Facebook
TwitterHow many people use social media?
Social media usage is one of the most popular online activities. In 2024, over five billion people were using social media worldwide, a number projected to increase to over six billion in 2028.
Who uses social media?
Social networking is one of the most popular digital activities worldwide and it is no surprise that social networking penetration across all regions is constantly increasing. As of January 2023, the global social media usage rate stood at 59 percent. This figure is anticipated to grow as lesser developed digital markets catch up with other regions
when it comes to infrastructure development and the availability of cheap mobile devices. In fact, most of social media’s global growth is driven by the increasing usage of mobile devices. Mobile-first market Eastern Asia topped the global ranking of mobile social networking penetration, followed by established digital powerhouses such as the Americas and Northern Europe.
How much time do people spend on social media?
Social media is an integral part of daily internet usage. On average, internet users spend 151 minutes per day on social media and messaging apps, an increase of 40 minutes since 2015. On average, internet users in Latin America had the highest average time spent per day on social media.
What are the most popular social media platforms?
Market leader Facebook was the first social network to surpass one billion registered accounts and currently boasts approximately 2.9 billion monthly active users, making it the most popular social network worldwide. In June 2023, the top social media apps in the Apple App Store included mobile messaging apps WhatsApp and Telegram Messenger, as well as the ever-popular app version of Facebook.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Description:
The "Daily Social Media Active Users" dataset provides a comprehensive and dynamic look into the digital presence and activity of global users across major social media platforms. The data was generated to simulate real-world usage patterns for 13 popular platforms, including Facebook, YouTube, WhatsApp, Instagram, WeChat, TikTok, Telegram, Snapchat, X (formerly Twitter), Pinterest, Reddit, Threads, LinkedIn, and Quora. This dataset contains 10,000 rows and includes several key fields that offer insights into user demographics, engagement, and usage habits.
Dataset Breakdown:
Platform: The name of the social media platform where the user activity is tracked. It includes globally recognized platforms, such as Facebook, YouTube, and TikTok, that are known for their large, active user bases.
Owner: The company or entity that owns and operates the platform. Examples include Meta for Facebook, Instagram, and WhatsApp, Google for YouTube, and ByteDance for TikTok.
Primary Usage: This category identifies the primary function of each platform. Social media platforms differ in their primary usage, whether it's for social networking, messaging, multimedia sharing, professional networking, or more.
Country: The geographical region where the user is located. The dataset simulates global coverage, showcasing users from diverse locations and regions. It helps in understanding how user behavior varies across different countries.
Daily Time Spent (min): This field tracks how much time a user spends on a given platform on a daily basis, expressed in minutes. Time spent data is critical for understanding user engagement levels and the popularity of specific platforms.
Verified Account: Indicates whether the user has a verified account. This feature mimics real-world patterns where verified users (often public figures, businesses, or influencers) have enhanced status on social media platforms.
Date Joined: The date when the user registered or started using the platform. This data simulates user account history and can provide insights into user retention trends or platform growth over time.
Context and Use Cases:
Researchers, data scientists, and developers can use this dataset to:
Model User Behavior: By analyzing patterns in daily time spent, verified status, and country of origin, users can model and predict social media engagement behavior.
Test Analytics Tools: Social media monitoring and analytics platforms can use this dataset to simulate user activity and optimize their tools for engagement tracking, reporting, and visualization.
Train Machine Learning Algorithms: The dataset can be used to train models for various tasks like user segmentation, recommendation systems, or churn prediction based on engagement metrics.
Create Dashboards: This dataset can serve as the foundation for creating user-friendly dashboards that visualize user trends, platform comparisons, and engagement patterns across the globe.
Conduct Market Research: Business intelligence teams can use the data to understand how various demographics use social media, offering valuable insights into the most engaged regions, platform preferences, and usage behaviors.
Sources of Inspiration: This dataset is inspired by public data from industry reports, such as those from Statista, DataReportal, and other market research platforms. These sources provide insights into the global user base and usage statistics of popular social media platforms. The synthetic nature of this dataset allows for the use of realistic engagement metrics without violating any privacy concerns, making it an ideal tool for educational, analytical, and research purposes.
The structure and design of the dataset are based on real-world usage patterns and aim to represent a variety of users from different backgrounds, countries, and activity levels. This diversity makes it an ideal candidate for testing data-driven solutions and exploring social media trends.
Future Considerations:
As the social media landscape continues to evolve, this dataset can be updated or extended to include new platforms, engagement metrics, or user behaviors. Future iterations may incorporate features like post frequency, follower counts, engagement rates (likes, comments, shares), or even sentiment analysis from user-generated content.
By leveraging this dataset, analysts and data scientists can create better, more effective strategies ...
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
This dataset provides a comprehensive and diverse snapshot of social media users and their engagements across various popular platforms such as Instagram, Twitter, Facebook, YouTube, Pinterest, TikTok, and Spotify. With 100 rows of anonymized data, it offers valuable insights into the dynamic world of social media usage. 😀
Each row in the dataset represents a unique user with a designated User ID and Username to ensure anonymity. Alongside user-specific details, the dataset captures essential information, including the platform being used, the post's content, timestamp, and media type (text, image, or video). Additionally, it tracks engagement metrics such as likes, comments, shares/retweets, and user interactions, providing an overview of the user's popularity and social impact. 💬
https://media.giphy.com/media/3GSoFVODOkiPBFArlu/giphy.gif" alt="social">
The dataset also includes pertinent user attributes, such as account creation date, privacy settings, number of followers, and following. The users' profiles are further enriched with demographic characteristics, including anonymized representations of their age group and gender. 🗨️
https://media.giphy.com/media/2tSodgDfwCjIMCBY8h/giphy.gif" alt="socialcat">
Hashtags, mentions, media URLs, post URLs, and self-reported location contribute to understanding user interests, content themes, and geographic distribution. Moreover, users' bios and language preferences offer insights into their passions, activities, and linguistic communication on the platforms.
Facebook
TwitterOpen Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
This dataset was originally collected for a data science and machine learning project that aimed at investigating the potential correlation between the amount of time an individual spends on social media and the impact it has on their mental health.
The project involves conducting a survey to collect data, organizing the data, and using machine learning techniques to create a predictive model that can determine whether a person should seek professional help based on their answers to the survey questions.
This project was completed as part of a Statistics course at a university, and the team is currently in the process of writing a report and completing a paper that summarizes and discusses the findings in relation to other research on the topic.
The following is the Google Colab link to the project, done on Jupyter Notebook -
https://colab.research.google.com/drive/1p7P6lL1QUw1TtyUD1odNR4M6TVJK7IYN
The following is the GitHub Repository of the project -
https://github.com/daerkns/social-media-and-mental-health
Libraries used for the Project -
Pandas
Numpy
Matplotlib
Seaborn
Sci-kit Learn
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Discover the latest social media statistics and trends for 2025 and how they impact businesses.
Facebook
Twitterhttps://sqmagazine.co.uk/privacy-policy/https://sqmagazine.co.uk/privacy-policy/
In 2004, a Harvard student launched a platform that would go on to redefine how humans connect. Fast forward to 2025, social media isn't just a way to stay in touch, it’s where people shop, learn, protest, play, and even find love. From early-morning scrolls to late-night reels, platforms have...
Facebook
TwitterThis dataset consists of 734 entries representing social media activity and performance from a local SME (Micro, Small, and Medium Enterprise) across TikTok, Instagram, and Twitter platforms. It captures key metrics related to audience interaction and content strategy effectiveness, and is valuable for evaluating and optimizing digital marketing efforts for small businesses.
Area : Target location or customer region where the UMKM's content is directed. Category : The business content category (e.g., product promotion, education, seasonal campaign). Day : The day of the week the content was published. Month : The month the post went live. Platform : The social media platform used by the UMKM (TikTok, Instagram, or Twitter). Post Type : The format of the content posted: image, video, carousel, or text. Timestamp : The exact date and time when the content was posted. User : The username or business account that posted the content. Week : Week number within the year for time-based analysis. Year : The year the content was posted. Comments : Total number of comments received on the post. Engagement Rate : A calculated metric showing how engaging the content is (based on likes, comments, shares vs. reach/impressions). Hour : Hour of the day the post was published. Impressions : Number of times the content appeared on users' feeds. Likes : Number of likes the post received. Reach : Number of unique users who saw the content. Shares : Number of times users shared the content.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The hereby presented data are extracted from Meta, Tiktok and Twitter.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
The dataset comes from a Social Media Analysis survey that aims to analyse user behavior on social media, focusing on attention monetization and engagement based on 110+ self-reported responses. It was conducted using Google Forms, with diverse participants to capture varying user profiles and the variance in levels of awareness about social media's impact on daily routines.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset was created by Nafe Muhtasim
Released under CC0: Public Domain
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average Twitter user spends 5.1 hours per month on the platform.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
YouTube gets an average of 14.3 billion total worldwide visits every month.
Facebook
Twitterhttps://brightdata.com/licensehttps://brightdata.com/license
Gain valuable insights with our comprehensive Social Media Dataset, designed to help businesses, marketers, and analysts track trends, monitor engagement, and optimize strategies. This dataset provides structured and reliable social media data from multiple platforms.
Dataset Features
User Profiles: Access public social media profiles, including usernames, bios, follower counts, engagement metrics, and more. Ideal for audience analysis, influencer marketing, and competitive research. Posts & Content: Extract posts, captions, hashtags, media (images/videos), timestamps, and engagement metrics such as likes, shares, and comments. Useful for trend analysis, sentiment tracking, and content strategy optimization. Comments & Interactions: Analyze user interactions, including replies, mentions, and discussions. This data helps brands understand audience sentiment and engagement patterns. Hashtag & Trend Tracking: Monitor trending hashtags, topics, and viral content across platforms to stay ahead of industry trends and consumer interests.
Customizable Subsets for Specific Needs Our Social Media Dataset is fully customizable, allowing you to filter data based on platform, region, keywords, engagement levels, or specific user profiles. Whether you need a broad dataset for market research or a focused subset for brand monitoring, we tailor the dataset to your needs.
Popular Use Cases
Brand Monitoring & Reputation Management: Track brand mentions, customer feedback, and sentiment analysis to manage online reputation effectively. Influencer Marketing & Audience Analysis: Identify key influencers, analyze engagement metrics, and optimize influencer partnerships. Competitive Intelligence: Monitor competitor activity, content performance, and audience engagement to refine marketing strategies. Market Research & Consumer Insights: Analyze social media trends, customer preferences, and emerging topics to inform business decisions. AI & Predictive Analytics: Leverage structured social media data for AI-driven trend forecasting, sentiment analysis, and automated content recommendations.
Whether you're tracking brand sentiment, analyzing audience engagement, or monitoring industry trends, our Social Media Dataset provides the structured data you need. Get started today and customize your dataset to fit your business objectives.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Survey data collected in Canada, 2019. n = 1539. Using, Age, Facebook use and meme understanding to determine differences between demographics in relation to Instagram use
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Users spend an average of 19.6 hours per month on TikTok alone. This works out to be approximately 39 minutes per day.
Facebook
Twitterhttps://sqmagazine.co.uk/privacy-policy/https://sqmagazine.co.uk/privacy-policy/
Social media algorithms now shape the information we see. In 2025, over 5.4 billion people will engage with personalized feeds daily, each tailored by complex models that sort, amplify, or bury content based on real-time behavior. These algorithms affect everything from advertising campaigns to political messaging, and even how quickly...
Facebook
Twitterhttps://www.sapbwconsulting.comhttps://www.sapbwconsulting.com
A concise dataset summarizing platform-level social media statistics and benchmarks across Facebook, Google properties, and Twitter (X).
Facebook
Twitterhttps://www.ibisworld.com/about/termsofuse/https://www.ibisworld.com/about/termsofuse/
Over the five years through 2025-26, industry revenue is forecast to expand at a compound annual rate of 20.3% to reach £12.5 billion. Social media platforms are integral to people's lives, offering ways to communicate, create and view content and share information. According to Ofcom, approximately 89% of UK internet users in 2023 used social media apps or sites. Teenagers and young adults are the biggest users. Advertising is the primary revenue source for social media platforms, although subscription-based services are gaining momentum as platforms seek to diversify their incomes. TikTok is the success story of the past five years, becoming the most downloaded app between 2020 and 2022, according to Apptopia. The short-form video platform has over 30 million monthly users in the UK in 2025. After Musk's takeover, X, formerly known as Twitter, adjusted its content moderation and allowed previously banned accounts to return. As a result, over 600 advertisers pulled their ads from the site because of fears their brand may be associated with malcontent. In response to falling ad revenue, X has introduced a subscription-based service which enables users to verify themselves and boosts the number of people who view their tweets. Meta-owned Facebook and Instagram have responded by introducing a similar service. In 2025, more social media platforms are using AI to boost user engagement. This improves click-through rates and drives higher advertising revenue. Industry revenue is expected to grow by 6.3% in 2025-26. Over the five years through 2030-31, social media platforms' revenue is projected to climb at an estimated 9.2% to reach £19.4 billion. Regulations relating to how data is collected, stored, and shared will force advertisers and platforms to rethink how they can target their desired demographics. The tightening of regulations will raise industry compliance costs, weighing on profit margin. Older age groups present a new revenue opportunity for social media platforms if they can bridge the gap between passive TV consumption and interactive digital engagement. Augmented Reality (AR) technology will move beyond filters to become standard for immersive product trials, interactive ads, and virtual meetups
Facebook
Twitterhttps://sqmagazine.co.uk/privacy-policy/https://sqmagazine.co.uk/privacy-policy/
On a foggy morning in early January 2025, a small fitness brand in Austin, Texas, posted a short behind-the-scenes clip on TikTok. Within 48 hours, that video had over 2.3 million views, tripled their followers, and caused their website to crash from unexpected traffic. It wasn’t a stroke of luck,...
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
hello everyone. I wanted to share here my data set, which is completely my own product of imagination and has no connection with the real data that I wrote for my own data analysis training, for analysts working on data analysis. have fun:))))))
UserId: Unique identifier for each user in the data set
UsageDuration: Total time spent by the user on social media in hours
Age: Age of the user in years
Country: Country of residence of the user
TotalLikes: Total number of likes giving by the user in a day
Facebook
TwitterHow many people use social media?
Social media usage is one of the most popular online activities. In 2024, over five billion people were using social media worldwide, a number projected to increase to over six billion in 2028.
Who uses social media?
Social networking is one of the most popular digital activities worldwide and it is no surprise that social networking penetration across all regions is constantly increasing. As of January 2023, the global social media usage rate stood at 59 percent. This figure is anticipated to grow as lesser developed digital markets catch up with other regions
when it comes to infrastructure development and the availability of cheap mobile devices. In fact, most of social media’s global growth is driven by the increasing usage of mobile devices. Mobile-first market Eastern Asia topped the global ranking of mobile social networking penetration, followed by established digital powerhouses such as the Americas and Northern Europe.
How much time do people spend on social media?
Social media is an integral part of daily internet usage. On average, internet users spend 151 minutes per day on social media and messaging apps, an increase of 40 minutes since 2015. On average, internet users in Latin America had the highest average time spent per day on social media.
What are the most popular social media platforms?
Market leader Facebook was the first social network to surpass one billion registered accounts and currently boasts approximately 2.9 billion monthly active users, making it the most popular social network worldwide. In June 2023, the top social media apps in the Apple App Store included mobile messaging apps WhatsApp and Telegram Messenger, as well as the ever-popular app version of Facebook.