100+ datasets found
  1. Monthly mobile data usage per connection worldwide 2023-2030*, by region

    • statista.com
    Updated Jul 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Monthly mobile data usage per connection worldwide 2023-2030*, by region [Dataset]. https://www.statista.com/statistics/489169/canada-united-states-average-data-usage-user-per-month/
    Explore at:
    Dataset updated
    Jul 1, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    Worldwide
    Description

    North America registered the highest mobile data consumption per connection in 2023, with the average connection consuming ** gigabytes per month. This figure is set to triple by 2030, driven by the adoption of data intensive activities such as 4K streaming.

  2. Annual mobile data usage worldwide 2020-2025, by device type

    • statista.com
    Updated Jul 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Annual mobile data usage worldwide 2020-2025, by device type [Dataset]. https://www.statista.com/statistics/1222706/worldwide-annual-mobile-data-usage-by-device-type/
    Explore at:
    Dataset updated
    Jul 11, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    In 2021, the global annual cellular data usage is projected to reach roughly *** thousand petabytes (PB), with approximately *** thousand petabytes coming from the use of mobile handsets, in other words, mobile phones. Tablets and cellular IoT devices currently do not compare to mobile phones in terms of data usage, but they are expected to grow in the upcoming years.

  3. Information Technology Usage and Penetration - Table 720-90006 : Persons...

    • data.gov.hk
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.gov.hk, Information Technology Usage and Penetration - Table 720-90006 : Persons aged 10 and over who had a mobile phone (including smartphone and non-smartphone) by sex and age group [Dataset]. https://data.gov.hk/en-data/dataset/hk-censtatd-tablechart-720-90006
    Explore at:
    Dataset provided by
    data.gov.hk
    Description

    Information Technology Usage and Penetration - Table 720-90006 : Persons aged 10 and over who had a mobile phone (including smartphone and non-smartphone) by sex and age group

  4. Smartphone personal use and selected smartphone habits by gender and age...

    • www150.statcan.gc.ca
    • open.canada.ca
    • +1more
    Updated Jun 22, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2021). Smartphone personal use and selected smartphone habits by gender and age group [Dataset]. http://doi.org/10.25318/2210014301-eng
    Explore at:
    Dataset updated
    Jun 22, 2021
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Percentage of Canadians using a smartphone for personal use and selected habits of use during a typical day.

  5. f

    Source Code for analysing smartphone use data.

    • plos.figshare.com
    zip
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sally Andrews; David A. Ellis; Heather Shaw; Lukasz Piwek (2023). Source Code for analysing smartphone use data. [Dataset]. http://doi.org/10.1371/journal.pone.0139004.s001
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Sally Andrews; David A. Ellis; Heather Shaw; Lukasz Piwek
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Source code, example screenprobe.csv data file, and README.txt for processing, visualising and analysing smartphone use data. csv2data.m converts ScreenProbe.csv to usable data, while barcode.m allows visualisations to be generated. descriptives.m generates descriptive statistics that can be used for quantitative analysis. Source code requires Matlab version 2014b or later, but does not require any specific toolboxes. (ZIP)

  6. d

    Handphone Users Survey - Use of Smartphones for Phone Calls - Dataset -...

    • archive.data.gov.my
    Updated Jul 24, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). Handphone Users Survey - Use of Smartphones for Phone Calls - Dataset - MAMPU [Dataset]. https://archive.data.gov.my/data/dataset/use-of-smartphones-for-phone-calls
    Explore at:
    Dataset updated
    Jul 24, 2017
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Handphone Users Survey - Use of Smartphones for Phone Calls since 2012

  7. Z

    Data from: A 24-hour dynamic population distribution dataset based on mobile...

    • data.niaid.nih.gov
    • explore.openaire.eu
    • +1more
    Updated Feb 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Olle Järv (2022). A 24-hour dynamic population distribution dataset based on mobile phone data from Helsinki Metropolitan Area, Finland [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_4724388
    Explore at:
    Dataset updated
    Feb 16, 2022
    Dataset provided by
    Matti Manninen
    Henrikki Tenkanen
    Claudia Bergroth
    Olle Järv
    Tuuli Toivonen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Finland, Helsinki Metropolitan Area
    Description

    Related article: Bergroth, C., Järv, O., Tenkanen, H., Manninen, M., Toivonen, T., 2022. A 24-hour population distribution dataset based on mobile phone data from Helsinki Metropolitan Area, Finland. Scientific Data 9, 39.

    In this dataset:

    We present temporally dynamic population distribution data from the Helsinki Metropolitan Area, Finland, at the level of 250 m by 250 m statistical grid cells. Three hourly population distribution datasets are provided for regular workdays (Mon – Thu), Saturdays and Sundays. The data are based on aggregated mobile phone data collected by the biggest mobile network operator in Finland. Mobile phone data are assigned to statistical grid cells using an advanced dasymetric interpolation method based on ancillary data about land cover, buildings and a time use survey. The data were validated by comparing population register data from Statistics Finland for night-time hours and a daytime workplace registry. The resulting 24-hour population data can be used to reveal the temporal dynamics of the city and examine population variations relevant to for instance spatial accessibility analyses, crisis management and planning.

    Please cite this dataset as:

    Bergroth, C., Järv, O., Tenkanen, H., Manninen, M., Toivonen, T., 2022. A 24-hour population distribution dataset based on mobile phone data from Helsinki Metropolitan Area, Finland. Scientific Data 9, 39. https://doi.org/10.1038/s41597-021-01113-4

    Organization of data

    The dataset is packaged into a single Zipfile Helsinki_dynpop_matrix.zip which contains following files:

    HMA_Dynamic_population_24H_workdays.csv represents the dynamic population for average workday in the study area.

    HMA_Dynamic_population_24H_sat.csv represents the dynamic population for average saturday in the study area.

    HMA_Dynamic_population_24H_sun.csv represents the dynamic population for average sunday in the study area.

    target_zones_grid250m_EPSG3067.geojson represents the statistical grid in ETRS89/ETRS-TM35FIN projection that can be used to visualize the data on a map using e.g. QGIS.

    Column names

    YKR_ID : a unique identifier for each statistical grid cell (n=13,231). The identifier is compatible with the statistical YKR grid cell data by Statistics Finland and Finnish Environment Institute.

    H0, H1 ... H23 : Each field represents the proportional distribution of the total population in the study area between grid cells during a one-hour period. In total, 24 fields are formatted as “Hx”, where x stands for the hour of the day (values ranging from 0-23). For example, H0 stands for the first hour of the day: 00:00 - 00:59. The sum of all cell values for each field equals to 100 (i.e. 100% of total population for each one-hour period)

    In order to visualize the data on a map, the result tables can be joined with the target_zones_grid250m_EPSG3067.geojson data. The data can be joined by using the field YKR_ID as a common key between the datasets.

    License Creative Commons Attribution 4.0 International.

    Related datasets

    Järv, Olle; Tenkanen, Henrikki & Toivonen, Tuuli. (2017). Multi-temporal function-based dasymetric interpolation tool for mobile phone data. Zenodo. https://doi.org/10.5281/zenodo.252612

    Tenkanen, Henrikki, & Toivonen, Tuuli. (2019). Helsinki Region Travel Time Matrix [Data set]. Zenodo. http://doi.org/10.5281/zenodo.3247564

  8. Data from: Internet users

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Apr 6, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2021). Internet users [Dataset]. https://www.ons.gov.uk/businessindustryandtrade/itandinternetindustry/datasets/internetusers
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Apr 6, 2021
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Internet use in the UK annual estimates by age, sex, disability, ethnic group, economic activity and geographical location, including confidence intervals.

  9. RICO dataset

    • kaggle.com
    Updated Dec 2, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Onur Gunes (2021). RICO dataset [Dataset]. https://www.kaggle.com/datasets/onurgunes1993/rico-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 2, 2021
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Onur Gunes
    Description

    Context

    Data-driven models help mobile app designers understand best practices and trends, and can be used to make predictions about design performance and support the creation of adaptive UIs. This paper presents Rico, the largest repository of mobile app designs to date, created to support five classes of data-driven applications: design search, UI layout generation, UI code generation, user interaction modeling, and user perception prediction. To create Rico, we built a system that combines crowdsourcing and automation to scalably mine design and interaction data from Android apps at runtime. The Rico dataset contains design data from more than 9.3k Android apps spanning 27 categories. It exposes visual, textual, structural, and interactive design properties of more than 66k unique UI screens. To demonstrate the kinds of applications that Rico enables, we present results from training an autoencoder for UI layout similarity, which supports query-by-example search over UIs.

    Content

    Rico was built by mining Android apps at runtime via human-powered and programmatic exploration. Like its predecessor ERICA, Rico’s app mining infrastructure requires no access to — or modification of — an app’s source code. Apps are downloaded from the Google Play Store and served to crowd workers through a web interface. When crowd workers use an app, the system records a user interaction trace that captures the UIs visited and the interactions performed on them. Then, an automated agent replays the trace to warm up a new copy of the app and continues the exploration programmatically, leveraging a content-agnostic similarity heuristic to efficiently discover new UI states. By combining crowdsourcing and automation, Rico can achieve higher coverage over an app’s UI states than either crawling strategy alone. In total, 13 workers recruited on UpWork spent 2,450 hours using apps on the platform over five months, producing 10,811 user interaction traces. After collecting a user trace for an app, we ran the automated crawler on the app for one hour.

    Acknowledgements

    UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN https://interactionmining.org/rico

    Inspiration

    The Rico dataset is large enough to support deep learning applications. We trained an autoencoder to learn an embedding for UI layouts, and used it to annotate each UI with a 64-dimensional vector representation encoding visual layout. This vector representation can be used to compute structurally — and often semantically — similar UIs, supporting example-based search over the dataset. To create training inputs for the autoencoder that embed layout information, we constructed a new image for each UI capturing the bounding box regions of all leaf elements in its view hierarchy, differentiating between text and non-text elements. Rico’s view hierarchies obviate the need for noisy image processing or OCR techniques to create these inputs.

  10. d

    App + Web Consumer Data | MFour's 1st Party - App + Web Usage Data | 2M...

    • datarade.ai
    .csv
    Updated Nov 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    mfour (2023). App + Web Consumer Data | MFour's 1st Party - App + Web Usage Data | 2M consumers, 3B+ events verified, US consumers | CCPA Compliant [Dataset]. https://datarade.ai/data-categories/app-data/datasets
    Explore at:
    .csvAvailable download formats
    Dataset updated
    Nov 14, 2023
    Dataset authored and provided by
    mfour
    Area covered
    United States of America
    Description

    At MFour, our Behavioral Data stands out for its uniqueness and depth of insights. What makes our data genuinely exceptional is the combination of several key factors:

    • First-Party Opt-In Data: Our data is sourced directly from our opt-in panel of consumers who willingly participate in research and provide observed behaviors. This ensures the highest data quality and eliminates privacy concerns. CCPA compliant.

    • Unparalleled Data Coverage: With access to 3B+ billion events, we have an extensive pool of participants who allow us to observe their brick + mortar location visitation, app + web smartphone usage, or both. This large-scale coverage provides robust and reliable insights.

    • Our data is generally sourced through our Surveys On The Go (SOTG) mobile research app, where consumers are incentivized with cash rewards to participate in surveys and share their observed behaviors. This incentivized approach ensures a willing and engaged panel, leading to the highest-quality data.

    The primary use cases and verticals of our Behavioral Data Product are diverse and varied. Some key applications include:

    • Data Acquisition and Modeling: Our data helps businesses acquire valuable insights into consumer behavior and enables modeling for various research objectives.

    • Shopper Data Analysis: By understanding purchase behavior and patterns, businesses can optimize their strategies, improve targeting, and enhance customer experiences.

    • Media Consumption Insights: Our data provides a deep understanding of viewer behavior and patterns across popular platforms like YouTube, Amazon Prime, Netflix, and Disney+, enabling effective media planning and content optimization.

    • App Performance Optimization: Analyzing app behavior allows businesses to monitor usage patterns, track key performance indicators (KPIs), and optimize app experiences to drive user engagement and retention.

    • Location-Based Targeting: With our detailed location data, businesses can map out consumer visits to physical venues and combine them with web and app behavior to create predictive ad targeting strategies.

    • Audience Creation for Ad Placement: Our data enables the creation of highly targeted audiences for ad campaigns, ensuring better reach and engagement with relevant consumer segments.

    The Behavioral Data Product complements our comprehensive suite of data solutions in the broader context of our data offering. It provides granular and event-level insights into consumer behaviors, which can be combined with other data sets such as survey responses, demographics, or custom profiling questions to offer a holistic understanding of consumer preferences, motivations, and actions.

    MFour's Behavioral Data empowers businesses with unparalleled consumer insights, allowing them to make data-driven decisions, uncover new opportunities, and stay ahead in today's dynamic market landscape.

  11. Mobile broadband connections per 100 inhabitants in the United States...

    • statista.com
    Updated Nov 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2024). Mobile broadband connections per 100 inhabitants in the United States 2014-2029 [Dataset]. https://www.statista.com/topics/3124/mobile-internet-usage-in-the-united-states/
    Explore at:
    Dataset updated
    Nov 19, 2024
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Description

    The number of mobile broadband connections per 100 inhabitants in the United States was forecast to continuously increase between 2024 and 2029 by in total 21.1 connections (+11.49 percent). After the fifteenth consecutive increasing year, the mobile broadband penetration is estimated to reach 204.76 connections and therefore a new peak in 2029. Notably, the number of mobile broadband connections per 100 inhabitants of was continuously increasing over the past years.Mobile broadband connections include cellular connections with a download speed of at least 256 kbit/s (without satellite or fixed-wireless connections). Cellular Internet-of-Things (IoT) or machine-to-machine (M2M) connections are excluded. The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of mobile broadband connections per 100 inhabitants in countries like Canada and Mexico.

  12. Total mobile data usage in India 2013-2020

    • statista.com
    Updated Jul 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Total mobile data usage in India 2013-2020 [Dataset]. https://www.statista.com/statistics/918855/india-total-mobile-data-usage/
    Explore at:
    Dataset updated
    Jul 10, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Dec 2013 - Dec 2020
    Area covered
    India
    Description

    Indians used over ***** petabytes of mobile data in December 2020, indicating a massive increase in data consumption compared to around ***** petabytes used in December 2019. Overall, the country saw a year-on-year data usage growth of around ** percent from December 2019 to December 2020.

  13. d

    Mobile Location Data | United States | +300M Unique Devices | +150M Daily...

    • datarade.ai
    .json, .xml, .csv
    Updated Jul 7, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Quadrant (2020). Mobile Location Data | United States | +300M Unique Devices | +150M Daily Users | +200B Events / Month [Dataset]. https://datarade.ai/data-products/mobile-location-data-us
    Explore at:
    .json, .xml, .csvAvailable download formats
    Dataset updated
    Jul 7, 2020
    Dataset authored and provided by
    Quadrant
    Area covered
    United States
    Description

    Quadrant provides Insightful, accurate, and reliable mobile location data.

    Our privacy-first mobile location data unveils hidden patterns and opportunities, provides actionable insights, and fuels data-driven decision-making at the world's biggest companies.

    These companies rely on our privacy-first Mobile Location and Points-of-Interest Data to unveil hidden patterns and opportunities, provide actionable insights, and fuel data-driven decision-making. They build better AI models, uncover business insights, and enable location-based services using our robust and reliable real-world data.

    We conduct stringent evaluations on data providers to ensure authenticity and quality. Our proprietary algorithms detect, and cleanse corrupted and duplicated data points – allowing you to leverage our datasets rapidly with minimal processing or cleaning. During the ingestion process, our proprietary Data Filtering Algorithms remove events based on a number of both qualitative factors, as well as latency and other integrity variables to provide more efficient data delivery. The deduplicating algorithm focuses on a combination of four important attributes: Device ID, Latitude, Longitude, and Timestamp. This algorithm scours our data and identifies rows that contain the same combination of these four attributes. Post-identification, it retains a single copy and eliminates duplicate values to ensure our customers only receive complete and unique datasets.

    We actively identify overlapping values at the provider level to determine the value each offers. Our data science team has developed a sophisticated overlap analysis model that helps us maintain a high-quality data feed by qualifying providers based on unique data values rather than volumes alone – measures that provide significant benefit to our end-use partners.

    Quadrant mobility data contains all standard attributes such as Device ID, Latitude, Longitude, Timestamp, Horizontal Accuracy, and IP Address, and non-standard attributes such as Geohash and H3. In addition, we have historical data available back through 2022.

    Through our in-house data science team, we offer sophisticated technical documentation, location data algorithms, and queries that help data buyers get a head start on their analyses. Our goal is to provide you with data that is “fit for purpose”.

  14. f

    Pearson Correlation Coefficient between mobile phone usage duration and...

    • plos.figshare.com
    xls
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shouxi Zhu; Hongbin Gu (2023). Pearson Correlation Coefficient between mobile phone usage duration and mobile phone addiction. [Dataset]. http://doi.org/10.1371/journal.pone.0283577.t009
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Shouxi Zhu; Hongbin Gu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Pearson Correlation Coefficient between mobile phone usage duration and mobile phone addiction.

  15. MI-BMPI: Motor Imagery Brain--Mobil Phone Interface Dataset

    • figshare.com
    bin
    Updated Dec 23, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cagatay Murat Yilmaz (2024). MI-BMPI: Motor Imagery Brain--Mobil Phone Interface Dataset [Dataset]. http://doi.org/10.6084/m9.figshare.26893396.v2
    Explore at:
    binAvailable download formats
    Dataset updated
    Dec 23, 2024
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Cagatay Murat Yilmaz
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains two significant mobile gestures for brain-mobile phone interfaces (BMPIs: (i) motor imagery of tapping on the screen of a mobile device and (ii) motor imagery of swiping down with a thumb on the screen of a mobile device. The raw EEG signals were recorded using the Emotiv EPOC Flex (Model 1.0) headset with saline-based sensors and Emotiv Pro (2.5.1.227) software. The sampling rate is 128 Hz. Each epoch contains 3.5 s signals. The first 1 s signal is recorded before the MI task starts (5 s to 6 s interval in the timing plan), and the next 2.5 s signal is recorded during the MI execution (6 s to 8.5 s interval in the timing plan). Please refer to the reference study below for details.The file names are constructed as follows. For example, taking "D01_s1" and "D01" in the file name refers to subject "01", and "s1" refers to session 1 ("s2" refers to session 2). The label data is given in a separate folder in Matlab format.The data is provided in two different forms for use (the desired is preferable):The set_files folder contains the data prepared for import in EEGLAB. EEGLAB must be installed, and the set files must be imported to access the data. The data is in epoched format in 3D (channels, sample_points, trials). With the EEGLAB interface, all the data can be accessed, and EEGLAB functions can be executed. Also, the EEG variable, which is built after importing the *.set file, contains all the information about the experiment. With the EEG.data variable, epoched data in the dimensions (channels, sample_points, trials) can be accessed.The mat_files folder contains data in mat file format. In these files, epoched data is stored in a 3-D array of size (channels, sample_points, trials). You can access the data as follows. For example, all data from the first session of subject D01 can be retrieved as follows. Load the mat file with the load('D01_s1.mat') code, and access the data using the EEG variable in the workspace. For instance, 13x448 x101 sized epoched data (channels, sample_points, trials) can be retrieved with the command EEG.data. Other information about the experiments and subjects is also included in the fields of the EEG variable.This research was supported by the Turkish Scientific and Research Council (TUBITAK) under project number 119E397.The following article must be used in academic studies with reference. Permission must be obtained for use in commercial studies.Journal: Neural Computing and Applications.DOI : 10.1007/s00521-024-10917-5.Title : MI-BMPI motor imagery brain–mobile phone dataset and performance evaluation of voting ensembles utilizing QPDM.

  16. Forecast: Mobile Data Usage Per Mobile Broadband Subscription in Finland...

    • reportlinker.com
    Updated Apr 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ReportLinker (2024). Forecast: Mobile Data Usage Per Mobile Broadband Subscription in Finland 2022 - 2026 [Dataset]. https://www.reportlinker.com/dataset/85f761467990e99069c23ce48897ad04f863fc9b
    Explore at:
    Dataset updated
    Apr 8, 2024
    Dataset authored and provided by
    ReportLinker
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Area covered
    Finland
    Description

    Forecast: Mobile Data Usage Per Mobile Broadband Subscription in Finland 2022 - 2026 Discover more data with ReportLinker!

  17. Randomized Battery Usage 1: Random Walk

    • data.nasa.gov
    • catalog.data.gov
    Updated Mar 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov (2025). Randomized Battery Usage 1: Random Walk [Dataset]. https://data.nasa.gov/dataset/randomized-battery-usage-1-random-walk
    Explore at:
    Dataset updated
    Mar 31, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    This dataset is part of a series of datasets, where batteries are continuously cycled with randomly generated current profiles. Reference charging and discharging cycles are also performed after a fixed interval of randomized usage to provide reference benchmarks for battery state of health. In this dataset, four 18650 Li-ion batteries (Identified as RW9, RW10, RW11 and RW12) were continuously operated using a sequence of charging and discharging currents between -4.5A and 4.5A. This type of charging and discharging operation is referred to here as random walk (RW) operation. Each of the loading periods lasted 5 minutes, and after 1500 periods (about 5 days) a series of reference charging and discharging cycles were performed in order to provide reference benchmarks for battery state health.

  18. Colombia Use of Mobile Phone: Total: 25 to 54 Years

    • ceicdata.com
    Updated Feb 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). Colombia Use of Mobile Phone: Total: 25 to 54 Years [Dataset]. https://www.ceicdata.com/en/colombia/technology-and-communication-usage/use-of-mobile-phone-total-25-to-54-years
    Explore at:
    Dataset updated
    Feb 15, 2025
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2013 - Dec 1, 2017
    Area covered
    Colombia
    Description

    Colombia Use of Mobile Phone: Total: 25 to 54 Years data was reported at 18,869.160 Person th in 2017. This records an increase from the previous number of 18,575.525 Person th for 2016. Colombia Use of Mobile Phone: Total: 25 to 54 Years data is updated yearly, averaging 18,403.524 Person th from Dec 2013 (Median) to 2017, with 5 observations. The data reached an all-time high of 18,869.160 Person th in 2017 and a record low of 18,018.865 Person th in 2013. Colombia Use of Mobile Phone: Total: 25 to 54 Years data remains active status in CEIC and is reported by National Statistics Administrative Department. The data is categorized under Global Database’s Colombia – Table CO.TB003: Technology and Communication Usage.

  19. Telemedicine Use in the Last 4 Weeks

    • catalog.data.gov
    • healthdata.gov
    • +3more
    Updated Apr 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Telemedicine Use in the Last 4 Weeks [Dataset]. https://catalog.data.gov/dataset/telemedicine-use-in-the-last-4-weeks-5229c
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    To rapidly monitor recent changes in the use of telemedicine, the National Center for Health Statistics (NCHS) and the Health Resources and Services Administration’s Maternal and Child Health Bureau (HRSA MCHB) partnered with the Census Bureau on an experimental data system called the Household Pulse Survey. This 20-minute online survey was designed to complement the ability of the federal statistical system to rapidly respond and provide relevant information about the impact of the coronavirus pandemic in the U.S. The U.S. Census Bureau, in collaboration with five federal agencies, launched the Household Pulse Survey to produce data on the social and economic impacts of the COVID-19 pandemic on American households. The Household Pulse Survey was designed to gauge the impact of the pandemic on employment status, consumer spending, food security, housing, education disruptions, and dimensions of physical and mental wellness. The survey was designed to meet the goal of accurate and timely estimates. It was conducted by an internet questionnaire, with invitations to participate sent by email and text message. The sample frame is the Census Bureau Master Address File Data. Housing units linked to one or more email addresses or cell phone numbers were randomly selected to participate, and one respondent from each housing unit was selected to respond for him or herself. Estimates are weighted to adjust for nonresponse and to match Census Bureau estimates of the population by age, sex, race and ethnicity, and educational attainment. All estimates shown meet the NCHS Data Presentation Standards for Proportions.

  20. Colombia Use of Mobile Phone: Male: 12 to 24 Years

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, Colombia Use of Mobile Phone: Male: 12 to 24 Years [Dataset]. https://www.ceicdata.com/en/colombia/technology-and-communication-usage/use-of-mobile-phone-male-12-to-24-years
    Explore at:
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2013 - Dec 1, 2017
    Area covered
    Colombia
    Description

    Colombia Use of Mobile Phone: Male: 12 to 24 Years data was reported at 4,875.020 Person th in 2017. This records an increase from the previous number of 4,840.445 Person th for 2016. Colombia Use of Mobile Phone: Male: 12 to 24 Years data is updated yearly, averaging 4,875.020 Person th from Dec 2013 (Median) to 2017, with 5 observations. The data reached an all-time high of 4,959.963 Person th in 2013 and a record low of 4,802.004 Person th in 2014. Colombia Use of Mobile Phone: Male: 12 to 24 Years data remains active status in CEIC and is reported by National Statistics Administrative Department. The data is categorized under Global Database’s Colombia – Table CO.TB003: Technology and Communication Usage.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Monthly mobile data usage per connection worldwide 2023-2030*, by region [Dataset]. https://www.statista.com/statistics/489169/canada-united-states-average-data-usage-user-per-month/
Organization logo

Monthly mobile data usage per connection worldwide 2023-2030*, by region

Explore at:
6 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jul 1, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
2023
Area covered
Worldwide
Description

North America registered the highest mobile data consumption per connection in 2023, with the average connection consuming ** gigabytes per month. This figure is set to triple by 2030, driven by the adoption of data intensive activities such as 4K streaming.

Search
Clear search
Close search
Google apps
Main menu