This dataset includes processed climate change datasets related to climatology, hydrology, and water operations. The climatological data provided are change factors for precipitation and reference evapotranspiration gridded over the entire State. The hydrological data provided are projected stream inflows for major streams in the Central Valley, and streamflow change factors for areas outside of the Central Valley and smaller ungaged watersheds within the Central Valley. The water operations data provided are Central Valley reservoir outflows, diversions, and State Water Project (SWP) and Central Valley Project (CVP) water deliveries and select streamflow data. Most of the Central Valley inflows and all of the water operations data were simulated using the CalSim II model and produced for all projections.
These data were originally developed for the California Water Commission’s Water Storage Investment Program (WSIP). The WSIP data used as the basis for these climate change resources along with the technical reference document are located here: https://data.cnra.ca.gov/dataset/climate-change-projections-wsip-2030-2070. Additional processing steps were performed to improve user experience, ease of use for GSP development, and for Sustainable Groundwater Management Act (SGMA) implementation. Furthermore, the data, tools, and guidance may be useful for purposes other than sustainable groundwater management under SGMA.
Data are provided for projected climate conditions centered around 2030 and 2070. The climate projections are provided for these two future climate periods, and include one scenario for 2030 and three scenarios for 2070: a 2030 central tendency, a 2070 central tendency, and two 2070 extreme scenarios (i.e., one drier with extreme warming and one wetter with moderate warming). The climate scenario development process represents a climate period analysis where historical interannual variability from January 1915 through December 2011 is preserved while the magnitude of events may be increased or decreased based on projected changes in precipitation and air temperature from general circulation models.
DWR has collaborated with Lawrence Berkeley National Laboratory to improve the quality of the 2070 extreme scenarios. The 2070 extreme scenario update utilizes an improved climate period analysis method known as "quantile delta mapping" to better capture the GCM-projected change in temperature and precipitation. A technical note on the background and results of this process is provided here: https://data.cnra.ca.gov/dataset/extreme-climate-change-scenarios-for-water-supply-planning/resource/f2e1c61a-4946-4863-825f-e6d516b433ed.
Note: the original version of the 2070 extreme scenarios can be accessed in the archive posted here: https://data.cnra.ca.gov/dataset/sgma-climate-change-resources/resource/51b6ee27-4f78-4226-8429-86c3a85046f4
The table Global Temperatures by Country is part of the dataset Climate Change: Earth Surface Temperature Data, available at https://columbia.redivis.com/datasets/1e0a-f4931vvyg. It contains 577462 rows across 4 variables.
Climate change is viewed as a major concern globally, with around 90 percent of respondents to a 2023 survey viewing it as a serious threat to humanity. developing nations often show the highest levels of concern, like in the Philippines where 96.7 percent of respondents acknowledge it as a serious threat. Rising emissions despite growing awareness Despite widespread acknowledgment of climate change, global greenhouse gas emissions continue to climb. In 2023, emissions reached a record high of 53 billion metric tons of carbon dioxide equivalent, marking a 60 percent increase since 1990. The power industry remains the largest contributor, responsible for 28 percent of global emissions. This ongoing rise in emissions has significant implications for global climate patterns and environmental stability. Temperature anomalies reflect warming trend In 2024, the global land and ocean surface temperature anomaly reached 1.29 degrees Celsius above the 20th-century average, the highest recorded deviation to date. This consistent pattern of positive temperature anomalies, observed since the 1980s, highlights the long-term warming effect of increased greenhouse gas accumulation in the atmosphere. The warmest years on record have all occurred within the past decade.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A complete description of the dataset is given by Jones et al. (2023). Key information is provided below.
Background
A dataset describing the global warming response to national emissions CO2, CH4 and N2O from fossil and land use sources during 1851-2021.
National CO2 emissions data are collated from the Global Carbon Project (Andrew and Peters, 2024; Friedlingstein et al., 2024).
National CH4 and N2O emissions data are collated from PRIMAP-hist (HISTTP) (Gütschow et al., 2024).
We construct a time series of cumulative CO2-equivalent emissions for each country, gas, and emissions source (fossil or land use). Emissions of CH4 and N2O emissions are related to cumulative CO2-equivalent emissions using the Global Warming Potential (GWP*) approach, with best-estimates of the coefficients taken from the IPCC AR6 (Forster et al., 2021).
Warming in response to cumulative CO2-equivalent emissions is estimated using the transient climate response to cumulative carbon emissions (TCRE) approach, with best-estimate value of TCRE taken from the IPCC AR6 (Forster et al., 2021, Canadell et al., 2021). 'Warming' is specifically the change in global mean surface temperature (GMST).
The data files provide emissions, cumulative emissions and the GMST response by country, gas (CO2, CH4, N2O or 3-GHG total) and source (fossil emissions, land use emissions or the total).
Data records: overview
The data records include three comma separated values (.csv) files as described below.
All files are in ‘long’ format with one value provided in the Data column for each combination of the categorical variables Year, Country Name, Country ISO3 code, Gas, and Component columns.
Component specifies fossil emissions, LULUCF emissions or total emissions of the gas.
Gas specifies CO2, CH4, N2O or the three-gas total (labelled 3-GHG).
Country ISO3 codes are specifically the unique ISO 3166-1 alpha-3 codes of each country.
Data records: specifics
Data are provided relative to 2 reference years (denoted ref_year below): 1850 and 1991. 1850 is a mutual first year of data spanning all input datasets. 1991 is relevant because the United Nations Framework Convention on Climate Change was operationalised in 1992.
EMISSIONS_ANNUAL_{ref_year-20}-2023.csv: Data includes annual emissions of CO2 (Pg CO2 year-1), CH4 (Tg CH4 year-1) and N2O (Tg N2O year-1) during the period ref_year-20 to 2023. The Data column provides values for every combination of the categorical variables. Data are provided from ref_year-20 because these data are required to calculate GWP* for CH4.
EMISSIONS_CUMULATIVE_CO2e100_{ref_year+1}-2023.csv: Data includes the cumulative CO2 equivalent emissions in units Pg CO2-e100 during the period ref_year+1 to 2023 (i.e. since the reference year). The Data column provides values for every combination of the categorical variables.
GMST_response_{ref_year+1}-2023.csv: Data includes the change in global mean surface temperature (GMST) due to emissions of the three gases in units °C during the period ref_year+1 to 2023 (i.e. since the reference year). The Data column provides values for every combination of the categorical variables.
Accompanying Code
Code is available at: https://github.com/jonesmattw/National_Warming_Contributions .
The code requires Input.zip to run (see README at the GitHub link).
Further info: Country Groupings
We also provide estimates of the contributions of various country groupings as defined by the UNFCCC:
And other country groupings:
See COUNTRY_GROUPINGS.xlsx for the lists of countries in each group.
The preferred citation when using this dataset is: Stevens, A., & Lamie, C., Eds. (2024). New York State Climate Impacts Assessment: Understanding and preparing for our changing climate. The New York State Climate Impacts Assessment is an investigation into how climate change will affect New York State’s communities, ecosystems, and economy. The data and information presented will help New Yorkers plan and prepare for the impacts of climate change. The assessment also strives to show how addressing climate change provides opportunities to enhance equity and reduce the vulnerability of those most at risk. As part of the assessment, Columbia University developed climate change projections for temperature and precipitation, extreme events, degree days, and sea level rise, downscaled to 12 regions of New York State. This dataset includes those projections of future climate conditions in New York State, for the 2030s through 2100. For more information on these projections or to read the full NYS Climate Impacts Assessment, visit the assessment website at https://nysclimateimpacts.org/. The New York State Energy Research and Development Authority (NYSERDA) offers objective information and analysis, innovative programs, technical expertise, and support to help New Yorkers increase energy efficiency, save money, use renewable energy, accelerate economic growth, and reduce reliance on fossil fuels. To learn more about NYSERDA’s programs, visit nyserda.ny.gov or follow us on Twitter, Facebook, YouTube, or Instagram.
TOLNet_ECCC_Data is the lidar data collected by the Autonomous Mobile Ozone LIDAR instrument for Tropospheric Experiments (AMOLITE) lidar at Environment and Climate Change Canada (ECCC) in Toronto, Canada as part of the Tropospheric Ozone Lidar Network (TOLNet). Data collection for this product is ongoing.In the troposphere, ozone is considered a pollutant and is important to understand due to its harmful effects on human health and vegetation. Tropospheric ozone is also significant for its impact on climate as a greenhouse gas. Operating since 2011, TOLNet is an interagency collaboration between NASA, NOAA, and the EPA designed to perform studies of air quality and atmospheric modeling as well as validation and interpretation of satellite observations. TOLNet is currently comprised of six Differential Absorption Lidars (DIAL). Each of the lidars are unique, and some have had a long history of ozone observations prior to joining the network. Five lidars are mobile systems that can be deployed at remote locations to support field campaigns. This includes the Langley Mobile Ozone Lidar (LMOL) at NASA Langley Research Center (LaRC), the Tropospheric Ozone (TROPOZ) lidar at the Goddard Space Flight Center (GSFC), the Tunable Optical Profile for Aerosol and oZone (TOPAZ) lidar at the NOAA Chemical Sciences Laboratory (CSL) in Boulder, Colorado, the Autonomous Mobile Ozone LIDAR instrument for Tropospheric Experiments (AMOLITE) lidar at Environment and Climate Change Canada (ECCC) in Toronto, Canada, and the Rocket-city O3 Quality Evaluation in the Troposphere (RO3QET) lidar at the University of Alabama in Huntsville, Alabama. The remaining lidars, the Table Mountain Facility (TMF) tropospheric ozone lidar system located at the NASA Jet Propulsion Laboratory (JPL), and City College of New York (CCNY) New York Tropospheric Ozone Lidar System (NYTOLS) are fixed systems.TOLNet seeks to address three science objectives. The primary objective of the network is to provide high spatio-temporal measurements of ozone from near the surface to the top of the troposphere. Detailed observations of ozone structure allow science teams and the modeling community to better understand ozone in the lower-atmosphere and to assess the accuracy and vertical resolution with which geosynchronous instruments could retrieve the observed laminar ozone structures. Another objective of TOLNet is to identify an ozone lidar instrument design that would be suitable to address the needs of NASA, NOAA, and EPA air quality scientists who express a desire for these ozone profiles. The third objective of TOLNET is to perform basic scientific research into the processes create and destroy the ubiquitously observed ozone laminae and other ozone features in the troposphere. To help fulfill these objectives, lidars that are a part of TOLNet have been deployed to support nearly ten campaigns thus far. This includes campaigns such as the Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) mission, the Korea United States Air Quality Study (KORUS-AQ), the Tracking Aerosol Convection ExpeRiment – Air Quality (TRACER-AQ) campaign, the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ), the Long Island Sound Tropospheric Ozone Study (LISTOS), and the Ozone Water–Land Environmental Transition Study (OWLETS).
The United States is responsible for almost 20 percent of global historical cumulative fossil and LULUCF carbon dioxide emissions from 1850 to 2021. During this period, the North American country contributed roughly 17 percent of global warming, despite representing just four percent of the current world population. The United States is the biggest contributor to global warming from 1850 to 2021.
https://artefacts.ceda.ac.uk/licences/specific_licences/esacci_sst_terms_and_conditions_v2.pdfhttps://artefacts.ceda.ac.uk/licences/specific_licences/esacci_sst_terms_and_conditions_v2.pdf
This v2.1 SST_cci Advanced Very High Resolution Radiometer (AVHRR) level 3 uncollated data (L3U) Climate Data Record (CDR) consists of stable, low-bias sea surface temperature (SST) data from the AVHRR series of satellite instruments. It covers the period between 08/1981 and 12/2016. This L3U product provides these SST data on a 0.05 regular latitude-longitude grid with with a single orbit per file.The dataset has been produced as part of the European Space Agency (ESA) Climate Change Initiative Sea Surface Temperature project(ESA SST_cci). The data products from SST_cci accurately map the surface temperature of the global oceans over the period 1981 to 2016 using observations from many satellites. The data provide independently quantified SSTs to a quality suitable for climate research.This CDR Version 2.1 product supercedes the CDR Version 2.0 product. Data are made freely and openly available under a Creative Commons License by Attribution (CC By 4.0) https://creativecommons.org/licenses/by/4.0/ .When citing this dataset please also cite the associated data paper: Merchant, C.J., Embury, O., Bulgin, C.E., Block T., Corlett, G.K., Fiedler, E., Good, S.A., Mittaz, J., Rayner, N.A., Berry, D., Eastwood, S., Taylor, M., Tsushima, Y., Waterfall, A., Wilson, R., Donlon, C. Satellite-based time-series of sea-surface temperature since 1981 for climate applications, Scientific Data 6:223 (2019). http://doi.org/10.1038/s41597-019-0236-x
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The National Forest Climate Change Maps project was developed by the Rocky Mountain Research Station (RMRS) and the Office of Sustainability and Climate to meet the needs of national forest managers for information on projected climate changes at a scale relevant to decision making processes, including forest plans. The maps use state-of-the-art science and are available for every national forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including snow residence time and April 1 snow water equivalent), and stream flow.
Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the contiguous United States are ensemble mean values across 20 global climate models from the CMIP5 experiment (https://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-11-00094.1), downscaled to a 4 km grid. For more information on the downscaling method and to access the data, please see Abatzoglou and Brown, 2012 (https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/joc.2312) and the Northwest Knowledge Network (https://climate.northwestknowledge.net/MACA/). We used the MACAv2- Metdata monthly dataset; average temperature values were calculated as the mean of monthly minimum and maximum air temperature values (degrees C), averaged over the season of interest (annual, winter, or summer). Absolute and percent change were then calculated between the historical and future time periods.
Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the state of Alaska were developed by the Scenarios Network for Alaska and Arctic Planning (SNAP) (https://snap.uaf.edu). These datasets have several important differences from the MACAv2-Metdata (https://climate.northwestknowledge.net/MACA/) products, used in the contiguous U.S. They were developed using different global circulation models and different downscaling methods, and were downscaled to a different scale (771 m instead of 4 km). While these cover the same time periods and use broadly similar approaches, caution should be used when directly comparing values between Alaska and the contiguous United States.
Raster data are also available for download from RMRS site (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/categories/us-raster-layers.html), along with pdf maps and detailed metadata (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/downloads/NationalForestClimateChangeMapsMetadata.pdf).
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Historical changes of annual temperature and precipitation indices at selected 210 U.S. cities
This dataset provide:
Annual average temperature, total precipitation, and temperature and precipitation extremes calculations for 210 U.S. cities.
Historical rates of changes in annual temperature, precipitation, and the selected temperature and precipitation extreme indices in the 210 U.S. cities.
Estimated thresholds (reference levels) for the calculations of annual extreme indices including warm and cold days, warm and cold nights, and precipitation amount from very wet days in the 210 cities.
Annual average of daily mean temperature, Tmax, and Tmin are included for annual average temperature calculations. Calculations were based on the compiled daily temperature and precipitation records at individual cities.
Temperature and precipitation extreme indices include: warmest daily Tmax and Tmin, coldest daily Tmax and Tmin , warm days and nights, cold days and nights, maximum 1-day precipitation, maximum consecutive 5-day precipitation, precipitation amounts from very wet days.
Number of missing daily Tmax, Tmin, and precipitation values are included for each city.
Rates of change were calculated using linear regression, with some climate indices applied with the Box-Cox transformation prior to the linear regression.
The historical observations from ACIS belong to Global Historical Climatological Network - daily (GHCN-D) datasets. The included stations were based on NRCC’s “ThreadEx” project, which combined daily temperature and precipitation extremes at 255 NOAA Local Climatological Locations, representing all large and medium size cities in U.S. (See Owen et al. (2006) Accessing NOAA Daily Temperature and Precipitation Extremes Based on Combined/Threaded Station Records).
Resources:
See included README file for more information.
Additional technical details and analyses can be found in: Lai, Y., & Dzombak, D. A. (2019). Use of historical data to assess regional climate change. Journal of climate, 32(14), 4299-4320. https://doi.org/10.1175/JCLI-D-18-0630.1
Other datasets from the same project can be accessed at: https://kilthub.cmu.edu/projects/Use_of_historical_data_to_assess_regional_climate_change/61538
ACIS database for historical observations: http://scacis.rcc-acis.org/
GHCN-D datasets can also be accessed at: https://www.ncei.noaa.gov/data/global-historical-climatology-network-daily/
Station information for each city can be accessed at: http://threadex.rcc-acis.org/
2024 August updated -
Annual calculations for 2022 and 2023 were added.
Linear regression results and thresholds for extremes were updated because of the addition of 2022 and 2023 data.
Note that future updates may be infrequent.
2022 January updated -
Annual calculations for 2021 were added.
Linear regression results and thresholds for extremes were updated because of the addition of 2021 data.
2021 January updated -
Annual calculations for 2020 were added.
Linear regression results and thresholds for extremes were updated because of the addition of 2020 data.
2020 January updated -
Annual calculations for 2019 were added.
Linear regression results and thresholds for extremes were updated because of the addition of 2019 data.
Thresholds for all 210 cities were combined into one single file – Thresholds.csv.
2019 June updated -
Baltimore was updated with the 2018 data (previously version shows NA for 2018) and new ID to reflect the GCHN ID of Baltimore-Washington International AP. city_info file was updated accordingly.
README file was updated to reflect the use of "wet days" index in this study. The 95% thresholds for calculation of wet days utilized all daily precipitation data from the reference period and can be different from the same index from some other studies, where only days with at least 1 mm of precipitation were utilized to calculate the thresholds. Thus the thresholds in this study can be lower than the ones that would've be calculated from the 95% percentiles from wet days (i.e., with at least 1 mm of precipitation).
The Vegetation/Ecosystem Modeling and Analysis Project (VEMAP) Phase 2 has developed a number of transient climate change scenarios based on coupled atmosphere-ocean general circulation model (AOGCM) transient climate experiments. The purpose of these scenarios is to reflect time-dependent changes in surface climate from AOGCMs in terms of both (1) long-term trends and (2) changes in multiyear (3-5 yr) to decadal variability patterns, such as El Nino/Southern Oscillation(ENSO). Development of the data set is reported in Kittel et al. (1997). Scenarios have been derived from transient greenhouse gas experiments with sulfate aerosols from the Canadian Climate Center (CCC) and the Hadley Centre (HADCM2; Mitchell et al. 1995, Johns et al. 1997) accessed via the Climate Impacts LINK Project, Climatic Research Unit, University of East Anglia. Scenarios were developed for the following variables: total incident solar radiation, minimum and maximum temperature, vapor pressure, precipitation, relative humidity and mean daily irradiance for the time periods January 1994 to approximately 2100. These data and the VEMAP 1 data (Kittel et al. 1995) were used to drive models in VEMAP Phase 2, the objectives of which are to compare time-dependent ecological responses of biogeochemical and coupled biogeochemical-biogeographical models to historical and projected transient forcings across the conterminous U.S. This data set of daily climate change scenarios was designed to be concatenated with the /VEMAP/vemap.html">VEMAP 2: U.S. Daily Climate, 1895-1993, Version 2 data set to create a single climate series from 1895 - ~2100. This data set is being made available for the U.S. National Assessment. Users are requested to confer with the NCAR VEMAP Data Group to ensure that the intended application of the data set is consistent with the generation and limitations of the data. For more information, refer to the VEMAP homepage. Data Citation The data set should be cited as follows: Kittel, T. G. F., N. A. Rosenbloom, C. Kaufman, J. A. Royle, C. Daly, H. H. Fisher, W. P. Gibson, S. Aulenbach, R. McKeown, D. S. Schimel, and VEMAP 2 Participants. 2000. VEMAP 2: U. S. Daily Climate Change Scenarios. Available on-line from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A.
The United States contributed roughly 17 percent of global warming from 1851 to 2023. By contrast, India contributed five percent of warming during this period, despite the country having a far larger population than the United States. In total, G20 countries have contributed approximately three-quarters of global warming to date, while the least developed countries are responsible for just six percent.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
When studying the impacts of climate change, there is a tendency to select climate data from a small set of arbitrary time periods or climate windows (e.g., spring temperature). However, these arbitrary windows may not encompass the strongest periods of climatic sensitivity and may lead to erroneous biological interpretations. Therefore, there is a need to consider a wider range of climate windows to better predict the impacts of future climate change. We introduce the R package climwin that provides a number of methods to test the effect of different climate windows on a chosen response variable and compare these windows to identify potential climate signals. climwin extracts the relevant data for each possible climate window and uses this data to fit a statistical model, the structure of which is chosen by the user. Models are then compared using an information criteria approach. This allows users to determine how well each window explains variation in the response variable and compare model support between windows. climwin also contains methods to detect type I and II errors, which are often a problem with this type of exploratory analysis. This article presents the statistical framework and technical details behind the climwin package and demonstrates the applicability of the method with a number of worked examples.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This repository contains materials associated with a project which explores appeals to expertise by climate scientists in hearings before Congress. These materials include plain text files in UTF-7 and ASCII format of testimonies by individual scientists in hearings from 1985-2013 as well as meta-data about each of the hearings and scientific witnesses in the corpus.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
To aid applicants with quantification and monetization of benefits of proposed water storage projects per Chapter 8 of Proposition 1 (Water Code section 79750 et. seq.), the California Water Commission (Commission) developed a Technical Reference which was released in August 2016.
These data and model products are companion information to the Technical Reference and were developed to assist applicants for funding under the Water Storage Investment Program (WSIP). The WSIP required applicants for public funding to analyze their proposed projects using climate and sea level conditions for California projected at years 2030 and 2070.
The data and model products were developed for the following climate and sea level conditions:
Without-Project 2030 Future Conditions – Year 2030 future condition with projected climate and sea level conditions for a thirty-year period centered at 2030 (climate period 2016-2045)
Without-Project 2070 Future Conditions – Year 2070 future condition with projected climate and sea level conditions for a thirty-year period centered at 2070 (climate period 2056-2085)
1995 Historical Temperature-detrended Conditions (reference) – Year 1995 historical condition with climate and sea level conditions for a thirty-year period centered at 1995 (reference climate period 1981-2010)
The California Water Commission consists of nine members appointed by the Governor and confirmed by the State Senate. Seven members are chosen for their expertise related to the control, storage, and beneficial use of water and two are chosen for their knowledge of the environment. The Commission provides a public forum for discussing water issues, advises the Director of the Department of Water Resources on matters within the Department’s jurisdiction, approves rules and regulations, and monitors and reports on the construction and operation of the State Water Project. Proposition 1: The Water Quality, Supply, and Infrastructure Improvement Act approved by voters in 2014, gave the Commission new responsibilities regarding the distribution of public funds set aside for the public benefits of water storage projects, and developing regulations for the quantification and management of those benefits. In 2018, the Commission approved maximum conditional funding amounts for eight projects in the Water Storage Investment Program.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
We calculated monthly vapor pressure values for the conterminous United States from 1950 to 2100 from global climate models (GCM) output published by Coupled Model Intercomparison Project Phase 5 (CMIP5). These data include 28 GCMs under Representative Concentration Pathway (RCP) 4.5 and RCP 8.5 climate change scenarios. Vapor pressure data were then downscaled from their original spatial resolutions to 30 arcsecond using a statistical downscaling method called Bias Correction-Spatial Disaggregation (BCSD). These monthly vapor pressure data are provided as separate NetCDF files for each year (1950-2100), each of 28 GCM's, and each scenario (historical, RCP 4.5, and RCP 8.5).Vapor pressure (VPR) is the amount of water vapor held in the air. Vapor pressure deficit (VPD) is the difference between the total amount of water vapor air can hold at a given temperature and the actual amount of water held, expressed as partial pressure of water. VPD exerts a direct effect on plant transpiration by controlling the opening and closing of stomata (REF). VPD values are relevant for simulating vegetation response to climate, estimating drought conditions, and to simulate wildfire dynamics. Spatial vegetation or fire models require VPD dataset in a gridded format, along with other climate variables. Thus, these data may be used as input for vegetation, fire, drought or earth system models.Package was originally published on 02/22/23. On 03/20/2023 a subset of the data were made available for immediate download. Metadata updated on 04/28/2023 to include reference to newly published article.
This project represents the data used in “Influences of potential oil and gas development and future climate on sage-grouse declines and redistribution.” The data sets describe greater sage-grouse (Centrocercus urophasianus) population change, summarized in different boundaries within the Wyoming Landscape Conservation Initiative (WLCI; southwestern Wyoming). Population changes were based on different scenarios of oil and gas development intensities, projected climate models, and initial sage-grouse population estimates. Description of data sets pertaining to this project: Greater sage-grouse population change (percent change) in a high oil and gas development, low population estimate scenario, and with and without effects of climate change. 1. Greater sage-grouse population change (percent change) over 50-years in a high oil and gas development, low population estimate scenario, and with effects of climate change under an RCP 8.5 scenario (2050) 2. Greater sage-grouse population change (percent change) in a low oil and gas development, high population estimate scenario, and with no effects of climate change (2006-2062) 3. Greater sage-grouse population change (percent change) over 50-years in a low oil and gas development, low population estimate scenario, and with effects of climate change under an RCP 8.5 scenario (2050) 4. Greater sage-grouse population change (percent change) in a moderate oil and gas development, high population estimate scenario, and with no effects of climate change (2006-2062) 5. Greater sage-grouse population change (percent change) in a high oil and gas development, low population estimate scenario, and with no effects of climate change (2006-2062) The oil and gas development scenario were based on an energy footprint model that simulates well, pad, and road patterns for oil and gas recovery options that vary in well types (vertical and directional) and number of wells per pad and use simulation results to quantify physical and wildlife-habitat impacts. I applied the model to assess tradeoffs among 10 conventional and directional-drilling scenarios in a natural gas field in southwestern Wyoming (see Garman 2017). The effects climate change on sagebrush were developed using the National Center for Atmospheric Research (NCAR) Community Climate System Model (CCSM, version 4) climate model and representative concentration pathway 8.5 scenario (emissions continue to rise throughout the 21st century). The projected climate scenario was used to estimate the change in percent cover of sagebrush (see Homer et al. 2015). The percent changes in sage-grouse population sizes represented in these data are modeled using an individual-based population model that simulates dynamics of populations by tracking movements of individuals in dynamically changing landscapes, as well as the fates of individuals as influenced by spatially heterogeneous demography. We developed a case study to assess how spatially explicit individual based modeling could be used to evaluate future population outcomes of gradual landscape change from multiple stressors. For Greater sage-grouse in southwest Wyoming, we projected oil and gas development footprints and climate-induced vegetation changes fifty years into the future. Using a time-series of planned oil and gas development and predicted climate-induced changes in vegetation, we re-calculated habitat selection maps to dynamically modify future habitat quantity, quality, and configuration. We simulated long-term sage-grouse responses to habitat change by allowing individuals to adjust to shifts in habitat availability and quality. The use of spatially explicit individual-based modeling offered an important means of evaluating delayed indirect impacts of landscape change on wildlife population outcomes. This process and the outcomes on sage-grouse population changes are reflected in this data set.
This dataset is the underlying data described in Nolte et al., "The potential effects of climate change on air quality across the conterminous U.S. at 2030 under three Representative Concentration Pathways", Atmos. Chem. Phys., in press, 2018. The paper describes simulated changes in U.S. air quality (ozone and particulate matter) between 2000 and 2030 under three scenarios of climate change. Ozone data are in parts per billion by volume, particulate matter are in micrograms per cubic meter, temperature changes are in degrees Celsius, and precipitation has units of millimeters of accumulated precipitation per month. This dataset is associated with the following publication: Nolte, C., T. Spero, J. Bowden, M. Mallard, and P. Dolwick. The potential effects of climate change on air quality across the conterminous US at 2030 under three Representative Concentration Pathways. Atmospheric Chemistry and Physics. Copernicus Publications, Katlenburg-Lindau, GERMANY, 18(20): 15471-15489, (2018).
Evaluating multiple signals of climate change across the conterminous United States during three 30-year periods (2010�2039, 2040�2069, 2070�2099) during this century to a baseline period (1980�2009) emphasizes potential changes for growing degree days (GDD), plant hardiness zones (PHZ), and heat zones. These indices were derived using the CCSM4 and GFDL CM3 models under the representative concentration pathways 4.5 and 8.5, respectively, and included in Matthews et al. (2018). Daily temperature was downscaled by Maurer et al. (https://doi.org/10.1029/2007EO470006) at a 1/8 degree grid scale and used to obtain growing degree days, plant hardiness zones, and heat zones. Each of these indices provides unique information about plant health related to changes in climatic conditions that influence establishment, growth, and survival. These data and the calculated changes are provided as 14 individual IMG files for each index to assist with management planning and decision making into the future. For each of the four indices the following are included: two baseline files (1980�2009), three files representing 30-year periods for the scenario CCSM4 under RCP 4.5 along with three files of changes, and three files representing 30-year periods for the scenario GFDL CM3 under RCP 8.5 along with three files of changes.Heat zones map the distribution of potential heat stress for plants and animals, including humans. We define heat zones as the number of days with maximum daily temperature >30 �C (86 �F). Because species have unique adaptations and abilities to tolerate a wide variety of conditions, this metric is used merely as an indicator of change in �hot� conditions. The 30 �C value is set primarily for agricultural production and is a general temperature threshold at which photosynthesis can be negatively impacted for C3 plants (e.g., most species including trees), but it certainly also captures temperatures that induce stress in humans as well. In addition, increases in temperature above these thresholds for longer periods, especially when accompanied with prolonged dry conditions, are linked to reduced performance and likely mortality of trees. Each day surpassing the 30 �C threshold was tallied and summed for each year and reported as the mean number of days, per year, over each 30-year period: baseline, early, mid, and late century.�Original data and associated metadata can be downloaded from this website:�https://www.fs.usda.gov/rds/archive/Product/RDS-2019-0001
https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/insitu-gridded-observations-global-and-regional/insitu-gridded-observations-global-and-regional_15437b363f02bf5e6f41fc2995e3d19a590eb4daff5a7ce67d1ef6c269d81d68.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/insitu-gridded-observations-global-and-regional/insitu-gridded-observations-global-and-regional_15437b363f02bf5e6f41fc2995e3d19a590eb4daff5a7ce67d1ef6c269d81d68.pdf
This dataset provides high-resolution gridded temperature and precipitation observations from a selection of sources. Additionally the dataset contains daily global average near-surface temperature anomalies. All fields are defined on either daily or monthly frequency. The datasets are regularly updated to incorporate recent observations. The included data sources are commonly known as GISTEMP, Berkeley Earth, CPC and CPC-CONUS, CHIRPS, IMERG, CMORPH, GPCC and CRU, where the abbreviations are explained below. These data have been constructed from high-quality analyses of meteorological station series and rain gauges around the world, and as such provide a reliable source for the analysis of weather extremes and climate trends. The regular update cycle makes these data suitable for a rapid study of recently occurred phenomena or events. The NASA Goddard Institute for Space Studies temperature analysis dataset (GISTEMP-v4) combines station data of the Global Historical Climatology Network (GHCN) with the Extended Reconstructed Sea Surface Temperature (ERSST) to construct a global temperature change estimate. The Berkeley Earth Foundation dataset (BERKEARTH) merges temperature records from 16 archives into a single coherent dataset. The NOAA Climate Prediction Center datasets (CPC and CPC-CONUS) define a suite of unified precipitation products with consistent quantity and improved quality by combining all information sources available at CPC and by taking advantage of the optimal interpolation (OI) objective analysis technique. The Climate Hazards Group InfraRed Precipitation with Station dataset (CHIRPS-v2) incorporates 0.05° resolution satellite imagery and in-situ station data to create gridded rainfall time series over the African continent, suitable for trend analysis and seasonal drought monitoring. The Integrated Multi-satellitE Retrievals dataset (IMERG) by NASA uses an algorithm to intercalibrate, merge, and interpolate “all'' satellite microwave precipitation estimates, together with microwave-calibrated infrared (IR) satellite estimates, precipitation gauge analyses, and potentially other precipitation estimators over the entire globe at fine time and space scales for the Tropical Rainfall Measuring Mission (TRMM) and its successor, Global Precipitation Measurement (GPM) satellite-based precipitation products. The Climate Prediction Center morphing technique dataset (CMORPH) by NOAA has been created using precipitation estimates that have been derived from low orbiter satellite microwave observations exclusively. Then, geostationary IR data are used as a means to transport the microwave-derived precipitation features during periods when microwave data are not available at a location. The Global Precipitation Climatology Centre dataset (GPCC) is a centennial product of monthly global land-surface precipitation based on the ~80,000 stations world-wide that feature record durations of 10 years or longer. The data coverage per month varies from ~6,000 (before 1900) to more than 50,000 stations. The Climatic Research Unit dataset (CRU v4) features an improved interpolation process, which delivers full traceability back to station measurements. The station measurements of temperature and precipitation are public, as well as the gridded dataset and national averages for each country. Cross-validation was performed at a station level, and the results have been published as a guide to the accuracy of the interpolation. This catalogue entry complements the E-OBS record in many aspects, as it intends to provide high-resolution gridded meteorological observations at a global rather than continental scale. These data may be suitable as a baseline for model comparisons or extreme event analysis in the CMIP5 and CMIP6 dataset.
This dataset includes processed climate change datasets related to climatology, hydrology, and water operations. The climatological data provided are change factors for precipitation and reference evapotranspiration gridded over the entire State. The hydrological data provided are projected stream inflows for major streams in the Central Valley, and streamflow change factors for areas outside of the Central Valley and smaller ungaged watersheds within the Central Valley. The water operations data provided are Central Valley reservoir outflows, diversions, and State Water Project (SWP) and Central Valley Project (CVP) water deliveries and select streamflow data. Most of the Central Valley inflows and all of the water operations data were simulated using the CalSim II model and produced for all projections.
These data were originally developed for the California Water Commission’s Water Storage Investment Program (WSIP). The WSIP data used as the basis for these climate change resources along with the technical reference document are located here: https://data.cnra.ca.gov/dataset/climate-change-projections-wsip-2030-2070. Additional processing steps were performed to improve user experience, ease of use for GSP development, and for Sustainable Groundwater Management Act (SGMA) implementation. Furthermore, the data, tools, and guidance may be useful for purposes other than sustainable groundwater management under SGMA.
Data are provided for projected climate conditions centered around 2030 and 2070. The climate projections are provided for these two future climate periods, and include one scenario for 2030 and three scenarios for 2070: a 2030 central tendency, a 2070 central tendency, and two 2070 extreme scenarios (i.e., one drier with extreme warming and one wetter with moderate warming). The climate scenario development process represents a climate period analysis where historical interannual variability from January 1915 through December 2011 is preserved while the magnitude of events may be increased or decreased based on projected changes in precipitation and air temperature from general circulation models.
DWR has collaborated with Lawrence Berkeley National Laboratory to improve the quality of the 2070 extreme scenarios. The 2070 extreme scenario update utilizes an improved climate period analysis method known as "quantile delta mapping" to better capture the GCM-projected change in temperature and precipitation. A technical note on the background and results of this process is provided here: https://data.cnra.ca.gov/dataset/extreme-climate-change-scenarios-for-water-supply-planning/resource/f2e1c61a-4946-4863-825f-e6d516b433ed.
Note: the original version of the 2070 extreme scenarios can be accessed in the archive posted here: https://data.cnra.ca.gov/dataset/sgma-climate-change-resources/resource/51b6ee27-4f78-4226-8429-86c3a85046f4