Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This table contains data on income inequality. The primary measure is the Gini index – a measure of the extent to which the distribution of income among families/households within a community deviates from a perfectly equal distribution. The index ranges from 0.0, when all families (households) have equal shares of income (implies perfect equality), to 1.0 when one family (household) has all the income and the rest have none (implies perfect inequality). Index data is provided for California and its counties, regions, and large cities/towns. The data is from the U.S. Census Bureau, American Community Survey. The table is part of a series of indicators in the Healthy Communities Data and Indicators Project of the Office of Health Equity. Income is linked to acquiring resources for healthy living. Both household income and the distribution of income across a society independently contribute to the overall health status of a community. On average Western industrialized nations with large disparities in income distribution tend to have poorer health status than similarly advanced nations with a more equitable distribution of income. Approximately 119,200 (5%) of the 2.4 million U.S. deaths in 2000 are attributable to income inequality. The pathways by which income inequality act to increase adverse health outcomes are not known with certainty, but policies that provide for a strong safety net of health and social services have been identified as potential buffers. More information about the data table and a data dictionary can be found in the About/Attachments section.
Over **** of the organizations worldwide expect the widespread implementation of generative AI (GenAI) to increase economic inequality across the globe. Only about ** percent of the respondents expect the opposite scenario. Approximately ** percent of the respondents expect a widespread use of GenAI not to have any impact on this social aspect.
In the first quarter of 2024, almost two-thirds percent of the total wealth in the United States was owned by the top 10 percent of earners. In comparison, the lowest 50 percent of earners only owned 2.5 percent of the total wealth. Income inequality in the U.S. Despite the idea that the United States is a country where hard work and pulling yourself up by your bootstraps will inevitably lead to success, this is often not the case. In 2023, 7.4 percent of U.S. households had an annual income under 15,000 U.S. dollars. With such a small percentage of people in the United States owning such a vast majority of the country’s wealth, the gap between the rich and poor in America remains stark. The top one percent The United States follows closely behind China as the country with the most billionaires in the world. Elon Musk alone held around 219 billion U.S. dollars in 2022. Over the past 50 years, the CEO-to-worker compensation ratio has exploded, causing the gap between rich and poor to grow, with some economists theorizing that this gap is the largest it has been since right before the Great Depression.
This statistic shows the inequality of income distribution in China from 2005 to 2023 based on the Gini Index. In 2023, China reached a score of ************ points. The Gini Index is a statistical measure that is used to represent unequal distributions, e.g. income distribution. It can take any value between 1 and 100 points (or 0 and 1). The closer the value is to 100 the greater is the inequality. 40 or 0.4 is the warning level set by the United Nations. The Gini Index for South Korea had ranged at about **** in 2022. Income distribution in China The Gini coefficient is used to measure the income inequality of a country. The United States, the World Bank, the US Central Intelligence Agency, and the Organization for Economic Co-operation and Development all provide their own measurement of the Gini coefficient, varying in data collection and survey methods. According to the United Nations Development Programme, countries with the largest income inequality based on the Gini index are mainly located in Africa and Latin America, with South Africa displaying the world's highest value in 2022. The world's most equal countries, on the contrary, are situated mostly in Europe. The United States' Gini for household income has increased by around ten percent since 1990, to **** in 2023. Development of inequality in China Growing inequality counts as one of the biggest social, economic, and political challenges to many countries, especially emerging markets. Over the last 20 years, China has become one of the world's largest economies. As parts of the society have become more and more affluent, the country's Gini coefficient has also grown sharply over the last decades. As shown by the graph at hand, China's Gini coefficient ranged at a level higher than the warning line for increasing risk of social unrest over the last decade. However, the situation has slightly improved since 2008, when the Gini coefficient had reached the highest value of recent times.
Cross-national research on the causes and consequences of income inequality has been hindered by the limitations of the existing inequality datasets: greater coverage across countries and over time has been available from these sources only at the cost of significantly reduced comparability across observations. The goal of the Standardized World Income Inequality Database (SWIID) is to meet the needs of those engaged in broadly cross-national research by maximizing the comparability of income inequality data while maintaining the widest possible coverage across countries and over time. The SWIID’s income inequality estimates are based on thousands of reported Gini indices from hundreds of published sources, including the OECD Income Distribution Database, the Socio-Economic Database for Latin America and the Caribbean generated by CEDLAS and the World Bank, Eurostat, the World Bank’s PovcalNet, the UN Economic Commission for Latin America and the Caribbean, national statistical offices around the world, and academic studies while minimizing reliance on problematic assumptions by using as much information as possible from proximate years within the same country. The data collected and harmonized by the Luxembourg Income Study is employed as the standard. The SWIID currently incorporates comparable Gini indices of disposable and market income inequality for 199 countries for as many years as possible from 1960 to the present; it also includes information on absolute and relative redistribution.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Income Inequality in New York County, NY (2020RATIO036061) from 2010 to 2023 about New York County, NY; inequality; New York; NY; income; and USA.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Statistics on income inequality based on the Gini index and the p90/p10 ratio on various household income concepts (market income, total income, after-tax income) for Canada, provinces and territories, census divisions and census subdivisions.
The World Income Inequality Database (WIID) contains information on income inequality in various countries, and is maintained by the United Nations University-World Institute for Development Economics Research (UNU-WIDER). The database was originally compiled during 1997-99 for the research project Rising Income Inequality and Poverty Reduction, directed by Giovanni Andrea Corina. A revised and updated version of the database was published in June 2005 as part of the project Global Trends in Inequality and Poverty, directed by Tony Shorrocks and Guang Hua Wan. The database was revised in 2007 and a new version was launched in May 2008.
The database contains data on inequality in the distribution of income in various countries. The central variable in the dataset is the Gini index, a measure of income distribution in a society. In addition, the dataset contains information on income shares by quintile or decile. The database contains data for 159 countries, including some historical entities. The temporal coverage varies substantially across countries. For some countries there is only one data entry; in other cases there are over 100 data points. The earliest entry is from 1867 (United Kingdom), the latest from 2003. The majority of the data (65%) cover the years from 1980 onwards. The 2008 update (version WIID2c) includes some major updates and quality improvements, in fact leading to a reduced number of variables in the new version. The new version has 334 new observations and several revisions/ corrections made in 2007 and 2008.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
France - Inequality of income distribution was 4.66 in December of 2024, according to the EUROSTAT. Trading Economics provides the current actual value, an historical data chart and related indicators for France - Inequality of income distribution - last updated from the EUROSTAT on June of 2025. Historically, France - Inequality of income distribution reached a record high of 4.66 in December of 2024 and a record low of 4.23 in December of 2018.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Gini index measures economic inequality in a country. Specifically, it is the extent to which the distribution of income (or, in some cases, consumption expenditure) deviates from a perfectly equal distribution among individuals or households within an economy.
In 2023, according to the Gini coefficient, household income distribution in the United States was 0.47. This figure was at 0.43 in 1990, which indicates an increase in income inequality in the U.S. over the past 30 years. What is the Gini coefficient? The Gini coefficient, or Gini index, is a statistical measure of economic inequality and wealth distribution among a population. A value of zero represents perfect economic equality, and a value of one represents perfect economic inequality. The Gini coefficient helps to visualize income inequality in a more digestible way. For example, according to the Gini coefficient, the District of Columbia and the state of New York have the greatest amount of income inequality in the U.S. with a score of 0.51, and Utah has the greatest income equality with a score of 0.43. The Gini coefficient around the world The Gini coefficient is also an effective measure to help picture income inequality around the world. For example, in 2018 income inequality was highest in South Africa, while income inequality was lowest in Slovenia.
While most Americans appear to acknowledge the large gap between the rich and the poor in the U.S., it is not clear if the public is aware of recent changes in income inequality. Even though economic inequality has grown substantially in recent decades, studies have shown that the public's perception of growing income disparities has remained mostly unchanged since the 1980s. This research offers an alternative approach to evaluating how public perceptions of inequality are developed. Centrally, it conceptualizes the public's response to growing economic disparities by applying theories of macro-political behavior and place-based contextual effects to the formation of aggregate perceptions about income inequality. It is argued that most of the public relies on basic information about the economy to form attitudes about inequality and that geographic context---in this case, the American states---plays a role in how views of income disparities are produced. A new measure of state perceptions of growing economic inequality over a 25-year period is used to examine whether the public is responsive to objective changes in economic inequality. Time-series cross-sectional analyses suggest that the public's perceptions of growing inequality are largely influenced by objective state economic indicators and state political ideology. This research has implications for how knowledgeable the public is of disparities between the rich and the poor, whether state context influences attitudes about inequality, and what role the public will have in determining how expanding income differences are addressed through government policy.
Replication Data for: "Income inequality and the erosion of democracy in the twenty-first century," published in PNAS.
Is global inequality (inequality among world citizens) stable, decreasing or increasing? How high it is? Is it mostly due to inequalities within nations or between nations? Is there a global middle class? See the working papers above: "True world income distribution 1988 and 1993: first calculations based on household surveys alone" no. 2244, and "Decomposing global income distribution: Does the world have a middle class?" no. 2562
Household survey data (1988-2002) used in these papers, and subsequent book "Worlds Apart: Measuring International and Global Inequality", Princeton University Press, 2005. The data are for three benchmark years: 1988, 1993 and 1998
Aggregate data [agg]
Other [oth]
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for GINI Index for the United States (SIPOVGINIUSA) from 1963 to 2023 about gini, indexes, and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The USA: Gini income inequality index: The latest value from 2022 is 41.3 index points, an increase from 39.7 index points in 2021. In comparison, the world average is 38.33 index points, based on data from 28 countries. Historically, the average for the USA from 1963 to 2022 is 38.7 index points. The minimum value, 34.7 index points, was reached in 1980 while the maximum of 41.5 index points was recorded in 2014.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Researchers should ensure the data they employ are fit for their purpose, and they should maximize the quality of the data they choose. In this paper, I review how this advice applies to broadly cross-national research on income inequality. I demonstrate that the guidance offered in Jenkins (2015) to those pursuing cross-national research runs completely counter to the recommendations found in Atkinson and Brandolini (2001, 2009), the source of the aforementioned advice and the works upon which Jenkins (2015) claims its own is based. I then show how the Standardized World Income Inequality Database (SWIID) incorporates Atkinson and Brandolini’s recommendations to provide the most comparable data available for those engaged in broadly cross-national research on income inequality.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Finland - Inequality of income distribution was 3.73 in December of 2024, according to the EUROSTAT. Trading Economics provides the current actual value, an historical data chart and related indicators for Finland - Inequality of income distribution - last updated from the EUROSTAT on June of 2025. Historically, Finland - Inequality of income distribution reached a record high of 3.78 in December of 2023 and a record low of 3.54 in December of 2017.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Romania - Inequality of income distribution was 4.62 in December of 2024, according to the EUROSTAT. Trading Economics provides the current actual value, an historical data chart and related indicators for Romania - Inequality of income distribution - last updated from the EUROSTAT on July of 2025. Historically, Romania - Inequality of income distribution reached a record high of 8.32 in December of 2015 and a record low of 4.62 in December of 2024.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Replication package for "The regional dispersion of income inequality in nineteenth-century Norway", to be published in Explorations in Economic History (accepted September 2017). The files contain micro data foundations for estimates of Norwegian income inequality in 1868.The file "data_compact.dta" (Stata format) contains "pseudo-invididual" observations of all men age 25 or more in Norway in 1868, estimated as described in the paper. Note that any one individual data point cannot stand by itself; analysis must be conducted at the municipality and/or occupation level. This is further explained in the paper.The file "municipalityfile.dta" (Stata format) contains municipality-level Gini coefficients and covariates.The file "replicate.zip" contains the necessary files (Stata and Matlab) to replicate the analysis. See "DataReadMe.pdf" for instructions.Abstract for the paper: This paper documents, for the first time, municipality- and occupation-level estimates of income inequality between individuals in a European country in the nineteenth century, using a combination of several detailed data sets for Norway in the late 1860s. Urban incomes were on average 4.5 times as high as rural incomes, and the average city Gini coefficient was twice the average rural municipality Gini. All high- or medium-income occupation groups exhibited substantial within-occupation income inequality. Across municipalities, income inequality is higher in high-income municipalities, and lower in muncipalities with high levels of fisheries and pastoral agriculture. While manufacturing activity is positively correlated with income inequality, the association is not apparent when other economic factors such as the mode of food production is accounted for. The income Gini for Norway as a whole is found to have been 0.546, slightly higher than estimates for the UK and US in the same period.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This table contains data on income inequality. The primary measure is the Gini index – a measure of the extent to which the distribution of income among families/households within a community deviates from a perfectly equal distribution. The index ranges from 0.0, when all families (households) have equal shares of income (implies perfect equality), to 1.0 when one family (household) has all the income and the rest have none (implies perfect inequality). Index data is provided for California and its counties, regions, and large cities/towns. The data is from the U.S. Census Bureau, American Community Survey. The table is part of a series of indicators in the Healthy Communities Data and Indicators Project of the Office of Health Equity. Income is linked to acquiring resources for healthy living. Both household income and the distribution of income across a society independently contribute to the overall health status of a community. On average Western industrialized nations with large disparities in income distribution tend to have poorer health status than similarly advanced nations with a more equitable distribution of income. Approximately 119,200 (5%) of the 2.4 million U.S. deaths in 2000 are attributable to income inequality. The pathways by which income inequality act to increase adverse health outcomes are not known with certainty, but policies that provide for a strong safety net of health and social services have been identified as potential buffers. More information about the data table and a data dictionary can be found in the About/Attachments section.