Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
This graph shows how the impact factor of ^ is computed. The left axis depicts the number of papers published in years X-1 and X-2, and the right axis displays their citations in year X.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States CPI U: Northeast: Size Class B/C data was reported at 156.752 Dec1996=100 in Oct 2018. This records a decrease from the previous number of 156.961 Dec1996=100 for Sep 2018. United States CPI U: Northeast: Size Class B/C data is updated monthly, averaging 132.049 Dec1996=100 from Dec 1996 (Median) to Oct 2018, with 263 observations. The data reached an all-time high of 157.350 Dec1996=100 in Aug 2018 and a record low of 100.000 Dec1996=100 in Jan 1997. United States CPI U: Northeast: Size Class B/C data remains active status in CEIC and is reported by Bureau of Labor Statistics. The data is categorized under Global Database’s United States – Table US.I014: Consumer Price Index: Urban: By Region. All metropolitan areas with population smaller than 1.5 million
Facebook
TwitterHistorical Employment Statistics 1990 - current. The Current Employment Statistics (CES) more information program provides the most current estimates of nonfarm employment, hours, and earnings data by industry (place of work) for the nation as a whole, all states, and most major metropolitan areas. The CES survey is a federal-state cooperative endeavor in which states develop state and sub-state data using concepts, definitions, and technical procedures prescribed by the Bureau of Labor Statistics (BLS). Estimates produced by the CES program include both full- and part-time jobs. Excluded are self-employment, as well as agricultural and domestic positions. In Connecticut, more than 4,000 employers are surveyed each month to determine the number of the jobs in the State. For more information please visit us at http://www1.ctdol.state.ct.us/lmi/ces/default.asp.
Facebook
TwitterHydrographic and Impairment Statistics (HIS) is a National Park Service (NPS) Water Resources Division (WRD) project established to track certain goals created in response to the Government Performance and Results Act of 1993 (GPRA). One water resources management goal established by the Department of the Interior under GRPA requires NPS to track the percent of its managed surface waters that are meeting Clean Water Act (CWA) water quality standards. This goal requires an accurate inventory that spatially quantifies the surface water hydrography that each bureau manages and a procedure to determine and track which waterbodies are or are not meeting water quality standards as outlined by Section 303(d) of the CWA. This project helps meet this DOI GRPA goal by inventorying and monitoring in a geographic information system for the NPS: (1) CWA 303(d) quality impaired waters and causes; and (2) hydrographic statistics based on the United States Geological Survey (USGS) National Hydrography Dataset (NHD). Hydrographic and 303(d) impairment statistics were evaluated based on a combination of 1:24,000 (NHD) and finer scale data (frequently provided by state GIS layers).
Facebook
TwitterAs of January 2025, around 13.7 percent of paid iOS apps admitted collecting data from users engaging with their mobile products. In comparison, approximately 53 percent of free-to-download iOS apps reported they collect private data from users worldwide, while approximately 86 percent of paid apps have not declared whether they collect users' privacy data.
Facebook
TwitterHydrographic and Impairment Statistics (HIS) is a National Park Service (NPS) Water Resources Division (WRD) project established to track certain goals created in response to the Government Performance and Results Act of 1993 (GPRA). One water resources management goal established by the Department of the Interior under GRPA requires NPS to track the percent of its managed surface waters that are meeting Clean Water Act (CWA) water quality standards. This goal requires an accurate inventory that spatially quantifies the surface water hydrography that each bureau manages and a procedure to determine and track which waterbodies are or are not meeting water quality standards as outlined by Section 303(d) of the CWA. This project helps meet this DOI GRPA goal by inventorying and monitoring in a geographic information system for the NPS: (1) CWA 303(d) quality impaired waters and causes; and (2) hydrographic statistics based on the United States Geological Survey (USGS) National Hydrography Dataset (NHD). Hydrographic and 303(d) impairment statistics were evaluated based on a combination of 1:24,000 (NHD) and finer scale data (frequently provided by state GIS layers).
Facebook
TwitterOptimal KPI Count: 3-7 per team Blended CAC Target Example: $450 Blended CAC Guardrail Example: $600 Revenue Attribution Finalization: T+5 days CPL Variance Example: 18% above target CPC Increase Example: 22%
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
From https://www.bts.gov/faf/county:The Freight Analysis Framework (FAF) database provides estimates of the weight and value of shipments throughout the United States for all commodity types and forms of transportation using a geographic system of 132 FAF zones. The Bureau of Transportation Statistics (BTS) developed an experimental county-to-county commodity flow product to provide the user community with more geographically granular commodity flow data to support planning, policymaking, and operational decisions at the state and local levels. Users can download state-specific files or the entire set of disaggregation factors to create customized queries. This experimental product provides flows for five commodity groups and five mode categories (see documentation for more details). BTS welcomes users to email FAF@dot.gov with feedback on this experimental product.The state FIPS code is also shown next to the state. Each zip file contains four tables with 1) county-level OD flows for the state of interest and every adjacent state, 2) county-to-FAF OD flows from the multi-state area to all other FAF zones, 3) FAF-to-county OD flows from all other FAF zones to the multi-state area, and 4) FAF-to-FAF OD flows from all other FAF zones to all other FAF zones. The files use county-level geography for the state of interest and states adjacent to this state. FAF zones represent flows outside of this area.The main Freight Analysis Framework files are loaded to Data Lumos separately here: https://www.datalumos.org/datalumos/project/231642/version/V1/view. Additional documentation is available at that link.The faf5_county_readme.txt and faf5_county_readme.xlsx were created for this upload and were not created by the DOT. The direct url to download each state-level dataset is in faf5_county_readme.xlsx.
Facebook
Twitterhttps://www.statsndata.org/how-to-orderhttps://www.statsndata.org/how-to-order
The High Performance Fiber Channel Switches market is witnessing significant growth as industries increasingly rely on high-speed data transfer and storage solutions to meet their evolving needs. These specialized switches play a crucial role in managing data storage networks, allowing for efficient data transmissio
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Colombia CO: Physicians: per 1000 People data was reported at 2.327 Ratio in 2020. This records an increase from the previous number of 2.252 Ratio for 2019. Colombia CO: Physicians: per 1000 People data is updated yearly, averaging 1.334 Ratio from Dec 1960 (Median) to 2020, with 35 observations. The data reached an all-time high of 2.327 Ratio in 2020 and a record low of 0.354 Ratio in 1960. Colombia CO: Physicians: per 1000 People data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Colombia – Table CO.World Bank.WDI: Social: Health Statistics. Physicians include generalist and specialist medical practitioners.;World Health Organization's Global Health Workforce Statistics, OECD, supplemented by country data.;Weighted average;This is the Sustainable Development Goal indicator 3.c.1 [https://unstats.un.org/sdgs/metadata/].
Facebook
TwitterNCHS has linked data from various surveys with Medicare program enrollment and health care utilization and expenditure data from the Centers for Medicare & Medicaid Services (CMS). Linkage of the NCHS survey participants with the CMS Medicare data provides the opportunity to study changes in health status, health care utilization and costs, and prescription drug use among Medicare enrollees. Medicare is the federal health insurance program for people who are 65 or older, certain younger people with disabilities, and people with End-Stage Renal Disease.
Facebook
TwitterDuring the fourth quarter of 2024, data breaches exposed more than a million user data records in the United Kingdom (UK). The figure decreased significantly from nearly 41 million in the quarter prior. Overall, the time between the first quarter of 2022 and the fourth quarter of 2023, saw the lowest number of exposed user data accounts.
Facebook
TwitterSee our new monthly data page for data from November 2024 onwards.
These official statistics were independently reviewed by the Office for Statistics Regulation in May 2022. They comply with the standards of trustworthiness, quality and value in the https://code.statisticsauthority.gov.uk/">Code of Practice for Statistics and should be labelled ‘accredited official statistics’. Accredited official statistics are called National Statistics in the Statistics and Registration Service Act 2007. Further explanation of accredited official statistics can be found on the https://osr.statisticsauthority.gov.uk/accredited-official-statistics/">Office for Statistics Regulation website.
In response to user feedback, we are testing alternative ways of presenting the monthly data sets as visualisations on the UKHSA data dashboard. The current data sets will continue to be published as normal and users will be consulted prior to any significant changes. We encourage users to review and provide feedback on the new dashboard content.
Monthly counts of total reported, hospital-onset, hospital-onset healthcare associated (HOHA), community-onset healthcare associated (COHA), community-onset and community-onset community associated (COCA) MRSA bacteraemias by NHS organisations.
These documents contain the monthly counts of total reported, hospital-onset and community-onset MRSA bacteraemia by NHS organisations.
The UK Government Web Archive contains MRSA bacteraemia data from previous financial years, including:
data from https://webarchive.nationalarchives.gov.uk/ukgwa/20230510143423/https://www.gov.uk/government/statistics/mrsa-bacteraemia-monthly-data-by-location-of-onset">2022 to 2023
data from https://webarchive.nationalarchives.gov.uk/ukgwa/20220614173109/https://www.gov.uk/government/statistics/mrsa-bacteraemia-monthly-data-by-location-of-onset">2021 to 2022
data from https://webarchive.nationalarchives.gov.uk/20210507180210/https://www.gov.uk/government/statistics/mrsa-bacteraemia-monthly-data-by-location-of-onset">2020 to 2021
data from https://webarchive.nationalarchives.gov.uk/20200506173036/https://www.gov.uk/government/statistics/mrsa-bacteraemia-monthly-data-by-location-of-onset">2019 to 2020
data from https://webarchive.nationalarchives.gov.uk/20190508011104/https://www.gov.uk/government/collections/staphylococcus-aureus-guidance-data-and-analysis">2018 to 2019
data from https://webarchive.nationalarchives.gov.uk/20180510152304/https://www.gov.uk/government/statistics/mrsa-bacteraemia-monthly-data-by-attributed-clinical-commissioning-group">2017 to 2018
data from https://webarchive.nationalarchives.gov.uk/20170515101840tf_/https://www.gov.uk/government/statistics/mrsa-bacteraemia-monthly-data-by-attributed-clinical-commissioning-group">2013 to 2014, up to 2016 to 2017
data from https://webarchive.nationalarchives.gov.uk/20140712114853tf_/http://www.hpa.org.uk/web/HPAweb&HPAwebStandard/HPAweb_C/1254510675444">2013 and earlier
Facebook
TwitterEU-SILC has become the EU reference source for comparative statistics on income distribution and social exclusion at European level, particularly in the context of the "Program of Community action to encourage cooperation between Member States to combat social exclusion" and for producing structural indicators on social cohesion for the annual spring report to the European Council. The first priority is to be given to the delivery of comparable, timely and high quality cross-sectional data.
There are two types of datasets: 1) Cross-sectional data pertaining to fixed time periods, with variables on income, poverty, social exclusion and living conditions. 2) Longitudinal data pertaining to individual-level changes over time, observed periodically - usually over four years.
Longitudinal data is limited to income information and a limited set of critical qualitative, non-monetary variables of deprivation, aimed at identifying the incidence and dynamic processes of persistence of poverty and social exclusion among subgroups in the population. The longitudinal component is also more limited in sample size compared to the primary, cross-sectional component. Furthermore, for any given set of individuals, microlevel changes are followed up only for a limited duration, such as a period of four years.
For both the cross-sectional and longitudinal components, all household and personal data are linkable. Furthermore, modules providing updated information in the field of social exclusion is included starting from 2005.
Social exclusion and housing-condition information is collected at household level. Income at a detailed component level is collected at personal level, with some components included in the "Household" section. Labour, education and health observations only apply to persons 16 and older. EU-SILC was established to provide data on structural indicators of social cohesion (at-risk-of-poverty rate, S80/S20 and gender pay gap) and to provide relevant data for the two 'open methods of coordination' in the field of social inclusion and pensions in Europe.
This is the 5th release of 2010 Longitudinal user database as published by EUROSTAT in September 2014.
National
The survey covered all household members over 16 years old. Persons living in collective households and in institutions are generally excluded from the target population.
Sample survey data [ssd]
On the basis of various statistical and practical considerations and the precision requirements for the most critical variables, the minimum effective sample sizes to be achieved were defined. Sample size for the longitudinal component refers, for any pair of consecutive years, to the number of households successfully interviewed in the first year in which all or at least a majority of the household members aged 16 or over are successfully interviewed in both the years.
For the cross-sectional component, the plans are to achieve the minimum effective sample size of around 131.000 households in the EU as a whole (137.000 including Iceland and Norway). The allocation of the EU sample among countries represents a compromise between two objectives: the production of results at the level of individual countries, and production for the EU as a whole. Requirements for the longitudinal data will be less important. For this component, an effective sample size of around 98.000 households (103.000 including Iceland and Norway) is planned.
Member States using registers for income and other data may use a sample of persons (selected respondents) rather than a sample of complete households in the interview survey. The minimum effective sample size in terms of the number of persons aged 16 or over to be interviewed in detail is in this case taken as 75 % of the figures shown in columns 3 and 4 of the table I, for the cross-sectional and longitudinal components respectively.
The reference is to the effective sample size, which is the size required if the survey were based on simple random sampling (design effect in relation to the 'risk of poverty rate' variable = 1.0). The actual sample sizes will have to be larger to the extent that the design effects exceed 1.0 and to compensate for all kinds of non-response. Furthermore, the sample size refers to the number of valid households which are households for which, and for all members of which, all or nearly all the required information has been obtained. For countries with a sample of persons design, information on income and other data shall be collected for the household of each selected respondent and for all its members.
At the beginning, a cross-sectional representative sample of households is selected. It is divided into say 4 sub-samples, each by itself representative of the whole population and similar in structure to the whole sample. One sub-sample is purely cross-sectional and is not followed up after the first round. Respondents in the second sub-sample are requested to participate in the panel for 2 years, in the third sub-sample for 3 years, and in the fourth for 4 years. From year 2 onwards, one new panel is introduced each year, with request for participation for 4 years. In any one year, the sample consists of 4 sub-samples, which together constitute the cross-sectional sample. In year 1 they are all new samples; in all subsequent years, only one is new sample. In year 2, three are panels in the second year; in year 3, one is a panel in the second year and two in the third year; in subsequent years, one is a panel for the second year, one for the third year, and one for the fourth (final) year.
According to the Commission Regulation on sampling and tracing rules, the selection of the sample will be drawn according to the following requirements:
Community Statistics on Income and Living Conditions. Article 8 of the EU-SILC Regulation of the European Parliament and of the Council mentions: 1. The cross-sectional and longitudinal data shall be based on nationally representative probability samples. 2. By way of exception to paragraph 1, Germany shall supply cross-sectional data based on a nationally representative probability sample for the first time for the year 2008. For the year 2005, Germany shall supply data for one fourth based on probability sampling and for three fourths based on quota samples, the latter to be progressively replaced by random selection so as to achieve fully representative probability sampling by 2008. For the longitudinal component, Germany shall supply for the year 2006 one third of longitudinal data (data for year 2005 and 2006) based on probability sampling and two thirds based on quota samples. For the year 2007, half of the longitudinal data relating to years 2005, 2006 and 2007 shall be based on probability sampling and half on quota sample. After 2007 all of the longitudinal data shall be based on probability sampling.
Mixed
Facebook
TwitterIn 2007, the EU-SILC instrument covered all EU Member States plus Iceland, Turkey, Norway, Switzerland and Croatia. EU-SILC has become the EU reference source for comparative statistics on income distribution and social exclusion at European level, particularly in the context of the "Program of Community action to encourage cooperation between Member States to combat social exclusion" and for producing structural indicators on social cohesion for the annual spring report to the European Council. The first priority is to be given to the delivery of comparable, timely and high quality cross-sectional data.
There are two types of datasets: 1) Cross-sectional data pertaining to fixed time periods, with variables on income, poverty, social exclusion and living conditions. 2) Longitudinal data pertaining to individual-level changes over time, observed periodically - usually over four years.
Social exclusion and housing-condition information is collected at household level. Income at a detailed component level is collected at personal level, with some components included in the "Household" section. Labor, education and health observations only apply to persons aged 16 and over. EU-SILC was established to provide data on structural indicators of social cohesion (at-risk-of-poverty rate, S80/S20 and gender pay gap) and to provide relevant data for the two 'open methods of coordination' in the field of social inclusion and pensions in Europe.
The sixth revision of the 2007 Cross-Sectional User Database is documented here.
National
The survey covered all household members over 16 years old. Persons living in collective households and in institutions are generally excluded from the target population.
Sample survey data [ssd]
On the basis of various statistical and practical considerations and the precision requirements for the most critical variables, the minimum effective sample sizes to be achieved were defined. Sample size for the longitudinal component refers, for any pair of consecutive years, to the number of households successfully interviewed in the first year in which all or at least a majority of the household members aged 16 or over are successfully interviewed in both the years.
For the cross-sectional component, the plans are to achieve the minimum effective sample size of around 131.000 households in the EU as a whole (137.000 including Iceland and Norway). The allocation of the EU sample among countries represents a compromise between two objectives: the production of results at the level of individual countries, and production for the EU as a whole. Requirements for the longitudinal data will be less important. For this component, an effective sample size of around 98.000 households (103.000 including Iceland and Norway) is planned.
Member States using registers for income and other data may use a sample of persons (selected respondents) rather than a sample of complete households in the interview survey. The minimum effective sample size in terms of the number of persons aged 16 or over to be interviewed in detail is in this case taken as 75 % of the figures shown in columns 3 and 4 of the table I, for the cross-sectional and longitudinal components respectively.
The reference is to the effective sample size, which is the size required if the survey were based on simple random sampling (design effect in relation to the 'risk of poverty rate' variable = 1.0). The actual sample sizes will have to be larger to the extent that the design effects exceed 1.0 and to compensate for all kinds of non-response. Furthermore, the sample size refers to the number of valid households which are households for which, and for all members of which, all or nearly all the required information has been obtained. For countries with a sample of persons design, information on income and other data shall be collected for the household of each selected respondent and for all its members.
At the beginning, a cross-sectional representative sample of households is selected. It is divided into say 4 sub-samples, each by itself representative of the whole population and similar in structure to the whole sample. One sub-sample is purely cross-sectional and is not followed up after the first round. Respondents in the second sub-sample are requested to participate in the panel for 2 years, in the third sub-sample for 3 years, and in the fourth for 4 years. From year 2 onwards, one new panel is introduced each year, with request for participation for 4 years. In any one year, the sample consists of 4 sub-samples, which together constitute the cross-sectional sample. In year 1 they are all new samples; in all subsequent years, only one is new sample. In year 2, three are panels in the second year; in year 3, one is a panel in the second year and two in the third year; in subsequent years, one is a panel for the second year, one for the third year, and one for the fourth (final) year.
According to the Commission Regulation on sampling and tracing rules, the selection of the sample will be drawn according to the following requirements:
Community Statistics on Income and Living Conditions. Article 8 of the EU-SILC Regulation of the European Parliament and of the Council mentions: 1. The cross-sectional and longitudinal data shall be based on nationally representative probability samples. 2. By way of exception to paragraph 1, Germany shall supply cross-sectional data based on a nationally representative probability sample for the first time for the year 2008. For the year 2005, Germany shall supply data for one fourth based on probability sampling and for three fourths based on quota samples, the latter to be progressively replaced by random selection so as to achieve fully representative probability sampling by 2008. For the longitudinal component, Germany shall supply for the year 2006 one third of longitudinal data (data for year 2005 and 2006) based on probability sampling and two thirds based on quota samples. For the year 2007, half of the longitudinal data relating to years 2005, 2006 and 2007 shall be based on probability sampling and half on quota sample. After 2007 all of the longitudinal data shall be based on probability sampling.
Detailed information about sampling is available in Quality Reports in Documentation.
Mixed
Facebook
TwitterMY NASA DATA (MND) is a tool that allows anyone to make use of satellite data that was previously unavailable.Through the use of MND’s Live Access Server (LAS) a multitude of charts, plots and graphs can be generated using a wide variety of constraints. This site provides a large number of lesson plans with a wide variety of topics, all with the students in mind. Not only can you use our lesson plans, you can use the LAS to improve the ones that you are currently implementing in your classroom.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Excel file contains:
Point-by-point data of singles matches at Wimbledon 1992-1995: 256 men's matches with 59,466 points, and 223 women's matches with 29,417 points; Match-level data of the same matches; Point-by-point data of three famous recent matches: Federer-Nadal, Clijsters-Williams, and Djokovic-Nadal.
Facebook
Twitterhttps://dataverse-staging.rdmc.unc.edu/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.15139/S3/JKLBZFhttps://dataverse-staging.rdmc.unc.edu/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.15139/S3/JKLBZF
This Excel file contains example data as would be provided by an investigator to a collaborative statistician to analyze. Data are a permuted and edited version of real data provided to the authors during a statistical collaboration. The data are presented as commonly collected by investigators prior to working with a statistician, including several tabs of data in different domains (Set1, Set2, Demographics), colored cells, merged cells, cells with more than one data type, etc. as well as incomplete data and two systems of ID numbers. The file also includes a tab to link the different ID systems as well as tabs that have a "cleaned" version of the data (REVISEDSet1, REVISEDSet2) that would typically be provided after quality control identified some issues with the data that were then resolved by the investigator.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
This list ranks the 50 states in the United States by Danish population, as estimated by the United States Census Bureau. It also highlights population changes in each state over the past five years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Facebook
TwitterThis data set shows 311 service requests in the City of Pittsburgh. This data is collected from the request intake software used by the 311 Response Center in the Department of Innovation & Performance. Requests are collected from phone calls, tweets, emails, a form on the City website, and through the 311 mobile application. For more information, see the 311 Data User Guide. If you are unable to download the 311 Data table due to a 504 Gateway Timeout error, use this link instead: https://tools.wprdc.org/downstream/76fda9d0-69be-4dd5-8108-0de7907fc5a4 NOTE: The data feed for this dataset is broken as of December 21st, 2022. We're working on restoring it.
Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
This graph shows how the impact factor of ^ is computed. The left axis depicts the number of papers published in years X-1 and X-2, and the right axis displays their citations in year X.