep learning models; and (4) sentiment index derived from Korean CPI-related news articles, providing insights into external factors influencing CPI fluctuations. Experimental results demonstrate that the proposed model outperforms existing approaches in CPI prediction, as evidenced by lower RMSE values. This improved accuracy has the potential to support the development of more timely and effective economic policies.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Consumer Price Index (CPI) is a key economic indicator used by policymakers worldwide to monitor inflation and guide monetary policy decisions. In Korea, the CPI significantly impacts decisions on interest rates, fiscal policy frameworks, and the Bank of Korea’s strategies for economic stability. Given its importance, accurately forecasting the Total CPI is crucial for informed decision-making. Achieving accurate estimation, however, presents several challenges. First, the Korean Total CPI is calculated as a weighted sum of 462 items grouped into 12 categories of goods and services. This heterogeneity makes it difficult to account for all variations in consumer behavior and price dynamics. Second, the monthly frequency of CPI data results in a relatively sparse time series, limiting the performance of the analysis. Furthermore, external factors such as policy changes and pandemics add further volatility to the CPI. To address these challenges, we propose a novel framework consisting of four key components: (1) a hybrid Convolutional Neural Network-Long Short-Term Memory mechanism designed to capture complex patterns in CPI data, enhancing estimation accuracy; (2) multivariate inputs that incorporate CPI component indices alongside auxiliary variables for richer contextual information; (3) data augmentation through linear interpolation to convert monthly data into daily data, optimizing it for highly parametrized deep learning models; and (4) sentiment index derived from Korean CPI-related news articles, providing insights into external factors influencing CPI fluctuations. Experimental results demonstrate that the proposed model outperforms existing approaches in CPI prediction, as evidenced by lower RMSE values. This improved accuracy has the potential to support the development of more timely and effective economic policies.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This article aims to investigate whether differences in ESG ratings have an impact on corporate green innovation behavior. A high-order fixed effects model was established using panel data from Chinese companies from 2009 to 2022 to empirically test the impact of ESG rating divergence in the Chinese market on corporate green innovation behavior.The study demonstrates that ESG rating disparity raises the quantity but lowers the quality of businesses’ green innovation efforts because of the short board effect. After a series of robustness tests, the results are still valid.The mechanism investigation reveals that both an external pressure channel and an internal strategy adjustment channel are responsible for the impact of ESG rating disparity on green innovation efforts. The asymmetry of corporate green innovation activities is exacerbated by managers’ self-interest, whereas the asymmetry of green innovation is mitigated by the caliber of government. According to the heterogeneity analysis, the divergence of a business’s ESG rating between large-scale, non-heavy polluting, and places with strong environmental regulations can effectively slow down the asymmetric behavior of enterprise innovation activities. Additional investigation reveals that the phenomenon of ESG rating divergence spreads across industries and geographical areas. The short board effect of ESG rating divergence can be effectively mitigated by improving the quality of enterprise information disclosure and speeding up the digital transformation of businesses. The research conclusion provides marginal contributions on how to improve China’s ESG rating system and how enterprises can identify ESG rating differences and make scientific decisions.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Journal of business analytics Impact Factor 2024-2025 - ResearchHelpDesk - Business analytics research focuses on developing new insights and a holistic understanding of an organisation’s business environment to help make timely and accurate decisions, and to survive, innovate and grow. Thus, business analytics draws on the full spectrum of descriptive/diagnostic, predictive and prescriptive analytics in order to make better (i.e., data-driven and evidence-based) decisions to create business value in the broadest sense. The mission of the Journal of Business Analytics Journal (JBA) is to serve the emerging and rapidly growing community of business analytics academics and practitioners. We aim to publish articles that use real-world data and cases to tackle problem situations in a creative and innovative manner. We solicit articles that address an interesting research problem, collect and/or repurpose multiple types of data sets, and develop and evaluate analytics methods and methodologies to help organisations apply business analytics in new and novel ways. Reports of research using qualitative or quantitative approaches are welcomed, as are interdisciplinary and mixed methods approaches. Topics may include: Applications of AI and machine learning methods in business analytics Network science and social network applications for business Social media analytics Statistics and econometrics in business analytics Use of novel data science techniques in business analytics Robotics and autonomous vehicles Methods and methodologies for business analytics development and deployment Organisational factors in business analytics Responsible use of business analytics and AI Ethical and social implications of business analytics and AI Bias and explainability in analytics and AI Our editorial philosophy is to publish papers that contribute to theory and practice. Journal of Business Analytics is indexed in: AIS eLibrary Australian Business Deans Council (ABDC) Journal Quality List British Library CLOCKSS Crossref Ei Compendex (Engineering Village) Google Scholar Microsoft Academic Portico SCImago Scopus Ulrich's Periodicals Directory