The Research and Development Survey (RANDS) is a platform designed for conducting survey question evaluation and statistical research. RANDS is an ongoing series of surveys from probability-sampled commercial survey panels used for methodological research at the National Center for Health Statistics (NCHS). RANDS estimates are generated using an experimental approach that differs from the survey design approaches generally used by NCHS, including possible biases from different response patterns and sampling frames as well as increased variability from lower sample sizes. Use of the RANDS platform allows NCHS to produce more timely data than would be possible using traditional data collection methods. RANDS is not designed to replace NCHS’ higher quality, core data collections. Below are experimental estimates of reduced access to healthcare for three rounds of RANDS during COVID-19. Data collection for the three rounds of RANDS during COVID-19 occurred between June 9, 2020 and July 6, 2020, August 3, 2020 and August 20, 2020, and May 17, 2021 and June 30, 2021. Information needed to interpret these estimates can be found in the Technical Notes. RANDS during COVID-19 included questions about unmet care in the last 2 months during the coronavirus pandemic. Unmet needs for health care are often the result of cost-related barriers. The National Health Interview Survey, conducted by NCHS, is the source for high-quality data to monitor cost-related health care access problems in the United States. For example, in 2018, 7.3% of persons of all ages reported delaying medical care due to cost and 4.8% reported needing medical care but not getting it due to cost in the past year. However, cost is not the only reason someone might delay or not receive needed medical care. As a result of the coronavirus pandemic, people also may not get needed medical care due to cancelled appointments, cutbacks in transportation options, fear of going to the emergency room, or an altruistic desire to not be a burden on the health care system, among other reasons. The Household Pulse Survey (https://www.cdc.gov/nchs/covid19/pulse/reduced-access-to-care.htm), an online survey conducted in response to the COVID-19 pandemic by the Census Bureau in partnership with other federal agencies including NCHS, also reports estimates of reduced access to care during the pandemic (beginning in Phase 1, which started on April 23, 2020). The Household Pulse Survey reports the percentage of adults who delayed medical care in the last 4 weeks or who needed medical care at any time in the last 4 weeks for something other than coronavirus but did not get it because of the pandemic. The experimental estimates on this page are derived from RANDS during COVID-19 and show the percentage of U.S. adults who were unable to receive medical care (including urgent care, surgery, screening tests, ongoing treatment, regular checkups, prescriptions, dental care, vision care, and hearing care) in the last 2 months. Technical Notes: https://www.cdc.gov/nchs/covid19/rands/reduced-access-to-care.htm#limitations
Between January and September 2024, healthcare organizations in the United States saw 491 large-scale data breaches, resulting in the loss of over 500 records. This figure has increased significantly in the last decade. To date, the highest number of large-scale data breaches in the U.S. healthcare sector was recorded in 2023, with a reported 745 cases.
Diagnosis data of patients and patients in hospitals.
The hospital diagnosis statistics are part of the hospital statistics and have been collected annually from all hospitals since 1993. The statistics include information on the main diagnosis (coded according to ICD-10), length of stay, department and selected sociodemographic characteristics such as age, gender and place of residence, among others.
Basic data of hospitals and preventive care or rehabilitation facilities.
The basic data statistics are part of the hospital statistics. The material and personnel resources of hospitals and preventive or rehabilitation facilities and their specialist departments have been reported annually since 1990.
The aggregated data are freely accessible.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global market size for Big Data Analytics in Healthcare was valued at approximately USD 34 billion in 2023 and is anticipated to grow at a robust CAGR of 11.9%, reaching an estimated USD 90 billion by 2032. This remarkable growth is driven by the increasing adoption of data-driven decision-making processes within the healthcare sector, spurred by the mounting pressure to enhance operational efficiencies, improve patient outcomes, and reduce overall healthcare costs. The integration of big data analytics within healthcare systems is enabling organizations to leverage vast amounts of data, leading to enhanced patient care and streamlined operations.
A significant growth factor fueling the expansion of the big data analytics market in healthcare is the ever-increasing volume of data generated by healthcare systems. With the surge of electronic health records, wearable health devices, and various other digital health technologies, the volume of data being generated is unprecedented. This data, if analyzed correctly, holds the potential to transform healthcare delivery models, allowing for more precise diagnostics, personalized treatment plans, and proactive disease management strategies. Consequently, healthcare organizations are increasingly investing in big data analytics tools to harness this data for clinical and operational improvements.
Another key driver of market growth is the growing emphasis on value-based care and the need for healthcare providers to demonstrate high-quality patient outcomes. Value-based care models require providers to focus on the quality rather than the quantity of care delivered, inherently demanding the use of advanced analytics to derive actionable insights from patient data. Big data analytics facilitates the identification of patterns and trends that can lead to improved treatment effectiveness and patient satisfaction. This shift in care models is prompting healthcare organizations to integrate sophisticated analytics solutions that help in predictive modeling, trend analysis, and real-time decision-making, further propelling market expansion.
Additionally, the increasing incidence of chronic diseases worldwide is driving the need for more efficient healthcare services. Big data analytics in healthcare can play a critical role in managing chronic diseases by enabling preventive care and personalized treatment plans. By analyzing patient data, including historical health records, genetic information, and lifestyle choices, healthcare providers can predict potential health issues and intervene early, thereby improving patient outcomes and reducing healthcare costs. This capability is essential in managing the global burden of chronic diseases, thereby boosting the adoption of big data analytics solutions in the healthcare sector.
Regionally, North America dominates the market due to the presence of advanced healthcare infrastructure, the availability of technologically advanced products, and the high adoption rate of healthcare IT solutions. The region's robust regulatory environment and substantial investments in healthcare IT make it a fertile ground for the growth of big data analytics solutions. However, the Asia Pacific region is expected to exhibit the highest growth rate during the forecast period, driven by increasing government initiatives supporting the digitization of healthcare, burgeoning healthcare infrastructure, and a growing focus on precision medicine. The integration of big data analytics in healthcare across diverse regions is indicative of its global importance in optimizing healthcare delivery and patient care.
In the realm of big data analytics in healthcare, the component segment is vitally instrumental to the market's evolution and includes software and services. Software solutions are the backbone of big data analytics, providing healthcare organizations with the necessary tools to collect, process, and analyze vast datasets. These solutions encompass data management and analytical platforms, which are indispensable for extracting actionable insights from disparate data sources. The software component is continually evolving with advancements in artificial intelligence and machine learning, which enhance data analytics capabilities. Moreover, the increasing demand for user-friendly, customizable software solutions is driving innovation and growth within this segment.
The services component, on the other hand, plays a critical role in the implementation and maintenance of big data analytics solutions. This component includes cons
This statistic shows the size of the global big data market related to healthcare in 2016 and a forecast for 2025. It is estimated that over this period the market will increase from around 11.5 billion to nearly 70 billion U.S. dollars.
https://media.market.us/privacy-policyhttps://media.market.us/privacy-policy
Healthcare Staffing Statistics: Healthcare staffing is a crucial facet of the healthcare industry. Involves the recruitment, hiring, and management of qualified professionals to meet the ever-changing demands of patients and medical institutions.
This intricate process plays a pivotal role in ensuring high-quality patient care by matching individuals' skills and qualifications to specific roles, considering factors like patient load and location.
Effective healthcare staffing requires anticipating staffing needs, managing schedules, addressing turnover, and adhering to regulatory standards.
Inadequate staffing can jeopardize patient safety and care quality. Effective staffing enhances patient outcomes and experiences, making it a cornerstone of healthcare delivery.
In essence, healthcare staffing is a complex, indispensable process that directly impacts patient well-being and the overall success of healthcare organizations. Demanding meticulous planning and unwavering commitment to excellent patient care.
Part of Janatahack Hackathon in Analytics Vidhya
The healthcare sector has long been an early adopter of and benefited greatly from technological advances. These days, machine learning plays a key role in many health-related realms, including the development of new medical procedures, the handling of patient data, health camps and records, and the treatment of chronic diseases.
MedCamp organizes health camps in several cities with low work life balance. They reach out to working people and ask them to register for these health camps. For those who attend, MedCamp provides them facility to undergo health checks or increase awareness by visiting various stalls (depending on the format of camp).
MedCamp has conducted 65 such events over a period of 4 years and they see a high drop off between “Registration” and number of people taking tests at the Camps. In last 4 years, they have stored data of ~110,000 registrations they have done.
One of the huge costs in arranging these camps is the amount of inventory you need to carry. If you carry more than required inventory, you incur unnecessarily high costs. On the other hand, if you carry less than required inventory for conducting these medical checks, people end up having bad experience.
The Process:
MedCamp employees / volunteers reach out to people and drive registrations.
During the camp, People who “ShowUp” either undergo the medical tests or visit stalls depending on the format of health camp.
Other things to note:
Since this is a completely voluntary activity for the working professionals, MedCamp usually has little profile information about these people.
For a few camps, there was hardware failure, so some information about date and time of registration is lost.
MedCamp runs 3 formats of these camps. The first and second format provides people with an instantaneous health score. The third format provides
information about several health issues through various awareness stalls.
Favorable outcome:
For the first 2 formats, a favourable outcome is defined as getting a health_score, while in the third format it is defined as visiting at least a stall.
You need to predict the chances (probability) of having a favourable outcome.
Train / Test split:
Camps started on or before 31st March 2006 are considered in Train
Test data is for all camps conducted on or after 1st April 2006.
Credits to AV
To share with the data science community to jump start their journey in Healthcare Analytics
https://www.enterpriseappstoday.com/privacy-policyhttps://www.enterpriseappstoday.com/privacy-policy
AI in Healthcare Statistics: AI in healthcare has been a hot topic for the past few years, and the report says that the industry is expected to reach $187.95 billion by the end of 2030. The fact of this platform in 2023 suggests a huge boom in the market size worldwide, with a compound annual increase rate (CAGR) of 40.1% from 2023 to 2030. The worldwide Artificial intelligence in the healthcare marketplace length changed into worth $20.65 billion in 2023 which has increased from last year. These AI in Healthcare Statistics include insights from various aspects and sources that will provide effective light on the importance of AI in the healthcare industry around the world in recent times. In 2023, the Market share records the gradual adoption of AI which is advancing the sector, and has been observed that 85% of organizations have already implemented AI. Additionally, 1/2 of the executives claimed that AI is indicating a tremendous shift inside and outside the industry. Aid of AI-based healthcare companies used solutions like telemedicine and remote tools and sensors backed by means of large information that can reduce healthcare charges improve access, and promote better outcomes, and performance. Key Takeaways According to AI in Healthcare Statistics, the platform when implemented Artificial Intelligence has experienced a huge increase, with a CAGR of 40.1% from 2023 to 2030 and a global market size expected to attain $187.95 billion by 2030. Around the world, approximately 40% of healthcare industries are regularly using AI and Machine Language in the sector. In 2023, Healthcare executives are increasingly adopting AI in their techniques, and nearly 1/2 of the executives surveyed are already using it. This is being adopted globally, with answers like telemedicine and faraway tools and sensors backed through huge information that could lessen healthcare charges and equitably improve admission to, results, and performance.
This statistic, biennative and censal in nature, allows, from the Free Insurance Entities operating in the C.A. of the Basque Country, to give information on the main magnitudes of insurance in health care (insured persons, premiums and type of insurance)
The US Healthcare Visits Statistics dataset includes data about the frequency of healthcare visits to doctor offices, emergency departments, and home visits within the past 12 months in the United States by age, race, Hispanic origin, poverty level, health insurance status, geographic region and other characteristics between 1997 and 2016.
https://www.sci-tech-today.com/privacy-policyhttps://www.sci-tech-today.com/privacy-policy
AI in Healthcare Statistics: Artificial Intelligence (AI) in healthcare is growing rapidly, helping doctors and healthcare providers improve patient care. AI uses machines and algorithms to analyse data, such as medical records or images, to help diagnose diseases and suggest treatments faster and more accurately. AI technologies like machine learning, natural language processing, and robotic surgery are driving this growth.
AI helps in areas like medical imaging, drug discovery, and personalised treatment, making healthcare more efficient. This technology is transforming healthcare by reducing costs, speeding up diagnoses, and improving the accuracy of treatments, all while supporting healthcare professionals in delivering better care.
https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy
The Big Data in Healthcare Market Report is Segmented by Component (Software, Services), Deployment (On-Premise, Cloud), Analytics Type (Descriptive Analytics, Predictive Analytics, Prescriptive Analytics), Application (Financial Analytics, and More), End User (Healthcare Providers, and More), and Geography (North America, Europe, Asia-Pacific, and More). The Market Forecasts are Provided in Terms of Value (USD).
The amount of global healthcare data is expected to increase dramatically by the year 2020. Early estimates from 2013 suggest that there were about 153 exabytes of healthcare data generated in that year. However, projections indicate that there could be as much as 2,314 exabytes of new data generated in 2020.
A 2024 survey found that over half of U.S. individuals indicated the cost of accessing treatment was the biggest problem facing the national healthcare system. This is much higher than the global average of 32 percent and is in line with the high cost of health care in the U.S. compared to other high-income countries. Bureaucracy along with a lack of staff were also considered to be pressing issues. This statistic reveals the share of individuals who said select problems were the biggest facing the health care system in the United States in 2024.
https://media.market.us/privacy-policyhttps://media.market.us/privacy-policy
Global Big Data in Healthcare Market size is expected to be worth around USD 145.8 Billion by 2033 from USD 42.2 Billion in 2023, growing at a CAGR of 13.2% during the forecast period from 2024 to 2033.
Big data in healthcare encompasses vast amounts of diverse, unstructured data sourced from medical journals, biometric sensors, electronic medical records (EMRs), Internet of Medical Things (IoMT), social media platforms, payer records, omics research, and data repositories. Integrating this unstructured data into traditional systems presents considerable challenges, primarily in data structuring and standardization. Effective data structuring is essential for ensuring compatibility across systems and enabling robust analytical processes.
However, advancements in big data analytics, artificial intelligence, and machine learning have significantly enhanced the ability to convert complex healthcare data into actionable insights. These advancements have transformed healthcare, driving informed decision-making, enabling early and accurate diagnostics, facilitating precision medicine, and enhancing patient engagement through digital self-service platforms, including online portals, mobile applications, and wearable health devices.
The role of big data in pharmaceutical R&D has become increasingly central, as analytics tools streamline drug discovery, accelerate clinical trial processes, and identify potential therapeutic targets more efficiently. The demand for business intelligence solutions within healthcare is rising, fueled by the surge of unstructured data and the focus on developing tailored treatment protocols. As a result, the global market for big data in healthcare is projected to grow steadily during the forecast period.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset presents statistics on the healthcare workforce in the State of Qatar for the year 2024. It categorizes health professionals by type (physicians, dentists, nurses) and sector (government and private), and provides metrics such as rate per 1,000 population, total number of professionals, and population per professional.These statistics are vital for assessing the availability, distribution, and adequacy of human resources in the healthcare sector. They support health system planning, workforce allocation, and policy development to ensure equitable access to medical services.
https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/
Big Data Analytics In Healthcare Market size is estimated at USD 37.22 Billion in 2024 and is projected to reach USD 74.82 Billion by 2032, growing at a CAGR of 9.12% from 2026 to 2032.
Big Data Analytics In Healthcare Market: Definition/ Overview
Big Data Analytics in Healthcare, often referred to as health analytics, is the process of collecting, analyzing, and interpreting large volumes of complex health-related data to derive meaningful insights that can enhance healthcare delivery and decision-making. This field encompasses various data types, including electronic health records (EHRs), genomic data, and real-time patient information, allowing healthcare providers to identify patterns, predict outcomes, and improve patient care.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global healthcare big data analytics market size is projected to achieve a robust growth trajectory, with a valuation of approximately USD 32 billion in 2023. It is anticipated to soar to around USD 115 billion by 2032, reflecting an impressive compound annual growth rate (CAGR) of 15.4%. This remarkable growth can largely be attributed to the increasing demand for efficient data management systems in the healthcare sector, the rising need for data-driven decision-making, and the expanding adoption of analytics in diverse healthcare applications. The integration of artificial intelligence and machine learning in analytics, the emphasis on personalized medicine, and the growing importance of predictive analytics are further propelling the market forward.
One of the key growth drivers in the healthcare big data analytics market is the rising necessity for cost reduction and improved operational efficiency within the healthcare sector. Hospitals and clinics are increasingly recognizing the value of analytics in streamlining processes, reducing waste, and enhancing patient care. By leveraging big data analytics, healthcare providers can gain insights into patient care patterns, optimize resource allocation, and minimize unnecessary expenditures. This drive towards efficiency is further bolstered by government initiatives and policies aimed at improving healthcare delivery and reducing costs, creating a fertile ground for the adoption of advanced analytics solutions.
Another significant factor contributing to the market's expansion is the growing emphasis on personalized and precision medicine. As healthcare providers aim to offer more tailored treatment options, the analysis of vast datasets becomes crucial. Big data analytics facilitates the identification of patterns and trends in patient data, enabling healthcare providers to make informed decisions regarding personalized treatment plans. Moreover, the continuous advancements in genomics and biotechnology are generating immense volumes of data, necessitating robust analytics solutions to derive actionable insights. This trend towards personalized care is expected to drive substantial investments in big data analytics technologies in the coming years.
Additionally, the increasing prevalence of chronic diseases and the aging global population are driving the demand for effective population health management. Big data analytics plays a pivotal role in analyzing population health trends, identifying at-risk individuals, and devising preventive strategies. Governments and healthcare organizations are increasingly focusing on population health analytics to enhance public health outcomes and reduce the burden on healthcare infrastructure. This growing demand for comprehensive population health management solutions is expected to be a significant driving force for the healthcare big data analytics market over the forecast period.
Healthcare Analytics & Medical Analytics are becoming increasingly vital in the pursuit of personalized and precision medicine. By leveraging these analytics, healthcare providers can delve deeper into patient data to uncover insights that inform individualized treatment plans. This approach not only enhances patient outcomes but also optimizes the use of healthcare resources. As the demand for personalized care continues to rise, the role of healthcare analytics in tailoring treatments to individual patient needs is expected to grow exponentially. The integration of advanced analytics tools into healthcare systems is facilitating a shift towards more patient-centric care models, thereby driving the adoption of these technologies across the sector.
The regional outlook for the healthcare big data analytics market shows a diverse growth pattern across different geographies. North America currently holds a significant share of the market, driven by the presence of advanced healthcare infrastructure, a high level of digitalization, and a strong focus on research and development. Europe is also witnessing considerable growth, with countries like Germany and the United Kingdom leading the charge in the adoption of analytics solutions. Meanwhile, the Asia Pacific region is poised to experience the fastest growth, fueled by rapid technological advancements, increasing healthcare investments, and the need to address healthcare challenges in densely populated regions. Latin America and the Middle East & Africa are expected to show steady growth, driven by improving healthcare infrastruct
https://www.rootsanalysis.com/privacy.htmlhttps://www.rootsanalysis.com/privacy.html
The big data in healthcare market size is estimated to grow from USD 78 billion in 2024 to USD 540 billion by 2035, representing a CAGR of 19.20% till 2035
This dataset contains data for the Healthcare Payments Data (HPD) Snapshot visualization. The Enrollment data file contains counts of claims and encounter data collected for California's statewide HPD Program. It includes counts of enrollment records, service records from medical and pharmacy claims, and the number of individuals represented across these records. Aggregate counts are grouped by payer type (Commercial, Medi-Cal, or Medicare), product type, and year. The Medical data file contains counts of medical procedures from medical claims and encounter data in HPD. Procedures are categorized using claim line procedure codes and grouped by year, type of setting (e.g., outpatient, laboratory, ambulance), and payer type. The Pharmacy data file contains counts of drug prescriptions from pharmacy claims and encounter data in HPD. Prescriptions are categorized by name and drug class using the reported National Drug Code (NDC) and grouped by year, payer type, and whether the drug dispensed is branded or a generic.
The Research and Development Survey (RANDS) is a platform designed for conducting survey question evaluation and statistical research. RANDS is an ongoing series of surveys from probability-sampled commercial survey panels used for methodological research at the National Center for Health Statistics (NCHS). RANDS estimates are generated using an experimental approach that differs from the survey design approaches generally used by NCHS, including possible biases from different response patterns and sampling frames as well as increased variability from lower sample sizes. Use of the RANDS platform allows NCHS to produce more timely data than would be possible using traditional data collection methods. RANDS is not designed to replace NCHS’ higher quality, core data collections. Below are experimental estimates of reduced access to healthcare for three rounds of RANDS during COVID-19. Data collection for the three rounds of RANDS during COVID-19 occurred between June 9, 2020 and July 6, 2020, August 3, 2020 and August 20, 2020, and May 17, 2021 and June 30, 2021. Information needed to interpret these estimates can be found in the Technical Notes. RANDS during COVID-19 included questions about unmet care in the last 2 months during the coronavirus pandemic. Unmet needs for health care are often the result of cost-related barriers. The National Health Interview Survey, conducted by NCHS, is the source for high-quality data to monitor cost-related health care access problems in the United States. For example, in 2018, 7.3% of persons of all ages reported delaying medical care due to cost and 4.8% reported needing medical care but not getting it due to cost in the past year. However, cost is not the only reason someone might delay or not receive needed medical care. As a result of the coronavirus pandemic, people also may not get needed medical care due to cancelled appointments, cutbacks in transportation options, fear of going to the emergency room, or an altruistic desire to not be a burden on the health care system, among other reasons. The Household Pulse Survey (https://www.cdc.gov/nchs/covid19/pulse/reduced-access-to-care.htm), an online survey conducted in response to the COVID-19 pandemic by the Census Bureau in partnership with other federal agencies including NCHS, also reports estimates of reduced access to care during the pandemic (beginning in Phase 1, which started on April 23, 2020). The Household Pulse Survey reports the percentage of adults who delayed medical care in the last 4 weeks or who needed medical care at any time in the last 4 weeks for something other than coronavirus but did not get it because of the pandemic. The experimental estimates on this page are derived from RANDS during COVID-19 and show the percentage of U.S. adults who were unable to receive medical care (including urgent care, surgery, screening tests, ongoing treatment, regular checkups, prescriptions, dental care, vision care, and hearing care) in the last 2 months. Technical Notes: https://www.cdc.gov/nchs/covid19/rands/reduced-access-to-care.htm#limitations