As of early 2023, approximately ** percent of consumers in the United States said they would prefer to shop mostly online rather than in-store, making it the country with highest online shopping preference. In contrast, more shoppers preferred visiting physical stores in countries such as Austria, Finland, and New Zealand.
This dataset is having data of customers who buys clothes online. The store offers in-store style and clothing advice sessions. Customers come in to the store, have sessions/meetings with a personal stylist, then they can go home and order either on a mobile app or website for the clothes they want.
The company is trying to decide whether to focus their efforts on their mobile app experience or their website.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset was created to simulate a market basket dataset, providing insights into customer purchasing behavior and store operations. The dataset facilitates market basket analysis, customer segmentation, and other retail analytics tasks. Here's more information about the context and inspiration behind this dataset:
Context:
Retail businesses, from supermarkets to convenience stores, are constantly seeking ways to better understand their customers and improve their operations. Market basket analysis, a technique used in retail analytics, explores customer purchase patterns to uncover associations between products, identify trends, and optimize pricing and promotions. Customer segmentation allows businesses to tailor their offerings to specific groups, enhancing the customer experience.
Inspiration:
The inspiration for this dataset comes from the need for accessible and customizable market basket datasets. While real-world retail data is sensitive and often restricted, synthetic datasets offer a safe and versatile alternative. Researchers, data scientists, and analysts can use this dataset to develop and test algorithms, models, and analytical tools.
Dataset Information:
The columns provide information about the transactions, customers, products, and purchasing behavior, making the dataset suitable for various analyses, including market basket analysis and customer segmentation. Here's a brief explanation of each column in the Dataset:
Use Cases:
Note: This dataset is entirely synthetic and was generated using the Python Faker library, which means it doesn't contain real customer data. It's designed for educational and research purposes.
This dataset contains a list of sales and movement data by item and department appended monthly. Update Frequency : Monthly
https://ec.europa.eu/info/legal-notice_enhttps://ec.europa.eu/info/legal-notice_en
Deluxe is an online retailer based in UK that deals in a wide range of products in the following categories: 1. Clothing 2. Games 3. Appliances 4. Electronics 5. Books 6. Beauty products 7. Smartphones 8. Outdoors products 9. Accessories 10. Other Basic household products are classified as 'Other' in the category column since they have small value to the business.
Data Description: dates: sale date order_value_EUR : sale price in EUR cost: cost of goods sold in EUR category: item category country: customers' country at the time of purchase customer_name: name of customer device_type: The gadget used by customer to access our online store(PC, mobile, tablet) sales_manager: name of the sales manager for each sale sales_representative: name of the sales rep for each sale order_id: unique identifier of an order
The data was recorded for the period 1/2/2019 and 12/30/2020 with an aim to generate business insights to guide business direction. We would like to see what interesting insights the Kaggle community members can produce from this data.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A comprehensive dataset providing key insights into the eCommerce industry, including global retail online sales projections, number of eCommerce stores, digital buyer statistics, revenue growth in the United States, sector-wise revenue details with a focus on consumer electronics, average conversion rates, and mobile commerce sales forecasts.
This dataset provides insights into eCommerce shopping preferences and trends among UK adults in 2024. The findings are derived from data collected from a sample of 2,017 UK adults regarding their shopping habits and influencing factors.Furthermore, hundreds of thousands online searches were analysed to collate the most up-to-date statistics.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This table contains 3 series, with data for years 2016 - 2017 (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Geography (1 item: Canada); Sales (3 items: Retail trade; Electronic shopping and mail-order houses; Retail E-commerce sales).
Envestnet®| Yodlee®'s Retail Sales Data (Aggregate/Row) Panels consist of de-identified, near-real time (T+1) USA credit/debit/ACH transaction level data – offering a wide view of the consumer activity ecosystem. The underlying data is sourced from end users leveraging the aggregation portion of the Envestnet®| Yodlee®'s financial technology platform.
Envestnet | Yodlee Consumer Panels (Aggregate/Row) include data relating to millions of transactions, including ticket size and merchant location. The dataset includes de-identified credit/debit card and bank transactions (such as a payroll deposit, account transfer, or mortgage payment). Our coverage offers insights into areas such as consumer, TMT, energy, REITs, internet, utilities, ecommerce, MBS, CMBS, equities, credit, commodities, FX, and corporate activity. We apply rigorous data science practices to deliver key KPIs daily that are focused, relevant, and ready to put into production.
We offer free trials. Our team is available to provide support for loading, validation, sample scripts, or other services you may need to generate insights from our data.
Investors, corporate researchers, and corporates can use our data to answer some key business questions such as: - How much are consumers spending with specific merchants/brands and how is that changing over time? - Is the share of consumer spend at a specific merchant increasing or decreasing? - How are consumers reacting to new products or services launched by merchants? - For loyal customers, how is the share of spend changing over time? - What is the company’s market share in a region for similar customers? - Is the company’s loyal user base increasing or decreasing? - Is the lifetime customer value increasing or decreasing?
Additional Use Cases: - Use spending data to analyze sales/revenue broadly (sector-wide) or granular (company-specific). Historically, our tracked consumer spend has correlated above 85% with company-reported data from thousands of firms. Users can sort and filter by many metrics and KPIs, such as sales and transaction growth rates and online or offline transactions, as well as view customer behavior within a geographic market at a state or city level. - Reveal cohort consumer behavior to decipher long-term behavioral consumer spending shifts. Measure market share, wallet share, loyalty, consumer lifetime value, retention, demographics, and more.) - Study the effects of inflation rates via such metrics as increased total spend, ticket size, and number of transactions. - Seek out alpha-generating signals or manage your business strategically with essential, aggregated transaction and spending data analytics.
Use Cases Categories (Our data provides an innumerable amount of use cases, and we look forward to working with new ones): 1. Market Research: Company Analysis, Company Valuation, Competitive Intelligence, Competitor Analysis, Competitor Analytics, Competitor Insights, Customer Data Enrichment, Customer Data Insights, Customer Data Intelligence, Demand Forecasting, Ecommerce Intelligence, Employee Pay Strategy, Employment Analytics, Job Income Analysis, Job Market Pricing, Marketing, Marketing Data Enrichment, Marketing Intelligence, Marketing Strategy, Payment History Analytics, Price Analysis, Pricing Analytics, Retail, Retail Analytics, Retail Intelligence, Retail POS Data Analysis, and Salary Benchmarking
Investment Research: Financial Services, Hedge Funds, Investing, Mergers & Acquisitions (M&A), Stock Picking, Venture Capital (VC)
Consumer Analysis: Consumer Data Enrichment, Consumer Intelligence
Market Data: AnalyticsB2C Data Enrichment, Bank Data Enrichment, Behavioral Analytics, Benchmarking, Customer Insights, Customer Intelligence, Data Enhancement, Data Enrichment, Data Intelligence, Data Modeling, Ecommerce Analysis, Ecommerce Data Enrichment, Economic Analysis, Financial Data Enrichment, Financial Intelligence, Local Economic Forecasting, Location-based Analytics, Market Analysis, Market Analytics, Market Intelligence, Market Potential Analysis, Market Research, Market Share Analysis, Sales, Sales Data Enrichment, Sales Enablement, Sales Insights, Sales Intelligence, Spending Analytics, Stock Market Predictions, and Trend Analysis
Revolutionize Customer Engagement with Our Comprehensive Ecommerce Data
Our Ecommerce Data is designed to elevate your customer engagement strategies, providing you with unparalleled insights and precision targeting capabilities. With over 61 million global contacts, this dataset goes beyond conventional data, offering a unique blend of shopping cart links, business emails, phone numbers, and LinkedIn profiles. This comprehensive approach ensures that your marketing strategies are not just effective but also highly personalized, enabling you to connect with your audience on a deeper level.
What Makes Our Ecommerce Data Stand Out?
Unique Features for Enhanced Targeting
Our Ecommerce Data is distinguished by its depth and precision. Unlike many other datasets, it includes shopping cart links—a rare and valuable feature that provides you with direct insights into consumer behavior and purchasing intent. This information allows you to tailor your marketing efforts with unprecedented accuracy. Additionally, the integration of business emails, phone numbers, and LinkedIn profiles adds multiple layers to traditional contact data, enriching your understanding of clients and enabling more personalized engagement.
Robust and Reliable Data Sourcing
We pride ourselves on our dual-sourcing strategy that ensures the highest levels of data accuracy and relevance:
Primary Use Cases Across Industries
Our Ecommerce Data is versatile and can be leveraged across various industries for multiple applications: - Precision Targeting in Marketing: Create personalized marketing campaigns based on detailed shopping cart activities, ensuring that your outreach resonates with individual customer preferences. - Sales Enrichment: Sales teams can benefit from enriched client profiles that include comprehensive contact information, enabling them to connect with key decision-makers more effectively. - Market Research and Analytics: Research and analytics departments can use this data for in-depth market studies and trend analyses, gaining valuable insights into consumer behavior and market dynamics.
Global Coverage for Comprehensive Engagement
Our Ecommerce Data spans across the globe, providing you with extensive reach and the ability to engage with customers in diverse regions: - North America: United States, Canada, Mexico - Europe: United Kingdom, Germany, France, Italy, Spain, Netherlands, Sweden, and more - Asia: China, Japan, India, South Korea, Singapore, Malaysia, and more - South America: Brazil, Argentina, Chile, Colombia, and more - Africa: South Africa, Nigeria, Kenya, Egypt, and more - Australia and Oceania: Australia, New Zealand - Middle East: United Arab Emirates, Saudi Arabia, Israel, Qatar, and more
Comprehensive Employee and Revenue Size Information
Our dataset also includes detailed information on: - Employee Size: Whether you’re targeting small businesses or large corporations, our data covers all employee sizes, from startups to global enterprises. - Revenue Size: Gain insights into companies across various revenue brackets, enabling you to segment the market more effectively and target your efforts where they will have the most impact.
Seamless Integration into Broader Data Offerings
Our Ecommerce Data is not just a standalone product; it is a critical piece of our broader data ecosystem. It seamlessly integrates with our comprehensive suite of business and consumer datasets, offering you a holistic approach to data-driven decision-making: - Tailored Packages: Choose customized data packages that meet your specific business needs, combining Ecommerce Data with other relevant datasets for a complete view of your market. - Holistic Insights: Whether you are looking for industry-specific details or a broader market overview, our integrated data solutions provide you with the insights necessary to stay ahead of the competition and make informed business decisions.
Elevate Your Business Decisions with Our Ecommerce Data
In essence, our Ecommerce Data is more than just a collection of contacts—it’s a strategic tool designed to give you a competitive edge in understanding and engaging your target audience. By leveraging the power of this comprehensive dataset, you can elevate your business decisions, enhance customer interactions, and navigate the digital landscape with confi...
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Mariusz Šapczyński, Cracow University of Economics, Poland, lapczynm '@' uek.krakow.pl Sylwester Białowąs, Poznan University of Economics and Business, Poland, sylwester.bialowas '@' ue.poznan.pl
The dataset contains information on clickstream from online store offering clothing for pregnant women. Data are from five months of 2008 and include, among others, product category, location of the photo on the page, country of origin of the IP address and product price in US dollars.
The dataset contains 14 variables described in a separate file (See 'Data set description')
N/A
If you use this dataset, please cite:
Šapczyński M., Białowąs S. (2013) Discovering Patterns of Users' Behaviour in an E-shop - Comparison of Consumer Buying Behaviours in Poland and Other European Countries, “Studia Ekonomiczne†, nr 151, “La société de l'information : perspective européenne et globale : les usages et les risques d'Internet pour les citoyens et les consommateurs†, p. 144-153
========================================================
========================================================
========================================================
========================================================
following categories:
1-Australia 2-Austria 3-Belgium 4-British Virgin Islands 5-Cayman Islands 6-Christmas Island 7-Croatia 8-Cyprus 9-Czech Republic 10-Denmark 11-Estonia 12-unidentified 13-Faroe Islands 14-Finland 15-France 16-Germany 17-Greece 18-Hungary 19-Iceland 20-India 21-Ireland 22-Italy 23-Latvia 24-Lithuania 25-Luxembourg 26-Mexico 27-Netherlands 28-Norway 29-Poland 30-Portugal 31-Romania 32-Russia 33-San Marino 34-Slovakia 35-Slovenia 36-Spain 37-Sweden 38-Switzerland 39-Ukraine 40-United Arab Emirates 41-United Kingdom 42-USA 43-biz (.biz) 44-com (.com) 45-int (.int) 46-net (.net) 47-org (*.org)
========================================================
========================================================
1-trousers 2-skirts 3-blouses 4-sale
========================================================
(217 products)
========================================================
1-beige 2-black 3-blue 4-brown 5-burgundy 6-gray 7-green 8-navy blue 9-of many colors 10-olive 11-pink 12-red 13-violet 14-white
========================================================
1-top left 2-top in the middle 3-top right 4-bottom left 5-bottom in the middle 6-bottom right
========================================================
1-en face 2-profile
========================================================
========================================================
the average price for the entire product category
1-yes 2-no
========================================================
++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Online Retail E-Commerce Data Hey everyone! 👋
This dataset contains real e-commerce transaction data from 2009 to 2011. It comes from a UK-based online store that sells a variety of products. The data includes details like invoices, product codes, descriptions, prices, and even customer IDs.
What’s Inside? Each row represents a transaction, and the dataset has the following key columns: 🛒 Invoice – Unique order ID 📦 StockCode – Product code 📝 Description – Name of the product 📊 Quantity – Number of units sold ⏳ InvoiceDate – When the purchase happened 💰 Price – Unit price of the product 👤 Customer ID – Unique identifier for each customer 🌍 Country – Where the customer is from
Why is this dataset useful? This dataset is great for exploring: Customer Segmentation (Find high-value customers) Customer Lifetime Value (LTV) Analysis Sales & Revenue Trends Market Basket Analysis (Which products are bought together?) Predicting Churn & Retention Strategies
How Can You Use It? If you're into data science, machine learning, or business analytics, this dataset is perfect for hands-on projects. You can analyze customer behavior, predict sales, or even build recommendation systems.
Hope this dataset helps with your projects! Let me know if you find something interesting.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
The Product Comparison dataset for online shopping is a new, manually annotated dataset with about 15K human generated sentences, which compare related products based on one or more of their attributes (the first such data we know of for product comparison). It covers ∼8K product sets, their selected attributes, and comparison texts.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset contains 1,462 entries and 22 columns, primarily capturing responses from a survey about e-customer relationships in e-commerce. Key demographic information includes age and sex, alongside questions on e-commerce usage patterns, such as daily app usage time and weekly purchase frequency.
The survey assesses factors influencing customer decisions, including the impact of e-commerce promotions (vouchers, coupons, flash sales), app usability, order processing speed, logistics ease, and customer service responsiveness. Further columns explore trust in sellers, the importance of regular order updates, perceived product quality, pricing competitiveness compared to physical stores, and the influence of social media advertisements and famous ambassadors. Additionally, participants rated their confidence in flagship stores, consideration of online shop ratings, and tendency to purchase from well-reviewed stores. Each response is rated on a scale, reflecting the importance of various factors in their e-commerce shopping behaviors.
This dataset was created by Ashish
https://brightdata.com/licensehttps://brightdata.com/license
We'll customize a Wildberries dataset to align with your unique requirements, incorporating data on product categories, customer reviews, pricing trends, popular items, demographic insights, sales figures, and other relevant metrics. Leverage our Wildberries datasets for various applications to strengthen strategic planning and market analysis. Examining these datasets enables organizations to understand consumer preferences and online shopping trends, facilitating refined product offerings and marketing campaigns. Tailor your access to the complete dataset or specific subsets according to your business needs. Popular use cases include conducting competitor analysis to understand market positioning, monitoring brand reputation through consumer feedback, and performing consumer market analysis to identify and predict emerging trends in e-commerce and online retail.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for E-Commerce Retail Sales (ECOMNSA) from Q4 1999 to Q1 2025 about e-commerce, retail trade, sales, retail, and USA.
This dataset was created by siddharth kshirsagar
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset was created by Deepak VD
Released under Apache 2.0
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Internet sales in Great Britain by store type, month and year.
As of early 2023, approximately ** percent of consumers in the United States said they would prefer to shop mostly online rather than in-store, making it the country with highest online shopping preference. In contrast, more shoppers preferred visiting physical stores in countries such as Austria, Finland, and New Zealand.