The Research and Development Survey (RANDS) is a platform designed for conducting survey question evaluation and statistical research. RANDS is an ongoing series of surveys from probability-sampled commercial survey panels used for methodological research at the National Center for Health Statistics (NCHS). RANDS estimates are generated using an experimental approach that differs from the survey design approaches generally used by NCHS, including possible biases from different response patterns and sampling frames as well as increased variability from lower sample sizes. Use of the RANDS platform allows NCHS to produce more timely data than would be possible using traditional data collection methods. RANDS is not designed to replace NCHS’ higher quality, core data collections. Below are experimental estimates of reduced access to healthcare for three rounds of RANDS during COVID-19. Data collection for the three rounds of RANDS during COVID-19 occurred between June 9, 2020 and July 6, 2020, August 3, 2020 and August 20, 2020, and May 17, 2021 and June 30, 2021. Information needed to interpret these estimates can be found in the Technical Notes. RANDS during COVID-19 included questions about unmet care in the last 2 months during the coronavirus pandemic. Unmet needs for health care are often the result of cost-related barriers. The National Health Interview Survey, conducted by NCHS, is the source for high-quality data to monitor cost-related health care access problems in the United States. For example, in 2018, 7.3% of persons of all ages reported delaying medical care due to cost and 4.8% reported needing medical care but not getting it due to cost in the past year. However, cost is not the only reason someone might delay or not receive needed medical care. As a result of the coronavirus pandemic, people also may not get needed medical care due to cancelled appointments, cutbacks in transportation options, fear of going to the emergency room, or an altruistic desire to not be a burden on the health care system, among other reasons. The Household Pulse Survey (https://www.cdc.gov/nchs/covid19/pulse/reduced-access-to-care.htm), an online survey conducted in response to the COVID-19 pandemic by the Census Bureau in partnership with other federal agencies including NCHS, also reports estimates of reduced access to care during the pandemic (beginning in Phase 1, which started on April 23, 2020). The Household Pulse Survey reports the percentage of adults who delayed medical care in the last 4 weeks or who needed medical care at any time in the last 4 weeks for something other than coronavirus but did not get it because of the pandemic. The experimental estimates on this page are derived from RANDS during COVID-19 and show the percentage of U.S. adults who were unable to receive medical care (including urgent care, surgery, screening tests, ongoing treatment, regular checkups, prescriptions, dental care, vision care, and hearing care) in the last 2 months. Technical Notes: https://www.cdc.gov/nchs/covid19/rands/reduced-access-to-care.htm#limitations
This statistic shows the size of the global big data market related to healthcare in 2016 and a forecast for 2025. It is estimated that over this period the market will increase from around 11.5 billion to nearly 70 billion U.S. dollars.
https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/
Big Data Analytics In Healthcare Market size is estimated at USD 37.22 Billion in 2024 and is projected to reach USD 74.82 Billion by 2032, growing at a CAGR of 9.12% from 2026 to 2032.
Big Data Analytics In Healthcare Market: Definition/ Overview
Big Data Analytics in Healthcare, often referred to as health analytics, is the process of collecting, analyzing, and interpreting large volumes of complex health-related data to derive meaningful insights that can enhance healthcare delivery and decision-making. This field encompasses various data types, including electronic health records (EHRs), genomic data, and real-time patient information, allowing healthcare providers to identify patterns, predict outcomes, and improve patient care.
This statistic shows the size of the global big data analytics services market related to healthcare in 2016 and a forecast for 2025, by application. It is predicted that by 2025 the market for health-related financial analytics services using big data will increase to over 13 billion U.S. dollars.
https://www.iqvia.com/locations/united-kingdom/solutions/life-sciences-industry-solutions/real-world-solutions/iqvia-medical-research-datahttps://www.iqvia.com/locations/united-kingdom/solutions/life-sciences-industry-solutions/real-world-solutions/iqvia-medical-research-data
IQVIA Medical Research Data, (IMRD) contains longitudinal non-identified patient electronic healthcare records (EHR) collected from UK General Practitioner (GP) clinical systems via the IQVIA Medical Research Extraction Scheme.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundThere is widespread evidence that statistical methods play an important role in original research articles, especially in medical research. The evaluation of statistical methods and reporting in journals suffers from a lack of standardized methods for assessing the use of statistics. The objective of this study was to develop and evaluate an instrument to assess the statistical intensity in research articles in a standardized way.MethodsA checklist-type measure scale was developed by selecting and refining items from previous reports about the statistical contents of medical journal articles and from published guidelines for statistical reporting. A total of 840 original medical research articles that were published between 2007–2015 in 16 journals were evaluated to test the scoring instrument. The total sum of all items was used to assess the intensity between sub-fields and journals. Inter-rater agreement was examined using a random sample of 40 articles. Four raters read and evaluated the selected articles using the developed instrument.ResultsThe scale consisted of 66 items. The total summary score adequately discriminated between research articles according to their study design characteristics. The new instrument could also discriminate between journals according to their statistical intensity. The inter-observer agreement measured by the ICC was 0.88 between all four raters. Individual item analysis showed very high agreement between the rater pairs, the percentage agreement ranged from 91.7% to 95.2%.ConclusionsA reliable and applicable instrument for evaluating the statistical intensity in research papers was developed. It is a helpful tool for comparing the statistical intensity between sub-fields and journals. The novel instrument may be applied in manuscript peer review to identify papers in need of additional statistical review.
https://media.market.us/privacy-policyhttps://media.market.us/privacy-policy
Medical Technology and Innovation Statistics: In recent years, there has been a remarkable acceleration in the pace of medical technology advancements. These are driven by factors such as technological advancements, increased funding for research and development, and the growing demand for innovative solutions to address healthcare challenges.
These advancements have the potential to revolutionize various aspects of healthcare delivery, from diagnostics and treatment to patient monitoring and disease prevention.
According to our latest research, the global Big Data in Healthcare market size reached USD 41.2 billion in 2024, demonstrating robust expansion driven by the increasing adoption of advanced analytics and data-driven decision-making in the healthcare sector. The market is projected to grow at a CAGR of 17.4% from 2025 to 2033, reaching an estimated value of USD 154.1 billion by 2033. This significant growth is primarily attributed to the surging volume of healthcare data, advancements in artificial intelligence and machine learning, and the increasing focus on improving patient outcomes and operational efficiency across healthcare institutions worldwide.
One of the primary growth factors fueling the Big Data in Healthcare market is the exponential rise in healthcare data generation, driven by the widespread adoption of electronic health records (EHRs), wearable devices, and connected medical equipment. As healthcare organizations seek to harness actionable insights from this data deluge, the demand for advanced analytics solutions has surged. The integration of big data analytics enables providers to enhance clinical decision-making, reduce medical errors, and optimize treatment protocols, thereby improving patient care and safety. Furthermore, the growing emphasis on value-based care models has compelled healthcare stakeholders to invest in robust data analytics platforms that can support population health management and evidence-based medicine, further accelerating market expansion.
Another key driver of the Big Data in Healthcare market is the growing need for cost containment and operational efficiency within healthcare organizations. Rising healthcare costs, resource constraints, and the increasing complexity of healthcare delivery have prompted providers and payers to leverage big data analytics to streamline operations, reduce redundancies, and enhance resource allocation. Financial analytics applications, in particular, are witnessing substantial uptake as organizations strive to identify cost-saving opportunities, detect fraudulent claims, and improve revenue cycle management. Additionally, operational analytics solutions are being deployed to optimize supply chain management, workforce planning, and facility utilization, resulting in enhanced productivity and reduced overheads.
The rapid advancement of artificial intelligence (AI), machine learning, and cloud computing technologies has also played a pivotal role in propelling the Big Data in Healthcare market forward. AI-driven analytics platforms are enabling healthcare providers to uncover hidden patterns in patient data, predict disease outbreaks, and personalize treatment plans based on individual patient profiles. The proliferation of cloud-based solutions has further democratized access to advanced analytics tools, allowing even small and medium-sized healthcare organizations to leverage big data capabilities without significant upfront investments in IT infrastructure. This technological evolution is expected to continue driving innovation and adoption across the global healthcare landscape.
From a regional perspective, North America continues to dominate the Big Data in Healthcare market, accounting for the largest revenue share in 2024, followed by Europe and Asia Pacific. The region's leadership is underpinned by robust healthcare IT infrastructure, high adoption rates of electronic health records, and strong government initiatives promoting data interoperability and healthcare digitization. Meanwhile, Asia Pacific is poised for the fastest growth during the forecast period, fueled by rapid healthcare modernization, expanding digital health initiatives, and increasing investments in healthcare analytics by both public and private sectors. As healthcare systems worldwide continue to prioritize data-driven transformation, the market's regional landscape is expected to evolve, with emerging economies playing an increasingly prominent role in shaping future growth trajectories.
https://opcrd.co.uk/our-database/data-requests/https://opcrd.co.uk/our-database/data-requests/
About OPCRD
Optimum Patient Care Research Database (OPCRD) is a real-world, longitudinal, research database that provides anonymised data to support scientific, medical, public health and exploratory research. OPCRD is established, funded and maintained by Optimum Patient Care Limited (OPC) – which is a not-for-profit social enterprise that has been providing quality improvement programmes and research support services to general practices across the UK since 2005.
Key Features of OPCRD
OPCRD has been purposefully designed to facilitate real-world data collection and address the growing demand for observational and pragmatic medical research, both in the UK and internationally. Data held in OPCRD is representative of routine clinical care and thus enables the study of ‘real-world’ effectiveness and health care utilisation patterns for chronic health conditions.
OPCRD unique qualities which set it apart from other research data resources: • De-identified electronic medical records of more than 24.9 million patients • OPCRD covers all major UK primary care clinical systems • OPCRD covers approximately 35% of the UK population • One of the biggest primary care research networks in the world, with over 1,175 practices • Linked patient reported outcomes for over 68,000 patients including Covid-19 patient reported data • Linkage to secondary care data sources including Hospital Episode Statistics (HES)
Data Available in OPCRD
OPCRD has received data contributions from over 1,175 practices and currently holds de-identified research ready data for over 24.9 million patients or data subjects. This includes longitudinal primary care patient data and any data relevant to the management of patients in primary care, and thus covers all conditions. The data is derived from both electronic health records (EHR) data and patient reported data from patient questionnaires delivered as part of quality improvement. OPCRD currently holds over 68,000 patient reported questionnaire data on Covid-19, asthma, COPD and rare diseases.
Approvals and Governance
OPCRD has NHS research ethics committee (REC) approval to provide anonymised data for scientific and medical research since 2010, with its most recent approval in 2020 (NHS HRA REC ref: 20/EM/0148). OPCRD is governed by the Anonymised Data Ethics and Protocols Transparency committee (ADEPT). All research conducted using anonymised data from OPCRD must gain prior approval from ADEPT. Proceeds from OPCRD data access fees and detailed feasibility assessments are re-invested into OPC services for the continued free provision of patient quality improvement programmes for contributing practices and patients.
For more information on OPCRD please visit: https://opcrd.co.uk/
As per our latest research, the Big Data Analytics for Clinical Research market size reached USD 7.45 billion globally in 2024, reflecting a robust adoption pace driven by the increasing digitization of healthcare and clinical trial processes. The market is forecasted to grow at a CAGR of 17.2% from 2025 to 2033, reaching an estimated USD 25.54 billion by 2033. This significant growth is primarily attributed to the rising need for real-time data-driven decision-making, the proliferation of electronic health records (EHRs), and the growing emphasis on precision medicine and personalized healthcare solutions. The industry is experiencing rapid technological advancements, making big data analytics a cornerstone in transforming clinical research methodologies and outcomes.
Several key growth factors are propelling the expansion of the Big Data Analytics for Clinical Research market. One of the primary drivers is the exponential increase in clinical data volumes from diverse sources, including EHRs, wearable devices, genomics, and imaging. Healthcare providers and research organizations are leveraging big data analytics to extract actionable insights from these massive datasets, accelerating drug discovery, optimizing clinical trial design, and improving patient outcomes. The integration of artificial intelligence (AI) and machine learning (ML) algorithms with big data platforms has further enhanced the ability to identify patterns, predict patient responses, and streamline the entire research process. These technological advancements are reducing the time and cost associated with clinical research, making it more efficient and effective.
Another significant factor fueling market growth is the increasing collaboration between pharmaceutical & biotechnology companies and technology firms. These partnerships are fostering the development of advanced analytics solutions tailored specifically for clinical research applications. The demand for real-world evidence (RWE) and real-time patient monitoring is rising, particularly in the context of post-market surveillance and regulatory compliance. Big data analytics is enabling stakeholders to gain deeper insights into patient populations, treatment efficacy, and adverse event patterns, thereby supporting evidence-based decision-making. Furthermore, the shift towards decentralized and virtual clinical trials is creating new opportunities for leveraging big data to monitor patient engagement, adherence, and safety remotely.
The regulatory landscape is also evolving to accommodate the growing use of big data analytics in clinical research. Regulatory agencies such as the FDA and EMA are increasingly recognizing the value of data-driven approaches for enhancing the reliability and transparency of clinical trials. This has led to the establishment of guidelines and frameworks that encourage the adoption of big data technologies while ensuring data privacy and security. However, the implementation of stringent data protection regulations, such as GDPR and HIPAA, poses challenges related to data integration, interoperability, and compliance. Despite these challenges, the overall outlook for the Big Data Analytics for Clinical Research market remains highly positive, with sustained investments in digital health infrastructure and analytics capabilities.
From a regional perspective, North America currently dominates the Big Data Analytics for Clinical Research market, accounting for the largest share due to its advanced healthcare infrastructure, high adoption of digital technologies, and strong presence of leading pharmaceutical companies. Europe follows closely, driven by increasing government initiatives to promote health data interoperability and research collaborations. The Asia Pacific region is emerging as a high-growth market, supported by expanding healthcare IT investments, rising clinical trial activities, and growing awareness of data-driven healthcare solutions. Latin America and the Middle East & Africa are also witnessing gradual adoption, albeit at a slower pace, due to infrastructural and regulatory challenges. Overall, the global market is poised for substantial growth across all major regions over the forecast period.
The Agency for Healthcare Research and Quality (AHRQ) created SyH-DR from eligibility and claims files for Medicare, Medicaid, and commercial insurance plans in calendar year 2016. SyH-DR contains data from a nationally representative sample of insured individuals for the 2016 calendar year. SyH-DR uses synthetic data elements at the claim level to resemble the marginal distribution of the original data elements. SyH-DR person-level data elements are not synthetic, but identifying information is aggregated or masked.
This statistic presents the total annual number of discharges from U.S. hospitals as of 2023, by state. The annual total number of discharges from hospitals in California was nearly three million, the highest among all U.S. states.
US Healthcare NPI Data is a comprehensive resource offering detailed information on health providers registered in the United States.
Dataset Highlights:
Taxonomy Data:
Data Updates:
Use Cases:
Data Quality and Reliability:
Access and Integration: - CSV Format: The dataset is provided in CSV format, making it easy to integrate with various data analysis tools and platforms. - Ease of Use: The structured format of the data ensures that it can be easily imported, analyzed, and utilized for various applications without extensive preprocessing.
Ideal for:
Why Choose This Dataset?
By leveraging the US Healthcare NPI & Taxonomy Data, users can gain valuable insights into the healthcare landscape, enhance their outreach efforts, and conduct detailed research with confidence in the accuracy and comprehensiveness of the data.
Summary:
https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy
The Big Data in Healthcare Market Report is Segmented by Component (Software, Services), Deployment (On-Premise, Cloud), Analytics Type (Descriptive Analytics, Predictive Analytics, Prescriptive Analytics), Application (Financial Analytics, and More), End User (Healthcare Providers, and More), and Geography (North America, Europe, Asia-Pacific, and More). The Market Forecasts are Provided in Terms of Value (USD).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Statistical Briefs HCUP Statistical Briefs provide healthcare statistics on hospital inpatient stays, emergency department visits, and ambulatory surgeries. Topics include medical conditions treated, procedures performed, patient populations served, and quality of care. Information is presented in tables and figures, accompanied by explanatory text. Statistical Briefs are listed below in reverse chronological order.
https://media.market.us/privacy-policyhttps://media.market.us/privacy-policy
Electronic Health Records Statistics: In today's fast-paced and data-driven healthcare landscape, Electronic Health Records (EHRs) play a pivotal role in transforming how medical information is stored, accessed, and shared.
EHRs have revolutionized the way healthcare providers deliver patient care by replacing traditional paper-based systems with digital records.
These digital systems enable healthcare professionals to access patient data securely, make informed decisions, and collaborate effectively across the care continuum.
The adoption and utilization of EHR systems have seen significant growth in recent years due to various factors such as government initiatives, advancements in technology, and the increasing need for streamlined healthcare processes.
As EHRs become more prevalent, they offer immense benefits in terms of improved patient outcomes, increased efficiency, and enhanced research opportunities.
As per our latest research, the global clinical data analytics market size reached USD 12.8 billion in 2024, reflecting robust momentum driven by the increasing adoption of digital health technologies and the growing emphasis on data-driven decision-making in healthcare. The market is expected to expand at a CAGR of 24.1% from 2025 to 2033, with the forecasted market size projected to reach USD 86.7 billion by 2033. This remarkable growth trajectory is primarily fueled by the rising need for advanced analytics to improve patient outcomes, optimize operational efficiency, and comply with stringent regulatory requirements. The integration of artificial intelligence and machine learning into clinical data analytics platforms is further enhancing the market’s value proposition, making it an indispensable tool for modern healthcare organizations globally.
A key growth driver for the clinical data analytics market is the exponential increase in healthcare data generation, stemming from widespread adoption of electronic health records (EHRs), wearable devices, and connected health systems. Healthcare institutions are increasingly leveraging clinical data analytics solutions to extract actionable insights from these vast data pools, enabling more accurate diagnoses, personalized treatment plans, and proactive disease management. The need to reduce healthcare costs while maintaining high standards of patient care is compelling providers to adopt analytics-driven approaches. Clinical data analytics helps identify inefficiencies, detect patterns in patient care, and predict adverse events, which collectively contribute to improved clinical outcomes and operational savings.
Another significant growth factor is the rising prevalence of chronic diseases and the aging global population, which are placing unprecedented pressure on healthcare systems worldwide. Clinical data analytics empowers providers to stratify patient populations, monitor disease progression, and implement targeted interventions for high-risk groups. The ability to harness predictive analytics for early detection and prevention of complications is especially valuable in managing chronic conditions such as diabetes, cardiovascular diseases, and cancer. Moreover, the growing focus on value-based care models is incentivizing healthcare organizations to invest in analytics platforms that can demonstrate measurable improvements in quality and efficiency, further propelling market expansion.
The increasing regulatory scrutiny and demand for compliance with healthcare standards such as HIPAA, GDPR, and other regional data protection laws are also accelerating market growth. Clinical data analytics platforms are being designed with robust security and privacy features to ensure the safe handling of sensitive patient information. This not only helps organizations avoid costly penalties but also builds trust among patients, clinicians, and stakeholders. Additionally, the ongoing digital transformation in healthcare, supported by government initiatives and funding programs, is creating a favorable environment for the adoption of advanced analytics solutions across hospitals, clinics, research organizations, and pharmaceutical companies.
Regionally, North America continues to dominate the clinical data analytics market, accounting for the largest share due to its advanced healthcare infrastructure, high adoption of digital technologies, and supportive regulatory landscape. Europe follows closely, driven by strong government support for digital health initiatives and increasing investments in healthcare IT. The Asia Pacific region is emerging as a high-growth market, fueled by rapid healthcare modernization, rising healthcare expenditures, and growing awareness of the benefits of analytics. Latin America and the Middle East & Africa are also witnessing steady growth, albeit from a smaller base, as healthcare providers in these regions increasingly recognize the value of data-driven decision-making.
https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy
The Healthcare Data Monetization Market Report is Segmented by Type (Direct and Indirect), Deployment (On-Premises, Cloud), Application (Population Health Management, Drug Discovery & Development, and More), End User (Pharmaceutical & Biotechnology Companies, and More), Pricing Model (Subscription/Licensing, and More)), and Geography (North America, Europe, and More). The Market Forecasts are Provided in Terms of Value (USD).
The HCUP Summary Trend Tables include monthly information on hospital utilization derived from the HCUP State Inpatient Databases (SID) and HCUP State Emergency Department Databases (SEDD). Information on emergency department (ED) utilization is dependent on availability of HCUP data; not all HCUP Partners participate in the SEDD. The HCUP Summary Trend Tables include downloadable Microsoft® Excel tables with information on the following topics: Overview of monthly trends in inpatient and emergency department utilization All inpatient encounter types Inpatient stays by priority conditions -COVID-19 -Influenza -Other acute or viral respiratory infection Inpatient encounter type -Normal newborns -Deliveries -Non-elective inpatient stays, admitted through the ED -Non-elective inpatient stays, not admitted through the ED -Elective inpatient stays Inpatient service line -Maternal and neonatal conditions -Mental health and substance use disorders -Injuries -Surgeries -Other medical conditions Emergency department treat-and-release visits Emergency department treat-and-release visits by priority conditions -COVID-19 -Influenza -Other acute or viral respiratory infection Description of the data source, methodology, and clinical criteria
Healthcare Analytics Market Size 2025-2029
The healthcare analytics market size is forecast to increase by USD 81.28 billion, at a CAGR of 25% between 2024 and 2029.
The market is experiencing significant growth due to several key trends. The integration of big data with healthcare analytics is a major growth factor, enabling healthcare providers to make data-driven decisions and improve patient outcomes.
Another trend is the increasing use of Internet-enabled mobile devices in healthcare services, allowing for remote monitoring and real-time data access. However, data security and privacy concerns remain a challenge, with the need for strong security measures to protect sensitive patient information. These trends are shaping the future of patient engagement and driving growth in the global healthcare analytics market as well.
What will be the Size of the Healthcare Analytics Market During the Forecast Period?
Request Free Sample
The market is experiencing significant growth due to the increasing adoption of digital solutions for improving patient care and reducing treatment costs. Healthcare organizations are leveraging descriptive analytics to gain insights from clinical data, while predictive and prescriptive analytics enable the development of personalized treatment plans and optimal therapeutic strategies. Financial analytics help manage healthcare expenses, ensuring cost-effective patient care. The National Institutes of Health (NIH) and other research institutions are driving innovation in health data analytics, leading to advancements in areas such as patient compliance, medication selection, and disease management. Industry leaders are utilizing artificial intelligence and machine learning to enhance clinical care, outreach, and disease management, ultimately leading to better treatment consistency and optimal outcomes for patients.
How is this Healthcare Analytics Industry segmented and which is the largest segment?
The healthcare analytics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Component
Services
Software
Hardware
Deployment
On-premise
Cloud-based
Type
Descriptive Analysis
Predictive Analysis
Prescriptive and Diagnostics
Application
Financial Analytics
Clinical Analytics
Operations and Administrative Analytics
Population Health Analytics
End-User
Insurance Company
Government Agencies
Healthcare Providers
Pharmaceutical and Medical Device Companies
Geography
North America
US
Canada
Europe
France
Germany
Italy
UK
APAC
China
India
Japan
South Korea
South America
Middle East and Africa
By Component Insights
The services segment is estimated to witness significant growth during the forecast period. Healthcare analytics services encompass consulting, learning and training, development and integration, hardware maintenance and support, IT management, process management, and software support. The consulting and software support segments are experiencing significant growth due to the increasing demand for advanced healthcare delivery systems and cost-effective models. The healthcare sector's ongoing transition from on-premises to cloud-based software and IT infrastructure deployment is another growth driver. This shift is expected to increase the demand for IT education and training services. End-users of these services range from individual doctor offices to full-service hospitals and multi-location clinics, including large hospitals and tissue and blood processing organizations.
Get a glance at the share of various segments. Request Free Sample
The services segment was valued at USD 6.7 billion in 2019 and showed a gradual increase during the forecast period.
Regional Analysis
APAC is estimated to contribute 36% to the growth of the global market during the forecast period. Technavio's analysts have elaborately explained the regional trends and drivers that shape the market during the forecast period.
For more insights on the market share of various regions, Request Free Sample
The North American market is driven by the increasing demand for secure data access and effective patient information management. The US and Canada are the primary contributors to this market due to their early adoption of advanced technologies, such as machine learning, predictive analytics, and quantum computing, across various industries. These technologies enable the healthcare sector to optimize patient compliance, medication selection, and therapeutic strategies and, ultimately, achieve optimal outcomes. Major companies in this market provide solutions to help healthcare organizations manage and
The Research and Development Survey (RANDS) is a platform designed for conducting survey question evaluation and statistical research. RANDS is an ongoing series of surveys from probability-sampled commercial survey panels used for methodological research at the National Center for Health Statistics (NCHS). RANDS estimates are generated using an experimental approach that differs from the survey design approaches generally used by NCHS, including possible biases from different response patterns and sampling frames as well as increased variability from lower sample sizes. Use of the RANDS platform allows NCHS to produce more timely data than would be possible using traditional data collection methods. RANDS is not designed to replace NCHS’ higher quality, core data collections. Below are experimental estimates of reduced access to healthcare for three rounds of RANDS during COVID-19. Data collection for the three rounds of RANDS during COVID-19 occurred between June 9, 2020 and July 6, 2020, August 3, 2020 and August 20, 2020, and May 17, 2021 and June 30, 2021. Information needed to interpret these estimates can be found in the Technical Notes. RANDS during COVID-19 included questions about unmet care in the last 2 months during the coronavirus pandemic. Unmet needs for health care are often the result of cost-related barriers. The National Health Interview Survey, conducted by NCHS, is the source for high-quality data to monitor cost-related health care access problems in the United States. For example, in 2018, 7.3% of persons of all ages reported delaying medical care due to cost and 4.8% reported needing medical care but not getting it due to cost in the past year. However, cost is not the only reason someone might delay or not receive needed medical care. As a result of the coronavirus pandemic, people also may not get needed medical care due to cancelled appointments, cutbacks in transportation options, fear of going to the emergency room, or an altruistic desire to not be a burden on the health care system, among other reasons. The Household Pulse Survey (https://www.cdc.gov/nchs/covid19/pulse/reduced-access-to-care.htm), an online survey conducted in response to the COVID-19 pandemic by the Census Bureau in partnership with other federal agencies including NCHS, also reports estimates of reduced access to care during the pandemic (beginning in Phase 1, which started on April 23, 2020). The Household Pulse Survey reports the percentage of adults who delayed medical care in the last 4 weeks or who needed medical care at any time in the last 4 weeks for something other than coronavirus but did not get it because of the pandemic. The experimental estimates on this page are derived from RANDS during COVID-19 and show the percentage of U.S. adults who were unable to receive medical care (including urgent care, surgery, screening tests, ongoing treatment, regular checkups, prescriptions, dental care, vision care, and hearing care) in the last 2 months. Technical Notes: https://www.cdc.gov/nchs/covid19/rands/reduced-access-to-care.htm#limitations