100+ datasets found
  1. d

    Air Quality

    • catalog.data.gov
    • data.cityofnewyork.us
    Updated Apr 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofnewyork.us (2024). Air Quality [Dataset]. https://catalog.data.gov/dataset/air-quality
    Explore at:
    Dataset updated
    Apr 19, 2024
    Dataset provided by
    data.cityofnewyork.us
    Description

    Dataset contains information on New York City air quality surveillance data. Air pollution is one of the most important environmental threats to urban populations and while all people are exposed, pollutant emissions, levels of exposure, and population vulnerability vary across neighborhoods. Exposures to common air pollutants have been linked to respiratory and cardiovascular diseases, cancers, and premature deaths. These indicators provide a perspective across time and NYC geographies to better characterize air quality and health in NYC. Data can also be explored online at the Environment and Health Data Portal: http://nyc.gov/health/environmentdata.

  2. ENV02 - Air quality statistics

    • gov.uk
    Updated Apr 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department for Environment, Food & Rural Affairs (2024). ENV02 - Air quality statistics [Dataset]. https://www.gov.uk/government/statistical-data-sets/env02-air-quality-statistics
    Explore at:
    Dataset updated
    Apr 30, 2024
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Department for Environment, Food & Rural Affairs
    Description

    This data set contains data on the concentrations of major air pollutants as measured by the Automatic Urban and Rural Network (AURN).

    If you require the data in another format please contact: AQIE.Correspondence@defra.gov.uk

    https://assets.publishing.service.gov.uk/media/66290d83b0ace32985a7e6d7/PM25_Tables_2023.ods">Particulate Matter (PM2.5) Tables

     <p class="gem-c-attachment_metadata"><span class="gem-c-attachment_attribute"><abbr title="OpenDocument Spreadsheet" class="gem-c-attachment_abbr">ODS</abbr></span>, <span class="gem-c-attachment_attribute">247 KB</span></p>
    
    
    
      <p class="gem-c-attachment_metadata">
       This file is in an <a href="https://www.gov.uk/guidance/using-open-document-formats-odf-in-your-organisation" target="_self" class="govuk-link">OpenDocument</a> format
    

    https://assets.publishing.service.gov.uk/media/66290deb3b0122a378a7e60f/PM10_Tables_2023.ods">Particulate Matter (PM10) Tables

     <p class="gem-c-attachment_metadata"><span class="gem-c-attachment_attribute"><abbr title="OpenDocument Spreadsheet" class="gem-c-attachment_abbr">ODS</abbr></span>, <span class="gem-c-attachment_attribute">201 KB</span></p>
    
    
    
      <p class="gem-c-attachment_metadata">
       This file is in an <a href="https://www.gov.uk/guidance/using-open-document-formats-odf-in-your-organisation" target="_self" class="govuk-link">OpenDocument</a> format
    

    <div class="gem-c-attachment_deta

  3. Air pollutant emissions in the U.S. 1990-2023, by type

    • statista.com
    Updated Mar 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Air pollutant emissions in the U.S. 1990-2023, by type [Dataset]. https://www.statista.com/statistics/1139418/air-pollutant-emissions-by-type-us/
    Explore at:
    Dataset updated
    Mar 15, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    Annual emissions of various air pollutants in the United States have experienced dramatic reductions over the past half a century. As of 2023, emissions of nitrogen oxides (NOx) had reduced by more than 70 percent since 1970 to 6.8 million tons. Sulfur dioxide (SO₂) emissions have also fallen dramatically in recent decades, dropping from 23 million tons to 1.6 million tons between 1990 and 2023. Air pollutants can pose serious health hazards to humans, with the number of air pollution related deaths in the U.S. averaging 60,000 a year.

  4. Annual Air Pollutant Statistics

    • ouvert.canada.ca
    • open.canada.ca
    pdf, txt, xlsx
    Updated Nov 27, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Ontario (2024). Annual Air Pollutant Statistics [Dataset]. https://ouvert.canada.ca/data/dataset/e5018406-cb90-4ded-a826-3e756402a2db
    Explore at:
    xlsx, pdf, txtAvailable download formats
    Dataset updated
    Nov 27, 2024
    Dataset provided by
    Government of Ontariohttps://www.ontario.ca/
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Time period covered
    Jan 1, 1995 - Dec 31, 2022
    Description

    This dataset provides a summary of annual air pollution statistics from 1995 to the current available year for six air pollutants: * Carbon Monoxide * Oxides of Nitrogen (NO, NO2, NOx) * Ozone * Fine Particulate Matter (PM2.5) * Sulphur Dioxide * Total Reduced Sulphur The annual statistics include percentiles, mean, maximums and also indicate the number of times an air monitoring station exceeded an Ontario annual ambient air quality criteria, where applicable. This information is also available in the annual Air Quality in Ontario Reports. The hourly air pollutant concentration data is posted in near real time on the Air Quality Ontario website: http://www.airqualityontario.com/

  5. Emissions of air pollutants

    • gov.uk
    • s3.amazonaws.com
    Updated Mar 13, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Emissions of air pollutants [Dataset]. https://www.gov.uk/government/statistics/emissions-of-air-pollutants
    Explore at:
    Dataset updated
    Mar 13, 2025
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Department for Environment, Food & Rural Affairs
    Description

    This data was revised on March 13th 2025 to apply the latest, improved domestic combustion methodology across all sources. This correction has impacted domestic combustion emissions across the time series causing a substantial reduction to sulphur dioxide emissions and a minor increase to NMVOC emissions.

    This publication provides estimates of UK emissions of particulate matter (PM10 and PM2.5), nitrogen oxides, ammonia, non-methane volatile organic compounds and sulphur dioxide.

    These estimates are used to monitor progress against the UK’s emission reduction targets for air pollutants. Emission reductions in the UK, alongside a number of other factors such as the weather, contribute to improvements in air quality in the UK and other countries. For more information on air quality data and information please refer to the "https://www.gov.uk/government/collections/air-quality-and-emissions-statistics" class="govuk-link">air quality and emissions statistics GOV.UK page.

    The https://naei.beis.gov.uk/" class="govuk-link">National Atmospheric Emissions Inventory website contains information on anthropogenic UK emissions and compilation methods for a wide range of air pollutants; as well as hosting a number of reports including the Devolved Administrations’ Air Quality Pollutant Inventories.

    The methodology to estimate emissions is continuously reviewed and developed to take account of new data sources, emission factors and modelling methods. This means the whole emissions time series from 1990 to the reporting year is revised annually.

    Please note: Due to methodological updates and improvements which are routinely carried out each year, the data and trends discussed here are not directly comparable to those published in previous iterations of this Accredited Official Statistics release. More information can be found in the accompanying Methods Document. For year-on-year changes in emissions, the trends presented within this document and the accompanying statistical tables should be used.

    If you do wish to see the impact of these methodological changes, you can access previous editions of this publication via https://webarchive.nationalarchives.gov.uk/*/https:/www.gov.uk/government/statistics/emissions-of-air-pollutants" class="govuk-link">The National Archives or the links below. As it takes time to compile and analyse the data from many different sources, this statistic publication is produced with a 2-year delay from the reporting year, meaning that this year’s inventory represents the reporting year 2023.

    Please email us with your feedback to help us make the publication more valuable to you.

    2024

    https://webarchive.nationalarchives.gov.uk/ukgwa/20240315195515/https:/www.gov.uk/government/statistics/emissions-of-air-pollutants" class="govuk-link">Emissions of air pollutants in the UK, 1970 to 2022

    Published: 14 February 2024

    2023

    https://webarchive.nationalarchives.gov.uk/ukgwa/20221124144722/https://www.gov.uk/government/statistics/emissions-of-air-pollutants" class="govuk-link">Emissions of air pollutants in the UK, 1970 to 2021

    Published: 18 February 2023

    2022

    https://webarchive.nationalarchives.gov.uk/ukgwa/20221225221936/https://www.gov.uk/government/statistics/emissions-of-air-pollutants" class="govuk-link">Emissions of air pollutants in the UK, 1970 to 2020

    Published: 14 February 2022

    2021

    https://webarchive.nationalarchives.gov.uk/ukgwa/20210215184515/https://www.gov.uk/government/statistics/emissions-of-air-pollutants" class="govuk-link">Emissions of air pollutants in the UK, 1970 to 2019

    Published: 12 February 2021

    2020

    https://webarchive.nationalarchives.gov.uk/20201014182239/https://www.gov.uk/government/statistics/emissions-of-air-pollutants" class="govuk-link">Emissions of air pollutants in the UK, 1970 to 2018

    Published: 14 February 2020

    2019

    https://webarchive.nationalarchives.gov.uk/20200103213653/https://www.gov.uk/government/statistics/emissions-of-air-pollutants" class="govuk-link">Emissions of air pollutants in the UK, 1970 to 2017

    Published: 15 February 2019

    2018

    <a rel="external" href="https://webarchive.nationalarchives.gov.uk/

  6. Historical Air Quality

    • kaggle.com
    zip
    Updated Feb 12, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    US Environmental Protection Agency (2019). Historical Air Quality [Dataset]. https://www.kaggle.com/datasets/epa/epa-historical-air-quality
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    Feb 12, 2019
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Authors
    US Environmental Protection Agency
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    The AQS Data Mart is a database containing all of the information from AQS. It has every measured value the EPA has collected via the national ambient air monitoring program. It also includes the associated aggregate values calculated by EPA (8-hour, daily, annual, etc.). The AQS Data Mart is a copy of AQS made once per week and made accessible to the public through web-based applications. The intended users of the Data Mart are air quality data analysts in the regulatory, academic, and health research communities. It is intended for those who need to download large volumes of detailed technical data stored at EPA and does not provide any interactive analytical tools. It serves as the back-end database for several Agency interactive tools that could not fully function without it: AirData, AirCompare, The Remote Sensing Information Gateway, the Map Monitoring Sites KML page, etc.

    AQS must maintain constant readiness to accept data and meet high data integrity requirements, thus is limited in the number of users and queries to which it can respond. The Data Mart, as a read only copy, can allow wider access.

    The most commonly requested aggregation levels of data (and key metrics in each) are:

    Sample Values (2.4 billion values back as far as 1957, national consistency begins in 1980, data for 500 substances routinely collected) The sample value converted to standard units of measure (generally 1-hour averages as reported to EPA, sometimes 24-hour averages) Local Standard Time (LST) and GMT timestamps Measurement method Measurement uncertainty, where known Any exceptional events affecting the data NAAQS Averages NAAQS average values (8-hour averages for ozone and CO, 24-hour averages for PM2.5) Daily Summary Values (each monitor has the following calculated each day) Observation count Observation per cent (of expected observations) Arithmetic mean of observations Max observation and time of max AQI (air quality index) where applicable Number of observations > Standard where applicable Annual Summary Values (each monitor has the following calculated each year) Observation count and per cent Valid days Required observation count Null observation count Exceptional values count Arithmetic Mean and Standard Deviation 1st - 4th maximum (highest) observations Percentiles (99, 98, 95, 90, 75, 50) Number of observations > Standard Site and Monitor Information FIPS State Code (the first 5 items on this list make up the AQS Monitor Identifier) FIPS County Code Site Number (unique within the county) Parameter Code (what is measured) POC (Parameter Occurrence Code) to distinguish from different samplers at the same site Latitude Longitude Measurement method information Owner / operator / data-submitter information Monitoring Network to which the monitor belongs Exemptions from regulatory requirements Operational dates City and CBSA where the monitor is located Quality Assurance Information Various data fields related to the 19 different QA assessments possible

    Querying BigQuery tables

    You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.epa_historical_air_quality.[TABLENAME]. Fork this kernel to get started.

    Acknowledgements

    Data provided by the US Environmental Protection Agency Air Quality System Data Mart.

  7. Poland Air Quality Dataset (2017-2023) + weather

    • kaggle.com
    zip
    Updated Sep 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Igor (2024). Poland Air Quality Dataset (2017-2023) + weather [Dataset]. https://www.kaggle.com/datasets/wisekinder/poland-air-quality-monitoring-dataset-2017-2023
    Explore at:
    zip(1050041969 bytes)Available download formats
    Dataset updated
    Sep 3, 2024
    Authors
    Igor
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Area covered
    Poland
    Description

    The Air Quality Dataset provides a comprehensive overview of atmospheric pollution levels across various locations in Poland from 2017 to 2023. It features extensive measurements of numerous air pollutants captured through an extensive network of air quality monitoring stations throughout the country. The dataset includes both hourly (1g) and daily (24g) averages of the recorded pollutants, offering detailed temporal resolution to study short-term peaks and long-term trends in air quality.

    Pollutants Measured:

    1. Gaseous Pollutants: Carbon Monoxide (CO), Nitrogen Dioxide (NO2), Nitric Oxide (NO), Nitrogen Oxides (NOx), Sulfur Dioxide (SO2), Ozone (O3), and Benzene (C6H6).
    2. Particulate Matter: PM10, PM2.5; and specific elements and compounds bound to PM10 such as Lead (Pb), Arsenic (As), Cadmium (Cd), Nickel (Ni), among others.
    3. Polycyclic Aromatic Hydrocarbons (PAHs) associated with PM10: Benzo[a]anthracene (BaA), Benzo[b]fluoranthene (BbF), Benzo[j]fluoranthene (BjF), Benzo[k]fluoranthene (BkF), Benzo[a]pyrene (BaP), Indeno[1,2,3-cd]pyrene (IP), Dibenzo[a,h]anthracene (DBahA).
    4. Additional Chemicals: Including various volatile organic compounds (VOCs) like ethylene, toluene, xylene variants, aldehydes, and hydrocarbons.
    

    Features of the Dataset:

    Locations: Data from numerous air quality monitoring stations distributed across various urban, suburban, and rural areas in Poland.
    Time Resolution: Measurements are provided in both hourly and daily intervals, catering to different analytical needs.
    Coverage Period: This dataset encompasses data from 2017 to the year, 2023, enabling analysis over multiple years to discern trends and assess the effectiveness of air quality management policies.
    Deployment of Deposition Sampling: Concentrations of certain pollutants in wet and dry deposition forms, noted with 'cdepoz' (cumulative deposition), providing insights into the deposition rates of airborne pollutants.
    

    Potential Applications:

    Environmental Research: Study the impact of various pollutants on air quality, health, and the environment.
    Policy Making: Assist policymakers in evaluating the effectiveness of past regulations and planning future actions to improve air quality.
    Public Health: Correlate pollutant exposure levels with health outcomes, helping public health professionals to mitigate risks associated with poor air quality.
    

    Data Format:

    The dataset is structured in a tabular format with each row representing an observation time (either hourly or daily) and columns representing different pollutants and their concentrations at various monitoring stations.
    

    This dataset is an essential resource for researchers, policymakers, environmental agencies, and health professionals who need a detailed and robust dataset to understand and combat air pollution in Poland.

    Source of data: Chief Inspectorate of Environmental Protection (GIOS)

    The historic weather dataset for Cracow and Warsaw

    The historic weather dataset for Cracow and Warsaw with suburbs, covering daily observations from 2019 to August 2024, would encompass a range of atmospheric and meteorological data points collected over the defined time period and locations. Here’s a description of what such a dataset might include and signify: Key Characteristics:

    Locations: The cities of Cracow and Warsaw, along with their suburbs. The dataset would likely specify the exact areas or measurements stations.
    Time Frame: Daily records from January 1, 2019, to August, 2024, providing a comprehensive view of weather variations through different seasons and years.
    Data Granularity: Daily data would allow trends such as temperature fluctuations, precipitation patterns, and weather anomalies to be studied in considerable detail.
    

    Likely Data Fields:

    Each record in the dataset might contain:

    DATE_VALID_STD: Representing each day within the date range specified (from 2019-01-01 to 2024-08-20 for Cracow and Warsaw suburbs).
    Temperature Fields (Min, Max, Avg): Temperature readings at specified intervals, likely in Celsius, providing insight into daily and seasonal temperature patterns and extremes.
    Humidity Fields (Min, Max, Avg): Relative and specific humidity readings to assess moisture levels in the air, which have implications for weather conditions, comfort levels, and health.
    Precipitation: Data on rainfall, snowfall, and total snow depth, essential for understanding water cycle dynamics, agricultural planning, and urban water management in these areas.
    Wind Measurements: May include minimum, average, and maximum speeds and perhaps prevailing directions, useful in sectors like aviation, construction, and event planning.
    Pressure and Tendency: Barometric pressure readings at different measurement standards to help predict weather changes.
    Radiation and Cloud Cover: D...
    
  8. d

    NYCCAS Air Pollution Rasters

    • catalog.data.gov
    • data.cityofnewyork.us
    Updated Apr 19, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofnewyork.us (2024). NYCCAS Air Pollution Rasters [Dataset]. https://catalog.data.gov/dataset/nyccas-air-pollution-rasters
    Explore at:
    Dataset updated
    Apr 19, 2024
    Dataset provided by
    data.cityofnewyork.us
    Description

    Citywide raster files of annual average predicted surface for nitrogen dioxide (NO2), fine particulate matter (PM2.5), black carbon (BC), and nitric oxide (NO); summer average for ozone (O3) and winter average for sulfure dioxide (SO2). Description: Annual average predicted surface for nitrogen dioxide (NO2), fine particulate matter (PM2.5), black carbon (BC), and nitric oxide (NO); summer average for ozone (O3) and winter average for sulfure dioxide (SO2). File type is ESRI grid raster files at 300 m resolution, NAD83 New York Long Island State Plane FIPS, feet projection. Prediction surface generated from Land Use Regression modeling of December 2008- December 2019 (years 1-11) New York Community Air Survey monitoring data.As these are estimated annual average levels produced by a statistical model, they are not comparable to short term localized monitoring or monitoring done for regulatory purposes. For description of NYCCAS design and Land Use Regression Modeling process see: nyc-ehs.net/nyccas

  9. W

    AirNow Air Quality Monitoring Data (Current)

    • wifire-data.sdsc.edu
    csv, esri rest +4
    Updated Sep 24, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CA Governor's Office of Emergency Services (2020). AirNow Air Quality Monitoring Data (Current) [Dataset]. https://wifire-data.sdsc.edu/dataset/airnow-air-quality-monitoring-data-current
    Explore at:
    kml, html, esri rest, csv, geojson, zipAvailable download formats
    Dataset updated
    Sep 24, 2020
    Dataset provided by
    CA Governor's Office of Emergency Services
    Description

    This United States Environmental Protection Agency (US EPA) feature layer represents monitoring site data, updated hourly concentrations and Air Quality Index (AQI) values for the latest hour received from monitoring sites that report to AirNow.


    Map and forecast data are collected using federal reference or equivalent monitoring techniques or techniques approved by the state, local or tribal monitoring agencies. To maintain "real-time" maps, the data are displayed after the end of each hour. Although preliminary data quality assessments are performed, the data in AirNow are not fully verified and validated through the quality assurance procedures monitoring organizations used to officially submit and certify data on the EPA Air Quality System (AQS).

    This data sharing, and centralization creates a one-stop source for real-time and forecast air quality data. The benefits include quality control, national reporting consistency, access to automated mapping methods, and data distribution to the public and other data systems.
    The U.S. Environmental Protection Agency, National Oceanic and Atmospheric Administration, National Park Service, tribal, state, and local agencies developed the AirNow system to provide the public with easy access to national air quality information. State and local agencies report the Air Quality Index (AQI) for cities across the US and parts of Canada and Mexico.
    AirNow data are used only to report the AQI, not to formulate or support regulation, guidance or any other EPA decision or position.

    About the AQI

    The Air Quality Index (AQI) is an index for reporting daily air quality. It tells you how clean or polluted your air is, and what associated health effects might be a concern for you. The AQI focuses on health effects you may experience within a few hours or days after breathing polluted air. EPA calculates the AQI for five major air pollutants regulated by the Clean Air Act: ground-level ozone, particle pollution (also known as particulate matter), carbon monoxide, sulfur dioxide, and nitrogen dioxide. For each of these pollutants, EPA has established national air quality standards to protect public health. Ground-level ozone and airborne particles (often referred to as "particulate matter") are the two pollutants that pose the greatest threat to human health in this country.

    A number of factors influence ozone formation, including emissions from cars, trucks, buses, power plants, and industries, along with weather conditions. Weather is especially favorable for ozone formation when it’s hot, dry and sunny, and winds are calm and light. Federal and state regulations, including regulations for power plants, vehicles and fuels, are helping reduce ozone pollution nationwide.

    Fine particle pollution (or "particulate matter") can be emitted directly from cars, trucks, buses, power plants and industries, along with wildfires and woodstoves. But it also forms from chemical reactions of other pollutants in the air. Particle pollution can be high at different times of year, depending on where you live. In some areas, for example, colder winters can lead to increased particle pollution emissions from woodstove use, and stagnant weather conditions with calm and light winds can trap PM2.5 pollution near emission sources. Federal and state rules are helping reduce fine particle pollution, including clean diesel rules for vehicles and fuels, and rules to reduce pollution from power plants, industries, locomotives, and marine vessels, among others.

    How Does the AQI Work?

    Think of the AQI as a yardstick that runs from 0 to 500. The higher the AQI value, the greater the level of air pollution and the greater the health concern. For example, an AQI value of 50 represents good air quality with little potential to affect public health, while an AQI value over 300 represents hazardous air quality.

    An AQI value of 100 generally corresponds to the national air quality standard for the pollutant, which is the level EPA has set to protect public health. AQI values below 100 are generally thought of as satisfactory. When AQI values are above 100, air quality is considered to be unhealthy-at first for certain sensitive groups of people, then for everyone as AQI values get higher.

    Understanding the AQI

    The purpose of the AQI is to help you understand what local air quality means to your health. To make it easier to understand, the AQI is divided into six categories:

    <th style='font-weight: 300; border-width: 1px;

    Air Quality Index
    (AQI) Values
    Levels of Health ConcernColors
    When the AQI is in this range:
  10. Air Quality System (AQS)

    • catalog.data.gov
    • datadiscoverystudio.org
    • +2more
    Updated Nov 30, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Air and Radiation (OAR) - Office of Air Quality Planning and Standards (OAQPS) (2020). Air Quality System (AQS) [Dataset]. https://catalog.data.gov/dataset/air-quality-system-aqs
    Explore at:
    Dataset updated
    Nov 30, 2020
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    The Air Quality System (AQS) database contains measurements of air pollutant concentrations from throughout the United States and its territories. The measurements include both criteria air pollutants and hazardous air pollutants.

  11. U

    United States AQI: Alaska: Anchorage: SO2

    • ceicdata.com
    Updated Nov 22, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States AQI: Alaska: Anchorage: SO2 [Dataset]. https://www.ceicdata.com/en/united-states/air-quality-index-and-air-pollutants
    Explore at:
    Dataset updated
    Nov 22, 2022
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Nov 24, 1984 - Dec 5, 1984
    Area covered
    United States
    Description

    AQI: Alaska: Anchorage: SO2 data was reported at 0.000 Index in 05 Dec 1984. This stayed constant from the previous number of 0.000 Index for 04 Dec 1984. AQI: Alaska: Anchorage: SO2 data is updated daily, averaging 0.000 Index from Dec 1980 (Median) to 05 Dec 1984, with 881 observations. The data reached an all-time high of 41.000 Index in 07 Aug 1984 and a record low of 0.000 Index in 05 Dec 1984. AQI: Alaska: Anchorage: SO2 data remains active status in CEIC and is reported by United States Environmental Protection Agency. The data is categorized under Global Database’s United States – Table US.ESG.E001: Air Quality Index and Air Pollutants.

  12. Average quality of air in China 2023, by air pollutants

    • statista.com
    Updated Jun 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Average quality of air in China 2023, by air pollutants [Dataset]. https://www.statista.com/statistics/1042131/china-average-concentration-of-air-pollutants/
    Explore at:
    Dataset updated
    Jun 13, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    China
    Description

    Over the last decade, China has been trying to tackle worsening air quality from urbanization and industrialization. In 2023, the average concentration of ozone was around 144 micrograms per cubic meter in 339 cities in China.

    Environmental degradation

    Becoming the global manufacturing hub of goods brought not only rapid economic development to China, but also deteriorating air quality in cities across the country. Among other types of environmental issues, air pollution was the most concerning issue for almost half of Chinese survey respondents. Since 2001, carbon dioxide emissions in China have tripled to over 11 gigatons in 2022, with emissions increasing quickly again after dipping in 2016.

    Environmental protection

    The Chinese government saw environmental degradation primarily as a public health issue to Chinese citizens and therefore started contributing more and more resources into protecting the environment. In 2023, public expenditure on energy conservation and environmental protection in China had amounted to nearly 564 billion yuan, almoust double the amount of ten years ago. Citizens have also begun to change their habits due to climate change. For example, around half of Chinese have made changes to their commuting and water use habits in order to help fight climate change.

  13. c

    Air Quality

    • data.ccrpc.org
    csv
    Updated Jun 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Champaign County Regional Planning Commission (2024). Air Quality [Dataset]. https://data.ccrpc.org/dataset/air-quality
    Explore at:
    csv(1152)Available download formats
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    Champaign County Regional Planning Commission
    Description

    This indicator shows how many days per year were assessed to have air quality that was worse than “moderate” in Champaign County, according to the U.S. Environmental Protection Agency’s (U.S. EPA) Air Quality Index Reports. The period of analysis is 1980-2023, and the U.S. EPA’s air quality ratings analyzed here are as follows, from best to worst: “good,” “moderate,” “unhealthy for sensitive groups,” “unhealthy,” “very unhealthy,” and "hazardous."[1]

    In 2023, the number of days rated to have air quality worse than moderate was the highest in the 21st century at 13. This is likely due to the air pollution created by the unprecedented Canadian wildfire smoke in Summer 2023.

    While there has been no consistent year-to-year trend in the number of days per year rated to have air quality worse than moderate, the number of days in peak years had decreased from 2000 through 2022. Where peak years before 2000 had between one and two dozen days with air quality worse than moderate (e.g., 1983, 18 days; 1988, 23 days; 1994, 17 days; 1999, 24 days), the year with the greatest number of days with air quality worse than moderate from 2000-2022 was 2002, with 10 days. There were several years between 2006 and 2022 that had no days with air quality worse than moderate.

    This data is sourced from the U.S. EPA’s Air Quality Index Reports. The reports are released annually, and our period of analysis is 1980-2023. The Air Quality Index Report websites does caution that "[a]ir pollution levels measured at a particular monitoring site are not necessarily representative of the air quality for an entire county or urban area," and recommends that data users do not compare air quality between different locations[2].

    [1] Environmental Protection Agency. (1980-2023). Air Quality Index Reports. (Accessed 4 June 2024).

    [2] Ibid.

    Source: Environmental Protection Agency. (1980-2023). Air Quality Index Reports. https://www.epa.gov/outdoor-air-quality-data/air-quality-index-report. (Accessed 4 June 2024).

  14. U

    United States AQI: Arizona: Phoenix-Mesa-Scottsdale: Ozone

    • ceicdata.com
    Updated Nov 22, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2022). United States AQI: Arizona: Phoenix-Mesa-Scottsdale: Ozone [Dataset]. https://www.ceicdata.com/en/united-states/air-quality-index-and-air-pollutants
    Explore at:
    Dataset updated
    Nov 22, 2022
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 13, 2025 - Mar 24, 2025
    Area covered
    United States
    Description

    AQI: Arizona: Phoenix-Mesa-Scottsdale: Ozone data was reported at 54.000 Index in 24 Mar 2025. This records a decrease from the previous number of 84.000 Index for 23 Mar 2025. AQI: Arizona: Phoenix-Mesa-Scottsdale: Ozone data is updated daily, averaging 58.000 Index from Jan 1980 (Median) to 24 Mar 2025, with 16472 observations. The data reached an all-time high of 264.000 Index in 01 Jun 2022 and a record low of 19.000 Index in 04 Dec 2022. AQI: Arizona: Phoenix-Mesa-Scottsdale: Ozone data remains active status in CEIC and is reported by United States Environmental Protection Agency. The data is categorized under Global Database’s United States – Table US.ESG.E001: Air Quality Index and Air Pollutants. [COVID-19-IMPACT]

  15. C

    Allegheny County Air Quality

    • data.wprdc.org
    • datasets.ai
    • +1more
    csv, geojson, html +2
    Updated Mar 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Allegheny County (2025). Allegheny County Air Quality [Dataset]. https://data.wprdc.org/dataset/allegheny-county-air-quality
    Explore at:
    html, csv, csv(1421), geojson(6680), txt(101367), pdf, csv(4527731)Available download formats
    Dataset updated
    Mar 27, 2025
    Dataset provided by
    Allegheny County
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Allegheny County
    Description

    Air quality data is collected from the Allegheny County Health Department monitors throughout the county. This data must be verified by qualified individuals before it can be considered official. The following data is unverified. This means that any electrical disruption or equipment malfunction can report erroneous monitored data.

    For more information about the Health Department's Air Quality Program or to view a live version of the dashboard, please visit the ACHD website: https://alleghenycounty.us/Health-Department/Programs/Air-Quality/Air-Quality.aspx

    Support for Health Equity datasets and tools provided by Amazon Web Services (AWS) through their Health Equity Initiative.

  16. Air Pollution Monitoring Data DCC - Dataset - data.gov.ie

    • data.gov.ie
    Updated Oct 19, 2011
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.gov.ie (2011). Air Pollution Monitoring Data DCC - Dataset - data.gov.ie [Dataset]. https://data.gov.ie/dataset/air-pollution-monitoring-data-dublin-city
    Explore at:
    Dataset updated
    Oct 19, 2011
    Dataset provided by
    data.gov.ie
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Air Quality Monitoring Data Dublin City Council measures ambient air quality in Dublin in accordance with Air Quality standards. 'This dataset contains Air Quality Monitoring Data from January to March 2011, consisting five spreadsheets taken from five air monitoring sites around Dublin City that show hourly results for the pollutants Sulphur Dioxide( SO2) , Nitrogen Dioxide (NO2), Carbon Monoxide ( CO) and Particulate Matter (PM2.5 & PM10). The regulations are set by the Clean Air for Europe Directive 2008 (2008/50); from January 1st, 2010 the directive also requires PM2.5 monitoring. There is no real time data for PM10 or PM25'Black smoke monitoring is also carried out as a form of background monitoring using the benchmark of EU Directive 80/779/EEC as a guide however this has been scaled down since the 1990s following the introduction of the coal ban.'Multi-pollutant sites are:'Winetavern Street PM10, NO2, CO, SO2'Coleraine Street- PM2.5, NO2, CO, SO2'Ballyfermot PM10, NO2, SO2'PM10 only sites include:'Phoenix Park'Rathmines'PM2.5 only:'Marino'Black Smoke:'Ringsend'Crumlin'Finglas'Cabra''Annual report published http://www.dublincity.ie/WaterWasteEnvironment/AirQualityMonitoringandNoiseControl/AirPollution/Documents/Annual_report_2009.pdf

  17. National Air Pollution Surveillance (NAPS) Program

    • ouvert.canada.ca
    • datasets.ai
    • +1more
    html
    Updated Mar 15, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Environment and Climate Change Canada (2023). National Air Pollution Surveillance (NAPS) Program [Dataset]. https://ouvert.canada.ca/data/dataset/1b36a356-defd-4813-acea-47bc3abd859b
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Mar 15, 2023
    Dataset provided by
    Environment And Climate Change Canadahttps://www.canada.ca/en/environment-climate-change.html
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    The National Air Pollution Surveillance (NAPS) program is the main source of ambient air quality data in Canada. The NAPS program, which began in 1969, is now comprised of nearly 260 stations in 150 rural and urban communities reporting to the Canada-Wide Air Quality Database (CWAQD). Managed by Environment and Climate Change Canada (ECCC) in collaboration with provincial, territorial, and regional government networks, the NAPS program forms an integral component of various diverse initiatives; including the Air Quality Health Index (AQHI), Canadian Environmental Sustainability Indicators (CESI), and the US-Canada Air Quality Agreement. Once per year, typically autumn, the Continuous data set for the previous year is reported on ECCC Data Mart. Beginning in March of 2020 the impact of the COVID-19 pandemic on NAPS Operations has resulted in reduced data availability for some sites and parameters. For additional information on NAPS data products contact the NAPS inquiry centre at RNSPA-NAPSINFO@ec.gc.ca Last updated March 2023. Supplemental Information Monitoring Program Overview The NAPS program is comprised of both continuous and (time-) integrated measurements of key air pollutants. Continuous data are collected using gas and particulate monitors, with data reported every hour of the year, and are available as hourly concentrations or annual averages. Integrated samples, collected at select sites, are analyzed at the NAPS laboratory in Ottawa for additional pollutants, and are typically collected for a 24 hour period once every six days, on various sampling media such as filters, canisters, and cartridges. Continuous Monitoring Air pollutants monitored continuously include the following chemical species: • carbon monoxide (CO) • nitrogen dioxide (NO2) • nitric oxide (NO) • nitrogen oxides (NOX) • ozone (O3) • sulphur dioxide (SO2) • particulate matter less than or equal to 2.5 (PM2.5) and 10 micrometres (PM10) Each provincial, territorial, and regional government monitoring network is responsible for collecting continuous data within their jurisdiction and ensuring that the data are quality-assured as specified in the Ambient Air Monitoring and Quality Assurance/Quality Control Guidelines. The hourly air pollutant concentrations are reported as hour-ending averages in local standard time with no adjustment for daylight savings time. These datasets are posted on an annual basis. Integrated Monitoring Categories of chemical species sampled on a time-integrated basis include: • fine (PM2.5) and coarse (PM10-2.5) particulate composition (e.g., metals, ions), and additional detailed chemistry provided through a subset of sites by the NAPS PM2.5 speciation program; • semi-volatile organic compounds (e.g., polycyclic aromatic hydrocarbons such as benzo[a]pyrene); • volatile organic compounds (e. g., benzene) The 24-hour air pollutant samples are collected from midnight to midnight. These datasets are generally posted on a quarterly basis. Data Disclaimer NAPS data products are subject to change on an ongoing basis, and reflect the most up-to-date and accurate information available. New versions of files will replace older ones, while retaining the same location and filename. The ‘Data-Donnees’ directory contains continuous and integrated data sorted by sampling year and then measurement. Pollutants measured, sampling duration and sampling frequency may vary by site location. Additional program details can be found at ‘ProgramInformation-InformationProgramme’ also in the data resources section. Citations National Air Pollution Surveillance Program, (year accessed). Available from the Government of Canada Open Data Portal at open.canada.ca.

  18. Air Quality and Climate Connections

    • data.subak.org
    • tandf.figshare.com
    db, docx, eps
    Updated Feb 16, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Figshare (2023). Air Quality and Climate Connections [Dataset]. http://doi.org/10.6084/m9.figshare.1415963.v2
    Explore at:
    eps, docx, dbAvailable download formats
    Dataset updated
    Feb 16, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Multiple linkages connect air quality and climate change. Many air pollutant sources also emit carbon dioxide (CO2), the dominant anthropogenic greenhouse gas (GHG). The two main contributors to non-attainment of U.S. ambient air quality standards, ozone (O3) and particulate matter (PM), interact with radiation, forcing climate change. PM warms by absorbing sunlight (e.g., black carbon) or cools by scattering sunlight (e.g., sulfates) and interacts with clouds; these radiative and microphysical interactions can induce changes in precipitation and regional circulation patterns. Climate change is expected to degrade air quality in many polluted regions by changing air pollution meteorology (ventilation and dilution), precipitation and other removal processes, and by triggering some amplifying responses in atmospheric chemistry and in anthropogenic and natural sources. Together, these processes shape distributions and extreme episodes of O3 and PM. Global modeling indicates that as air pollution programs reduce SO2 to meet health and other air quality goals, near-term warming accelerates due to “unmasking” of warming induced by rising CO2. Air pollutant controls on CH4, a potent GHG and precursor to global O3 levels, and on sources with high black carbon (BC) to organic carbon (OC) ratios could offset near-term warming induced by SO2 emission reductions, while reducing global background O3 and regionally high levels of PM. Lowering peak warming requires decreasing atmospheric CO2, which for some source categories would also reduce co-emitted air pollutants or their precursors. Model projections for alternative climate and air quality scenarios indicate a wide range for U.S. surface O3 and fine PM, although regional projections may be confounded by interannual to decadal natural climate variability. Continued implementation of U.S. NOx emission controls guards against rising pollution levels triggered either by climate change or by global emission growth. Improved accuracy and trends in emission inventories are critical for accountability analyses of historical and projected air pollution and climate mitigation policies.

    Implications: The expansion of U.S. air pollution policy to protect climate provides an opportunity for joint mitigation, with CH4 a prime target. BC reductions in developing nations would lower the global health burden, and for BC-rich sources (e.g., diesel) may lessen warming. Controls on these emissions could offset near-term warming induced by health-motivated reductions of sulfate (cooling). Wildfires, dust, and other natural PM and O3 sources may increase with climate warming, posing challenges to implementing and attaining air quality standards. Accountability analyses for recent and projected air pollution and climate control strategies should underpin estimated benefits and trade-offs of future policies.

  19. Global air pollution levels 2024, by select city

    • statista.com
    Updated Mar 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Global air pollution levels 2024, by select city [Dataset]. https://www.statista.com/statistics/1383851/air-pollution-in-major-cities-worldwide/
    Explore at:
    Dataset updated
    Mar 17, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    World
    Description

    Air pollution levels in cities vary greatly around the world, though they are typically higher in developing regions. In 2024, the cities of Jakarta and Cairo had an average PM2.5 concentrations of 41.7 and 39.9 micrograms per cubic meter (μg/m³) respectively. By comparison, PM2.5 levels in London and New York were less than eight μg/m³. Nevertheless, pollution levels in these four major cities are all higher than the World Health Organization's healthy limit, which are set at an annual average of less than five μg/m³. There are many sources of air pollution, such as energy production, transportation, and agricultural activities.

  20. w

    Air Pollution in World Cities 2000 - Afghanistan, Angola, Albania...and 158...

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Oct 26, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kiran D. Pandey, David R. Wheeler, Uwe Deichmann, Kirk E. Hamilton, Bart Ostro and Katie Bolt (2023). Air Pollution in World Cities 2000 - Afghanistan, Angola, Albania...and 158 more [Dataset]. https://microdata.worldbank.org/index.php/catalog/424
    Explore at:
    Dataset updated
    Oct 26, 2023
    Dataset authored and provided by
    Kiran D. Pandey, David R. Wheeler, Uwe Deichmann, Kirk E. Hamilton, Bart Ostro and Katie Bolt
    Time period covered
    1999 - 2000
    Area covered
    Angola
    Description

    Abstract

    Polluted air is a major health hazard in developing countries. Improvements in pollution monitoring and statistical techniques during the last several decades have steadily enhanced the ability to measure the health effects of air pollution. Current methods can detect significant increases in the incidence of cardiopulmonary and respiratory diseases, coughing, bronchitis, and lung cancer, as well as premature deaths from these diseases resulting from elevated concentrations of ambient Particulate Matter (Holgate 1999).

    Scarce public resources have limited the monitoring of atmospheric particulate matter (PM) concentrations in developing countries, despite their large potential health effects. As a result, policymakers in many developing countries remain uncertain about the exposure of their residents to PM air pollution. The Global Model of Ambient Particulates (GMAPS) is an attempt to bridge this information gap through an econometrically estimated model for predicting PM levels in world cities (Pandey et al. forthcoming).

    The estimation model is based on the latest available monitored PM pollution data from the World Health Organization, supplemented by data from other reliable sources. The current model can be used to estimate PM levels in urban residential areas and non-residential pollution hotspots. The results of the model are used to project annual average ambient PM concentrations for residential and non-residential areas in 3,226 world cities with populations larger than 100,000, as well as national capitals.

    The study finds wide, systematic variations in ambient PM concentrations, both across world cities and over time. PM concentrations have risen at a slower rate than total emissions. Overall emission levels have been rising, especially for poorer countries, at nearly 6 percent per year. PM concentrations have not increased by as much, due to improvements in technology and structural shifts in the world economy. Additionally, within-country variations in PM levels can diverge greatly (by a factor of 5 in some cases), because of the direct and indirect effects of geo-climatic factors.

    The primary determinants of PM concentrations are the scale and composition of economic activity, population, the energy mix, the strength of local pollution regulation, and geographic and atmospheric conditions that affect pollutant dispersion in the atmosphere.

    Geographic coverage

    The database covers the following countries: Afghanistan Albania Algeria Andorra Angola
    Antigua and Barbuda Argentina
    Armenia Australia
    Austria Azerbaijan
    Bahamas, The
    Bahrain Bangladesh
    Barbados
    Belarus Belgium Belize
    Benin
    Bhutan
    Bolivia Bosnia and Herzegovina
    Brazil
    Brunei
    Bulgaria
    Burkina Faso
    Burundi Cambodia
    Cameroon
    Canada
    Cayman Islands
    Central African Republic
    Chad
    Chile
    China
    Colombia
    Comoros Congo, Dem. Rep.
    Congo, Rep. Costa Rica
    Cote d'Ivoire
    Croatia Cuba
    Cyprus
    Czech Republic
    Denmark Dominica
    Dominican Republic
    Ecuador Egypt, Arab Rep.
    El Salvador Eritrea Estonia Ethiopia
    Faeroe Islands
    Fiji
    Finland France
    Gabon
    Gambia, The Georgia Germany Ghana
    Greece
    Grenada Guatemala
    Guinea
    Guinea-Bissau
    Guyana
    Haiti
    Honduras
    Hong Kong, China
    Hungary Iceland India
    Indonesia
    Iran, Islamic Rep.
    Iraq
    Ireland Israel
    Italy
    Jamaica Japan
    Jordan
    Kazakhstan
    Kenya
    Korea, Dem. Rep.
    Korea, Rep. Kuwait
    Kyrgyz Republic Lao PDR Latvia
    Lebanon Lesotho Liberia Liechtenstein
    Lithuania
    Luxembourg
    Macao, China
    Macedonia, FYR
    Madagascar
    Malawi
    Malaysia
    Maldives
    Mali
    Mauritania
    Mexico
    Moldova Mongolia
    Morocco Mozambique
    Myanmar Namibia Nepal
    Netherlands Netherlands Antilles
    New Caledonia
    New Zealand Nicaragua
    Niger
    Nigeria Norway
    Oman
    Pakistan
    Panama
    Papua New Guinea
    Paraguay
    Peru
    Philippines Poland
    Portugal
    Puerto Rico Qatar
    Romania Russian Federation
    Rwanda
    Sao Tome and Principe
    Saudi Arabia
    Senegal Sierra Leone
    Singapore
    Slovak Republic Slovenia
    Solomon Islands Somalia South Africa
    Spain
    Sri Lanka
    St. Kitts and Nevis St. Lucia
    St. Vincent and the Grenadines
    Sudan
    Suriname
    Swaziland
    Sweden
    Switzerland Syrian Arab Republic
    Tajikistan
    Tanzania
    Thailand
    Togo
    Trinidad and Tobago Tunisia Turkey
    Turkmenistan
    Uganda
    Ukraine United Arab Emirates
    United Kingdom
    United States
    Uruguay Uzbekistan
    Vanuatu Venezuela, RB
    Vietnam Virgin Islands (U.S.)
    Yemen, Rep. Yugoslavia, FR (Serbia/Montenegro)
    Zambia
    Zimbabwe

    Kind of data

    Observation data/ratings [obs]

    Mode of data collection

    Other [oth]

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
data.cityofnewyork.us (2024). Air Quality [Dataset]. https://catalog.data.gov/dataset/air-quality

Air Quality

Explore at:
Dataset updated
Apr 19, 2024
Dataset provided by
data.cityofnewyork.us
Description

Dataset contains information on New York City air quality surveillance data. Air pollution is one of the most important environmental threats to urban populations and while all people are exposed, pollutant emissions, levels of exposure, and population vulnerability vary across neighborhoods. Exposures to common air pollutants have been linked to respiratory and cardiovascular diseases, cancers, and premature deaths. These indicators provide a perspective across time and NYC geographies to better characterize air quality and health in NYC. Data can also be explored online at the Environment and Health Data Portal: http://nyc.gov/health/environmentdata.

Search
Clear search
Close search
Google apps
Main menu